
235Information Technology and Control 2019/2/48

What Static Analysis Can Utmost
Offer for Android Malware Detection

ITC 2/48
Journal of Information Technology
and Control
Vol. 48 / No. 2 / 2019
pp. 235-249
DOI 10.5755/j01.itc.48.2.21457

What Static Analysis Can Utmost Offer for
Android Malware Detectione

Received 2018/08/16 Accepted after revision 2019/03/28

 http://dx.doi.org/10.5755/j01.itc.48.2.21457

Corresponding author: talhakabakus@gmail.com

Abdullah Talha Kabakus
Duzce University, Faculty of Engineering, Department of Computer Engineering, Duzce, 81620, Turkey,
e-mail: talhakabakus@gmail.com

Malicious applications are widespread for Android despite the taken serious actions by the operating system.
Static and dynamic analysis techniques are utilized to detect malware by identifying the signatures of malicious
applications by inspecting both the resources and behaviors of malware, respectively. In this study, what static
analysis can utmost offer to detect malware in Android ecosystem is discussed and experimented on common-
ly used datasets in the literature by proposing a novel Android malware detection approach based on static
analysis techniques. With the proposed study, the effectiveness of novel static analysis features’ in terms of
detecting malware in Android ecosystem are proved. These features were underestimated by the related work
in the literature. The experimental result shows that the proposed Android malware detection approach is very
effective in terms of detecting Android malware. Each feature used by the proposed approach is evaluated by
using different types of machine learning techniques in order to highlight its impact on detecting malware and
inform the digital investigators. The accuracy of the proposed static analysis approach is calculated as high as
0.987 for 10,865 applications.
KEYWORDS: Android malware, Android malware detection, static analysis, machine learning, Android.

1. Introduction
Android is an open source mobile operating sys-
tem which is owned by Google and powered by the
contribution of eighty-four technology and mobile
companies under a group named Open Handset Alli-
ance (OHA)1. During Google I/O 2017, Google has an-

1 https://www.openhandsetalliance.com

nounced that there are more than 2 billion monthly
active Android devices in use around the world [15,
59]. According to a recent report by Statista, with be-
ing used by 87.7% of smartphones, Android has dom-
inated the global smartphone market in the second
quarter of 2017 [73]. The reasons behind this domina-
tion can be listed as follows: (1) Being an open source

mailto:obodovskiy58@gmail.com

Information Technology and Control 2019/2/48236

operating system which makes it possible to install
and customize for free [85], (2) ability to extend the
default features of operating system by installing a
large number of applications which are available in
the official application market (namely Play Store2)
[46], (3) being powered by a group of eighty-four com-
panies which contain some widely used hardware
manufacturers such as Samsung, LG, Sony. Unfortu-
nately, this huge popularity attracts the attention of
malicious application developers. According to the
security researchers at Check Point, about 2 million
Android users are affected from a malware dubbed as
‘FalseGuide’ which hides its malicious action in over
forty fake companion guide applications for popular
mobile games such as Pokemon Go and FIFA Mobile
[47]. The Android malware ‘Judy’ is thought to reach
as many as 36.5 million users on Play Store [53, 78].
Android malware aims (1) privilege escalation, (2)
turning the infected devices into bots for remote con-
trol, (3) causing financial charges to infected users,
and (4) sensitive information collection [7, 29, 35, 40,
45, 57, 62, 69, 76, 81, 82, 84-87, 90]. Despite this popu-
larity and the level of threat, many researchers report
the lack of security awareness of Android users [9, 27,
33, 38, 41, 45, 54, 72, 85]. Android application devel-
opers are required to explicitly declare the permis-
sions that the developed application needs to demand
from users through the use of provided classes and
methods of Android API (Application Programming
Interface). The practice recommended by Android
official documentation while developing Android
applications is minimizing the number of permis-
sions that the application requires which are defined
in application manifest file (AndroidManifest.xml)
[68]. Since when a necessary permission is not de-
fined in AndroidManifest.xml the application crashes,
developers tend to demand more permissions than
the application actually needs [30]. For this reason,
some tools such as PScout [79] and Androguard3 are
proposed. Despite the existence of these tools, An-
droid application developers cannot solely rely on
these tools since (1) Android API is being updated
regularly, and (2) these tools are based on program
analysis [10]. Also, it is reported that some research-

2 https://play.google.com/store

3 https://github.com/androguard/androguard

ers find the official Android documentation is incom-
plete which leads applications to be overprivileged
[30, 79]. The Android security mechanism is solely
based on permissions which are needed to be grant-
ed by the users in order to let Android applications
access sensitive contents such as contacts, messages
or hardware such as camera, telephony [11, 24, 30, 4,
51]. Despite its importance, a report that measures
the awareness and interest level of Android users for
the permissions mechanism shows that while 42%
of participants are even unaware of the existence of
permissions, only 17% of participants pay attention
to permissions during the installation process [31].
Google Play Protect is announced during Google I/O
2017 which is an always-on service bundled with the
Play Store application and scans the installed appli-
cations on device regularly in order to ensure that the
applications remain benign over the time [4, 21]. Ac-
cording to Android Security Center, Google Play Pro-
tect checks applications, settings and critical securi-
ty data from over 2 billion Android devices and over
than 50 billion applications are verified per day by
comparing application behavior across these devices
thanks to the used machine learning techniques [67].
Android malware detection approaches are gener-
ally divided into two categories: (1) Static analysis,
and (2) dynamic analysis. Static analysis approaches
use reverse engineering techniques to obtain appli-
cation source files in order to detect malicious appli-
cations without executing applications [3, 27, 32, 34,
90]. The other one, dynamic analysis approaches ex-
ecute applications in a controlled and instrumented
environment such as a sandbox or a virtual machine
in order to monitor their runtime behavior such as
network access, memory modifications, and track
dynamic taint 76]. The main objective of this study
is revealing what can static analysis utmost offer for
Android malware detection with the use of resources
of applications. For this reason, a novel static analysis
approach is proposed which introduces some nov-
el features. The proposed approach combines these
static analysis features with various machine learn-
ing techniques. The proposed approach is evaluat-
ed on large and commonly used datasets in order to
make a conclusion about the effectiveness of the used
static analysis features. The rest of the paper is struc-
tured as follows: Section 2 presents the related work.

237Information Technology and Control 2019/2/48

Section 3 describes the proposed static analysis tech-
nique with explaining how each feature is extracted.
Section 4 discusses the findings and the experimental
result. Finally, Section 5 concludes the paper with fu-
ture directions.

2. Related Work
In this section, Android malware detection approach-
es are briefly reviewed. Android malware detection
approaches are generally classified through the tech-
nique they use: (1) Static analysis techniques, and (2)
dynamic analysis techniques.

2.1. Static Analysis
Kirin [27] is a security service that evaluates an ap-
plication’s demanded permissions and checks them
against a set of security rules to mitigate malware at
installation time by modifying the Android Applica-
tion Installer. Kirin solely relies on the permissions
defined in AndroidManifest.xml file rather than ex-
amining whether these permissions are actually
used by the application. SCanDroid [32] extracts the
information from the Android manifest file and ap-
plication source code which are used to decide if the
application may lead to unwanted information flows.
Stowaway [30] uses static analysis techniques in or-
der to detect the overprivilege by mapping the set of
API calls that an application uses with the related
permissions. Stowaway is evaluated with a set of 940
applications and the experimental result shows that
one-third of these applications are overprivileged.
DroidAPIMiner [1] conducts a frequency analysis
to capture the most relevant API calls and utilizes
top malware used APIs as features. Then these fea-
tures are used within KNN (K-Nearest Neighbors)
algorithm to classify applications as malicious or
benign. Drebin [6] uses static analysis to gather the
characteristics of Android applications. Then Drebin
utilizes SVM (Support Vector Machines) to classify
applications as malicious or benign. Apex [55] makes
dynamic permission revocation possible which lets
the user revoke granted permissions when the ap-
plication is installed. APK Auditor [39] is a permis-
sion-based static analysis system which extracts the
permissions of application defined on the Android
manifest file and calculates a novel malware score for

each application based on the usage of permissions.
The calculated score is compared to the malware
threshold limit which is determined by using logistic
regression on the database that stores previously an-
alyzed both malicious and benign applications. Then
APK Auditor classifies an application as malicious if
the calculated score exceeds the malware threshold
limit. SAMADroid [8] proposes Android malware de-
tection model based on the three different levels such
as (1) static and dynamic analysis, (2) local and the re-
mote host, and (3) machine learning intelligence. The
static analysis features that SAMADroid are based
on both the AndroidManifest.xml file (e.g., requested
hardware components, requested permissions, and
application components) and the detected API calls.
Sayfullani et al. [66] presented a static algorithm
based on the extraction of resources from the .apk file
of applications, namely, (1) AndroidManifest.xml, (2)
classes.dex which contains the compiled source files
in .dex format, and (3) resources.arsc which contains
the compiled resources. They propose Normalized
Bernoulli Naive Bayes classifier which is an improved
Naive Bayes classifier that resulted in higher accura-
cy according to the experimental result. Bao et al. [10]
proposed two static analysis approaches which are
(1) the approach that utilizes a collaborative filtering
technique inspired by the intuition that applications
that have similar features usually demand similar
permissions, (2) the approach recommends permis-
sions thanks to a technique that utilizes Naive Bayes
multinomial classification algorithm to build a pre-
diction model by analyzing the descriptions of appli-
cations which are available on Play Store. The limita-
tions of this approach are (1) it detects API usages by
the existence of related import statements but not ev-
ery declared import statement is used by source code
which is also known as unused import statement, and
(2) it only considers classes from Android SDK and
Java standard libraries but developers define their
own classes thanks to the inheritance mechanism
provided by Java programming language. APPSPEAR
[48] is an automated Android unpacking system for
both Dalvik and ART (Android Runtime) Android
application runtime environments that are proposed
to overcome code protections which are commonly
used by malware to hide their malicious aims as Sy-
mantec reports that the ratio of packed malware has
increased to 25% by August 2016 [70]. DroidDet [91]

Information Technology and Control 2019/2/48238

is a static analysis tool that utilizes Rotation Forest as
the machine learning algorithm based on the static
analysis features such as permissions, system events,
and the rate of sensitive APIs.

2.2. Dynamic Analysis

Crowdroid [14] traces Linux system calls, converts
them into feature vector in order to use as the features
of utilized K-means clustering algorithm. MADAM (a
Multi-level Anomaly Detector for Android Malware)
[25] is a dynamic analysis tool that combines fea-
tures at the kernel-level and at the application level
and utilizes machine learning techniques to perform
malware analysis. The major drawback of MADAM is
that it performs monitoring and analyzing processes
on the device which is not applicable since mobile de-
vices generally have limited computation (e.g., CPU)
and storage capabilities (e.g., memory, disk, battery)
[25, 50, 77]. Some dynamic analysis approaches [13,
37, 44] utilize power consumption as the main feature
for malware detection. This approach surely is use-
ful to detect malware which is specifically designed
to consume the battery of device but this approach
is very limited when the large varieties of Android
malware are considered [3, 88]. TaintDroid [26] is
dynamic taint-tracking and analysis system that si-
multaneously tracks sensitive data such as location,
microphone, and camera. They report that 15 appli-
cations of randomly selected 30 popular applications
have reported locations of users to a remote server
for advertising. In addition to that, approximately
one-third of the applications have exposed some in-
formation about the phone which is specific to the
device. Paranoid Android [60] transfers the execution
trace recorded by a tracer located in the smartphone
to a server located in the cloud which replays the ex-
ecution trace within the replica of the mobile phone.
Canfora et al. [17] proposed an Android malware de-
tection approach based on sequences of system calls.
They use machine learning techniques in order to
associate sequences of system calls with malicious
behaviors. The biggest advantage of this approach is
that it is able to cope with the dynamism of the mo-
bile application ecosystem which is commonly un-
derestimated by the related work since it can detect
unknown malware. SAMADroid [8] analyzes the trac-
es generated by system calls during the execution of

an Android application. DroidTrace [89] is a ptrace4
based dynamic analysis system with forward execu-
tion capability which utilizes the ptrace to monitor
calls of a process in order to classify the payloads be-
haviors through the system calls.

3. Material and Method
In this section, the detail of the proposed approach
and the dataset which is used to evaluate it are de-
scribed in the following subsections.

3.1. Data Collection Process
The approach proposed in [38] is used to fetch appli-
cations from Play Store which constructs the benign
application dataset of the proposed approach. Appli-
cations stored in Play Store are downloaded by the
usage of a website named APKPure which provides
an introduction webpage that contains information
about each application. Alongside that, this webpage
also provides a link to download the apk (Android
Package) file of the application which is an archive file
that contains whole resources of the application. The
applications that construct the benign dataset of the
proposed approach are selected from top charts in or-
der to decrease the probability of being malicious [17]
and belong to different categories (e.g., games, edu-
cation, business, family, communication, medical) in
order to reflect the variety of applications in Android
ecosystem. Applications’ titles are retrieved from the
website of Play Store utilizing web mining techniques
and the related package names are extracted from the
Play Store URLs (Unified Resource Locator) of appli-
cations which can be retrieved from the path variable
“id”. Then the APKPure introduction webpage of the
related application is retrieved programmatically us-
ing the following URL pattern: “https://apkpure.com/
application-title/package_name” with converting the
title to lowercase format with replacing the spaces
with “_”. Similar to the application’s title, the down-
load link of each application is extracted from APK-
Pure utilizing web mining techniques since APKPure
does not provide any APIs to retrieve the metadata
about an Android application which is stored on its
knowledge-base. The whole process of downloading
applications from Play Store is presented in Fig. 1.

4 ptrace is a Unix system call which enables one process to ob-
serve and control the execution of another process.

239Information Technology and Control 2019/2/48

Figure 1
The whole process of downloading applications from Play Store

Table 1
The overview of the constructed dataset used by the
proposed static analysis approach

Dataset Type Number of
Samples

Applications collected
from Play Store Benign 2,902

Drebin [6] Malicious 5,373

Android Genome Project
[90] Malicious 1,260

F-Droid [28] Malicious 1,123

3.2. Dataset Information
Malicious applications are obtained from datasets
which are widely used in the literature such as Dre-
bin [6], Android Genome Project, and F-Droid [28]. To
the best of my knowledge, Drebin is one of the biggest
Android malware datasets available which contains
malware that belong to 179 different malware fam-
ilies. As a total, the whole dataset used by the pro-
posed static analysis approach contains 10,658 appli-
cations as the overview of the constructed dataset is
listed in Table 1.

3.3. The Features of Proposed Static Analysis
Approach
The features of the proposed static analysis approach
are obtained from both (1) AndroidManifest.xml which
is the file that contains declarations for the applica-
tion’s core components (e.g., activities, services, per-
missions), and (2) the application source code files
(Java files) which are obtained by using reverse engi-
neering techniques. The features extracted from the
AndroidManifest.xml are (1) the number of activities,
(2) the number of services, (3) the number of receivers,
(4) the number of features, (5) the number of dangerous
permissions, (6) the number of custom permissions, and
(7) the number of other permissions. Unlike the other
related static analysis approaches, the feature number
of permissions are divided into three categories as (1)
“dangerous” permissions which require users to grant
them explicitly [63], (2) “custom” permissions which
are defined by developers and not the ones Android
operating system defines [23], and (3) “other” permis-
sions indicate the permissions which do not belong
to the first two categories. The only feature which is
obtained from the decompiled Java source files is the
number of lines of code (loc) of the application. To the
best of our knowledge, this feature is novel since it has
not been used by any related work. The features which
are used by the proposed static analysis approach are
listed in Table 2 with their sources and descriptions.

Information Technology and Control 2019/2/48240

3.4. Extracting Features from APK File
The downloaded apk files are extracted using an open
source third-party tool named Apktool [5]. Apktool
extracts the AndroidManifest.xml and the compiled
dex (Dalvik executable) file (classes.dex) from the

Table 2
The features which are used by the proposed static analysis approach with their sources and descriptions

Feature Source Description

Number of activities AndroidManifest.xml The number of activities defined on the AndroidManifest.xml file

Number of services AndroidManifest.xml The number of services defined on the AndroidManifest.xml file
Number of receivers AndroidManifest.xml The number of receivers defined on the AndroidManifest.xml file
Number of features AndroidManifest.xml The number of features defined on the AndroidManifest.xml file
Number of dangerous
permissions AndroidManifest.xml The number of dangerous permissions defined on the

AndroidManifest.xml file
Number of custom
permissions AndroidManifest.xml The number of custom permissions defined on the

AndroidManifest.xml file
Number of other
permissions AndroidManifest.xml The number of other permissions defined on the

AndroidManifest.xml file
Number of lines of
code Decompiled source code files The total number of lines of code that decompiled Java source

files contain

apk file. The aapt (Android Asset Packaging Tool) is
a command line utility which comes bundled with
Android SDK (Software Development Kit) [65]. A
service, which is implemented using Java program-
ming language, is used to (1) extract the apk file using

Figure 2
The whole process of extracting features of the proposed static analysis approach

241Information Technology and Control 2019/2/48

Apktool, (2) read the contents of the extracted An-
droidManifest.xml file using the aapt utility, and (3)
extract the number of lines of code of the application.
In order to extract the feature number of lines of code
of the application, the implemented service decom-
piles the extracted dex file into the jar (Java archive)
using an open source third-party tool named dex2jar
[61]. Then the jar file is extracted into the Java source
files using another open source third-party command
line tool named jd-cmd [16]. Finally, the implement-
ed service counts the number of lines of code of each
extracted Java file recursively. The whole process of
extracting features of the proposed static analysis ap-
proach is presented in Fig. 2.

4. Result and Discussion
The proposed static analysis approach was utilized
with various machine learning algorithms in order
to reveal which algorithm provides the best perfor-
mance in terms of accuracy. Since the problem is a
classification problem, the performance of the pro-
posed system can be evaluated by using the confusion
matrix. While positive means malicious applications,
negative means benign applications. The terms TP
(True Positive), TN (True Negative), FP (False Posi-
tive), and FN (False Negative) refer to the number of
true positive instances, the number of true negative
instances, the number of false positive instances, and
the number of false negative instances, respectively.
The performance of the proposed static analysis ap-
proach is evaluated by using five indexes namely ac-
curacy, precision, recall, F-measure, and MCC (Mat-
thews Correlation Coefficient) which are calculated as
the following equations:

4. Result and Discussion
The proposed static analysis approach was utilized with various machine learning algorithms in order to reveal which
algorithm provides the best performance in terms of accuracy. Since the problem is a classification problem, the
performance of the proposed system can be evaluated by using the confusion matrix. While positive means malicious
applications, negative means benign applications. The terms TP (True Positive), TN (True Negative), FP (False
Positive), and FN (False Negative) refer to the number of true positive instances, the number of true negative instances,
the number of false positive instances, and the number of false negative instances, respectively. The performance of
the proposed static analysis approach is evaluated by using five indexes namely accuracy, precision, recall, F-
measure, and MCC (Matthews Correlation Coefficient) which are calculated as the following equations:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

.

Precision is the proportion of the number of correctly identified malware to the total number of malware. Recall or
true-positive rate (TPR) is the percentage of malware correctly identified. F-measure is the harmonic mean of the
precision and recall. MCC is a correlation coefficient between the observed and predicted binary classifications, and
is a value between -1 and 1. Whilst a coefficient of 1 indicates a perfect prediction, -1 indicates an inverse prediction.
A coefficient of 0 indicates an average random prediction [64].

4.1. Feature Selection
Feature selection is a key process of machine learning in order to increase the accuracy of the system’s prediction. For
this reason, the information gain of each feature is experimented. In order to experiment the information gain each
used feature provides, CorrelationAttributeEval attribute evaluator, which evaluates the worth of an attribute by
measuring the correlation between it and the class [12, 20, 42, 43, 56], is used with the Ranker search method. As the
experimental results listed in Table 3 show the novel feature number of lines of code provides the best information
gain. Also, the feature number of other permissions provides the worst information gain which proves the

Precision is the proportion of the number of correct-
ly identified malware to the total number of malware.

Recall or true-positive rate (TPR) is the percentage of
malware correctly identified. F-measure is the har-
monic mean of the precision and recall. MCC is a cor-
relation coefficient between the observed and predict-
ed binary classifications, and is a value between -1 and
1. Whilst a coefficient of 1 indicates a perfect predic-
tion, -1 indicates an inverse prediction. A coefficient of
0 indicates an average random prediction [64].

4.1. Feature Selection
Feature selection is a key process of machine learn-
ing in order to increase the accuracy of the system’s
prediction. For this reason, the information gain of
each feature is experimented. In order to experiment
the information gain each used feature provides, Cor-
relationAttributeEval attribute evaluator, which eval-
uates the worth of an attribute by measuring the cor-
relation between it and the class [12, 20, 42, 43, 56], is
used with the Ranker search method. As the experi-
mental results listed in Table 3 show the novel feature
number of lines of code provides the best information
gain. Also, the feature number of other permissions
provides the worst information gain which proves
the categorization of permissions is useful in order to
effectively classify applications through the permis-
sions they demand.

Table 3
Information gain of each feature used by the proposed
static analysis approach

Feature Information Gain

Number of lines of code 0.808

Number of activities 0.363

Number of services 0.326

Number of receivers 0.324

Number of dangerous permissions 0.224

Number of custom permissions 0.177

Number of features 0.166

Number of other permissions 0.061

4.2. Evaluation of Machine Learning
Algorithms
Various machine learning (ML) algorithms are uti-
lized in order to compare their performance in terms
of detecting malware. For this reason, the proposed

Information Technology and Control 2019/2/48242

static analysis approach is evaluated with ten differ-
ent machine learning algorithms namely (1) KNN,
(2) BayesNet, (3) NaiveBayes, (4) Logistic Regres-
sion, (5) SVM, (6) J48, (7) RandomForest, (8) Ran-
domTree, (9) Bootstrap Aggregation (Bagging), and
(10) AdaBoost. KNN is configured according to the
number of neighbors. For the experiment, the num-
ber of neighbors is set to 1, 5, and the algorithms are
named KNN1, KNN5, respectively. Random Forest is
a forest that consists of configurable number of de-
cision trees [80]. For the experiment, the number of
decision trees is set to 100, 1000, and the algorithms
are named RandomForest100, RandomForest1000,
respectively. SMO (Sequential Minimal Optimiza-
tion) algorithm is an improved training algorithm
for SVM [58, 71] which is provided by Weka5, an
open source widely used data mining software.
SMO-npolykernel (SMO-normalizedpolykernel) and
SMO-polykernel are implementations of the SMO
algorithm according to the related kernel functions
which are provided by Weka. 10-fold cross-valida-
tion is employed for the evaluation of each algorithm.

Thus, 9,539 samples are used for training, while the
remaining 1,065 samples are used for testing. In 10-
fold cross-validation, the dataset is randomly parti-
tioned into ten equal sized parts where a single part
is used for testing and the remaining nine parts are
used for training. Since this process is repeated ten
times, the whole dataset is used for both training and
testing with ensuring that all samples are used once
for validation [52]. The metrics that are used for the
evaluation of each algorithm are precision, recall,
F-measure, and MCC because of they are commonly
used evaluation metrics by the related work [2, 10, 19,
22, 36, 46, 52, 74, 80, 83, 85, 87-88]. As the evaluation
result of the proposed static analysis approach when
it is utilized with a wide range of algorithms is list-
ed in Table 4, the precision, recall, and F-measure of
the proposed static analysis approach are calculated
as high as 0.987 when the system is utilized with the
RandomForest algorithm and the number of decision
trees is set to 1,000. The same configuration produces
the highest MCC value (0.966) as well.

Table 4
Performance comparison of the proposed static analysis approach when it is evaluated with various machine
learning algorithms

ML Algorithm Precision Recall F-measure MCC

KNN1 0.977 0.977 0.977 0.943

KNN5 0.977 0.977 0.977 0.942

BayesNet 0.974 0.974 0.974 0.934

NaiveBayes 0.969 0.968 0.968 0.921

Logistic Regression 0.983 0.983 0.983 0.957

SMO-polykernel 0.976 0.975 0.975 0.938

SMO-npolykernel 0.967 0.967 0.967 0.917

J48 0.982 0.982 0.982 0.953

RandomForest100 0.986 0.986 0.986 0.965

RandomForest1000 0.987 0.987 0.987 0.966

RandomTree 0.98 0.98 0.98 0.951

Bagging 0.984 0.984 0.984 0.961

AdaBoost 0.982 0.982 0.982 0.954
5

5 https://www.cs.waikato.ac.nz/ml/weka/

243Information Technology and Control 2019/2/48

Table 5
Comparison of the proposed work with the related work in terms of utilized analysis technique and used features

Related Work Analysis Technique Used Features

SCanDroid [32] Static analysis Android manifest file and decompiled application source code

Stowaway [30] Static analysis Android manifest file and decompiled application source code

DroidAPIMiner [1] Static analysis Decompiled application source code

Drebin [6] Static analysis Android manifest file and decompiled application source code

APK Auditor [39] Static analysis Android manifest file

DroidDet [91] Static analysis Android manifest file and decompiled application source code

Crowdroid [14] Dynamic analysis Monitored system calls

MADAM [25] Dynamic analysis Monitored system calls and system resources

[13], [37], [44] Dynamic analysis Monitored power consumption

TaintDroid [26] Dynamic analysis Tracked taints during program execution

Paranoid Android [60] Dynamic analysis Execution trace of the program

[17] Dynamic analysis Monitored system calls

SAMADroid [8] Dynamic analysis Traces generated by system calls

DroidTrace [89] Dynamic analysis Monitored process calls

When the Android malware is investigated, it has
been noticed that Android malware vary by the way
they target to harm the device. Whilst some malicious
applications tend to harm end-users through the pro-
vided activities which let users interact with the ap-
plication like a benign one (i.e. playing a video game,
sending a message, etc.), some others tend to utilize
the services and receivers which contain some pow-
erful features that Android SDK provides to complete
malicious actions in the background. The way that
a malware completes its malicious action changes
through the version of the Android operating system
that is running on the victim’s device as the security
mechanism of Android operating system evaluates.
The main security mechanism of the Android op-
erating system that is applied to applications is per-
missions as it is discussed in Introduction. Hence,
the permissions of each application are extracted
and specifically categorized in a similar way Android
operating system itself categorizes permissions. The
proposed system’s malware detection mechanism is
specifically designed not to base on a signature da-
tabase that consists of several signatures of malware
since being able to detect zero-day malware.

There are many Android malware detection ap-
proaches based on static analysis techniques as some
of these approaches are briefly described in Section
2. Since the dataset used to evaluate the proposed
Android malware detection approach is unique, it is
not possible to directly compare the performances of
related work in terms of malware detection accura-
cy. Instead of that, a comparison of the proposed ap-
proach with the related work in terms of utilized anal-
ysis technique and used features are listed in Table 5.

5. Conclusion
Static analysis techniques use static resources which
are available before the installation and execution
of Android applications. Since these resources con-
tain all the resources the applications use in order
to perform their actions, techniques based on static
analysis are very effective in terms of malware detec-
tion. In addition to that, static analysis is lightweight
compared to dynamic analysis since there is no need
to monitor the executions of applications which re-
quires various monitoring approaches to track taints

Information Technology and Control 2019/2/48244

and monitor system resources. In this study, what
static analysis can utmost offer for Android malware
detection is experimented with the proposed ap-
proach which extracts features from static resourc-
es and utilizes various machine learning algorithms
to detect malicious applications in a large dataset of
10,658 Android applications which is combined from
both widely-used datasets and a collected dataset of
applications available in Play Store. According to the
experimental result, the proposed approach’s accura-
cy is calculated as high as 0.987. The contributions of
this study can be listed as follows:
 _ Effective malware detection. The proposed novel

static analysis approach, which utilizes different
types of machine learning algorithms, is capable of
identifying Android malware with high accuracy.

 _ Zero-day malware detection. Since the proposed
approach does not detect malicious applications
through a signature database that consists of
several signatures of malicious applications, it is
designed to detect zero-day malware.

 _ Novel features. The proposed system uses some
novel features such as the number of lines of code.

 _ Lightweight analysis. Linear time analysis and
learning techniques are applied for efficiency.
The proposed approach is capable of detecting
malicious applications in larger datasets in a
reasonable time.

 _ Explainable approach. The features used to train
the proposed approach are explained and evaluated
in order to reveal the efficiency of each feature. The
feature which is utilized by the proposed approach

for the first time “the number of lines of code”
provides the best information gain alongside the
used features which proves its efficiency.

 _ Expandable knowledge base. The proposed system’s
knowledge base is expandable since it is capable of
downloading Android applications from Play Store
automatically.

 _ Fully automated mechanism. The proposed system
is fully automated as the system accepts an apk file
as the input and extracts all the features thanks to
the developed pipeline architecture.

As a future work, the proposed approach may be en-
hanced by source code analysis in order to interpret
the real intentions of API calls. Also, the proposed
system’s knowledge base may be updated by includ-
ing newer malicious application datasets when they
exist.

Acknowledgments
The author would like to thank Computer Security
Group – the University of Göttingen for sharing the
Drebin dataset and Zhou Y., Jiang X. for sharing the
dataset of Android Malware Genome Project.

Declaration of Conflicting Interests
The author declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Funding
The author received no financial support for the research,
authorship, and/or publication of this article.

References
1. Aafer, Y., Du, W., Yin, H. DroidAPIMiner: Mining

API-Level Features for Robust Malware Detection in
Android. In 9th International Conference on Security
and Privacy in Communication Networks (Secure-
Comm 2013), Sydney, Australia, 2013, 86-103. https://
doi.org/10.1007/978-3-319-04283-1_6

2. Afonso, V. M., de Amorim, M. F., Grégio, A. R. A., Junqu-
era, G. B., de Geus, P. L. Identifying Android Malware
Using Dynamically Obtained Features. Journal of Com-
puter Virology and Hacking Techniques, 2015, 11(1),
9-17. https://doi.org/10.1007/s11416-014-0226-7

3. Alzaylaee, M. K., Yerima, S. Y., Sezer, S. Improving Dy-
namic Analysis of Android Apps Using Hybrid Test
Input Generation. In IEEE International Conference
on Cyber Security and Protection Of Digital Services
(Cyber Security 2017), London, UK, 2017. https://doi.
org/10.1109/CyberSecPODS.2017.8074845

4. Android - Google Play Protect, 2019. Retrieved January 1,
2019, from https://www.android.com/play-protect/

5. Apktool - A Tool for Reverse Engineering 3rd Party, Clo-
sed, Binary Android Apps, 2018. Retrieved April 1, 2018,
from https://ibotpeaches.github.io/Apktool/

https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1007/s11416-014-0226-7
https://doi.org/10.1109/CyberSecPODS.2017.8074845
https://doi.org/10.1109/CyberSecPODS.2017.8074845

245Information Technology and Control 2019/2/48

6. Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H.,
Rieck, K. Drebin: Effective and Explainable Detecti-
on of Android Malware in Your Pocket. In Symposium
on Network and Distributed System Security (NDSS),
San Diego, California, USA, 2014, 23-26. https://doi.
org/10.14722/ndss.2014.23247

7. Arshad, S., Ahmed, M., Shah, M. A., Khan, A. Android
Malware Detection Protection: A Survey. Internatio-
nal Journal of Advanced Computer Science and Appli-
cations (IJACSA), 2016, 7(2), 463-475. https://doi.
org/10.14569/IJACSA.2016.070262

8. Arshad, S., Shah, M. A., Wahid, A., Mehmood, A., Song,
H. SAMADroid: A Novel 3-Level Hybrid Malware De-
tection Model for Android Operating System. IEEE
Access, 2018, 6, 4321-4339. https://doi.org/10.1109/AC-
CESS.2018.2792941

9. Backes, M., Gerling, S., Hammer, C., Maffei, M., Backes,
M., Gerling, S., Hammer, C. AppGuard - Real-Time Poli-
cy Enforcement for Third-Party Applications, 2012. Re-
trieved January 1, 2019, from http://sps.cs.uni-saarland.
de/publications/monitor.pdf

10. Bao, L., Lo, D., Xia, X., Li, S. Automated Android Appli-
cation Permission Recommendation. Science China
Information Sciences, 2017, 60(9), 1-17. https://doi.
org/10.1007/s11432-016-9072-3

11. Bläsing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A., Al-
bayrak, S. An Android Application Sandbox System for
Suspicious Software Detection. In 5th IEEE Internati-
onal Conference on Malicious and Unwanted Software
(Malware 2010), Nancy, France: IEEE, 2010, 55-62.
https://doi.org/10.1109/MALWARE.2010.5665792

12. Boonjing, V., Pimchangthong, D. Data Mining for Cus-
tomers‘ Positive Reaction to Advertising in Social
Media. In Proceedings of the Federated Conference
on Computer Science and Information Systems, Pra-
gue, Czech Republic, 2017, 11, 945-948. https://doi.or-
g/10.15439/2017F356

13. Buennemeyer, T. K., Nelson, T. M., Clagett, L. M., Dun-
ning, J. P., Marchany, R. C., Tront, J. G. Mobile Device
Profiling and Intrusion Detection Using Smart Batte-
ries. In Proceedings of the 41st Annual Hawaii Interna-
tional Conference on System Sciences (HICSS 2008),
Waikoloa, HI, USA, 2008, 1-10. https://doi.org/10.1109/
HICSS.2008.319

14. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S. Crow-
droid: Behavior-Based Malware Detection System for
Android. In Proceedings of the 1st ACM workshop on
Security and Privacy in Smartphones and Mobile De-
vices - SPSM‘11, Chicago, IL, USA, 2011, 15. https://doi.
org/10.1145/2046614.2046619

15. Burke, D. Android: Celebrating a Big Milestone Together
with You, 2017. Retrieved January 1, 2019, from https://
www.blog.google/products/android/2bn-milestone/

16. Cacek, J. kwart/jd-cmd: Command Line Java Decom-
piler, 2018. Retrieved January 2, 2019, from https://gi-
thub.com/kwart/jd-cmd

17. Canfora, G., Medvet, E., Mercaldo, F., Visaggio, C. A. De-
tecting Android Malware Using Sequences of System
Calls. In Proceedings of the 3rd International Workshop
on Software Development Lifecycle for Mobile - De-
Mobile 2015, Bergamo, Italy, 2015, 13-20. https://doi.
org/10.1145/2804345.2804349

18. Chandramohan, M., Tan, H. B. K. Detection of Mobi-
le Malware in the Wild. Computer, 2012, 45(9), 65-71.
https://doi.org/10.1109/MC.2012.36

19. Chang, Y.-C., Wang, S.-D. The Concept of Attack Sce-
narios and its Applications in Android Malware Detec-
tion. In 2016 IEEE 18th International Conference on
High Performance Computing and Communications;
IEEE 14th International Conference on Smart City;
IEEE 2nd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), Sydney, Aus-
tralia: IEEE, 2016, 1485-1492. https://doi.org/10.1109/
HPCC-SmartCity-DSS.2016.0211

20. Cheung, K. Y., Tong, K. K., Lee, K. H., Leung, K. S. Clas-
sification of RNAs with Pseudoknots Using K-mer
Occurrences Count as Attributes. In 13th IEEE Inter-
national Conference on BioInformatics and BioEngine-
ering (IEEE BIBE 2013), Chania, Greece, 2013. https://
doi.org/10.1109/BIBE.2013.6701575

21. Cunningham, E. Keeping You Safe with Google Play
Protect, 2017. Retrieved January 1, 2019, from https://
blog.google/products/android/google-play-protect/

22. Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahma-
di, M., Kinder, J., Cavallaro, L. DroidScribe: Classifying
Android Malware Based on Runtime Behavior. In Pro-
ceedings - 2016 IEEE Symposium on Security and Pri-
vacy Workshops (SPW 2016), 2016, San Jose, CA, USA,
252-261. https://doi.org/10.1109/SPW.2016.25

23. Define a Custom App Permission, 2018. Retrieved April
1, 2018, from https://developer.android.com/guide/to-
pics/permissions/defining.html

24. Di Cerbo, F., Girardello, A., Michahelles, F., Voronko-
va, S. Detection of Malicious Applications on Android
OS. In IWCF‘10 Proceedings of the 4th International
Conference on Computational Forensics, Aoyama, To-
kyo, Japan: Springer-Verlag, 2010, 138-149. https://doi.
org/10.1007/978-3-642-19376-7_12

https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.14569/IJACSA.2016.070262
https://doi.org/10.14569/IJACSA.2016.070262
https://doi.org/10.1109/ACCESS.2018.2792941
https://doi.org/10.1109/ACCESS.2018.2792941
https://doi.org/10.1007/s11432-016-9072-3
https://doi.org/10.1007/s11432-016-9072-3
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.15439/2017F356
https://doi.org/10.15439/2017F356
https://doi.org/10.1109/HICSS.2008.319
https://doi.org/10.1109/HICSS.2008.319
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1145/2804345.2804349
https://doi.org/10.1145/2804345.2804349
https://doi.org/10.1109/MC.2012.36
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0211
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0211
https://doi.org/10.1109/BIBE.2013.6701575
https://doi.org/10.1109/BIBE.2013.6701575
https://doi.org/10.1109/SPW.2016.25
https://doi.org/10.1007/978-3-642-19376-7_12
https://doi.org/10.1007/978-3-642-19376-7_12

Information Technology and Control 2019/2/48246

25. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D. MA-
DAM: A Multi-Level Anomaly Detector for Android
Malware. In Kotenko, I., Skormin, V. (Eds.), Compu-
ter Network Security, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, 7531, 240-253. https://doi.
org/10.1007/978-3-642-33704-8

26. Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., Mc-
daniel, P., Sheth, A. N. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementa-
tion (OSDI’10), Vancouver, BC, Canada, 2010, 393-407.

27. Enck, W., Ongtang, M., McDaniel, P. On Lightweight Mo-
bile Phone Application Certification. In Proceedings of
the 16th ACM Conference on Computer and Communi-
cations Security (CCS‘09), Chicago, Illinois, USA, 2009,
235-245. https://doi.org/10.1145/1653662.1653691

28. F-Droid - Free and Open Source App Repository, 2018.
Retrieved March 6, 2018, from https://f-droid.org

29. Fan, W., Sang, Y., Zhang, D., Sun, R., Liu, Y. DroidInjec-
tor: A process injection-based dynamic tracking system
for runtime behaviors of Android applications. Com-
puters and Security, 2017, 70, 224-237. https://doi.or-
g/10.1016/j.cose.2017.06.001

30. Felt, A. P., Chin, E., Hanna, S., Song, D., Wagner,
D. Android Permissions Demystified. In Procee-
dings of the 18th ACM conference on Computer and
Communications Security - CCS‘11, New York, New
York, USA: ACM Press, 2011, 627-638. https://doi.
org/10.1145/2046707.2046779

31. Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., Wa-
gner, D. Android Permissions: User Attention, Com-
prehension, and Behavior. In Proceedings of the Ei-
ghth Symposium on Usable Privacy and Security
- SOUPS‘12, Washington, DC, USA, 2012, 1-14. https://
doi.org/10.1145/2335356.2335360

32. Fuchs, A. P., Chaudhuri, A., Foster, J. S. SCanDroid :
Automated Security Certification of Android Applicati-
ons. Technical Report, Department of Computer Sci-
ence, University of Maryland Read, 2009. https://doi.
org/10.1.1.164.6899

33. Gibler, C., Crussell, J., Erickson, J., Chen, H. Androi-
dLeaks: Automatically Detecting Potential Privacy
Leaks in Android Applications on a Large Scale. In
TRUST‘12 Proceedings of the 5th International Con-
ference on Trust and Trustworthy Computing, Vien-
na, Austria, 2012, 7344 LNCS, 291-307. https://doi.
org/10.1007/978-3-642-30921-2_17

34. Grace, M., Zhou, Y., Wang, Z., Jiang, X. Systematic De-
tection of Capability Leaks in Stock Android Smartpho-
nes. In Proceedings of the 19th Network and Distribu-
ted System Security Symposium (NDSS 2012), San
Diego, California, USA, 2012, 1-15.

35. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X. RiskRan-
ker: Scalable and Accurate Zero-day Android Malware
Detection. In Proceedings of the 10th international
Conference on Mobile Systems, Applications, and Ser-
vices - MobiSys‘12, Low Wood Bay, Lake District, Uni-
ted Kingdom: ACM Press, 2012, 281-294. https://doi.
org/10.1145/2307636.2307663

36. Guido, M., Ondricek, J., Grover, J., Wilburn, D., Nguyen,
T., Hunt, A. Automated identification of installed mali-
cious Android applications. Digital Investigation, 2013,
10, 96-104. https://doi.org/10.1016/j.diin.2013.06.011

37. Jacoby, G. A., Davis, N. J. Battery-Based Intrusion De-
tection. In Global Telecommunications Conference
2004 (GLOBECOM‘04), Dallas, Texas, USA: IEEE,
2004, 4, 2250-2255. https://doi.org/10.1109/GLO-
COM.2004.1378409

38. Kabakus, A. T., Dogru, I. A. An In-depth Analysis of An-
droid Malware Using Hybrid Techniques. Digital In-
vestigation, 2018, 24, 25-33. https://doi.org/10.1016/j.
diin.2018.01.001

39. Kabakus, A. T., Dogru, I. A., Cetin, A. APK Auditor: Per-
mission-Based Android Malware Detection System.
Digital Investigation, 2015, 13, 1-14. https://doi.or-
g/10.1016/j.diin.2015.01.001

40. Kang, H., Jang, J. W., Mohaisen, A., Kim, H. K. Detecting
and Classifying Android Malware Using Static Analysis
Along with Creator Information. International Journal
of Distributed Sensor Networks, 2015, 1-9. https://doi.
org/10.1155/2015/479174

41. Kelley, P. G., Consolvo, S., Cranor, L. F., Jung, J., Sa-
deh, N., Wetherall, D. A Conundrum of Permissions:
Installing Applications on an Android Smartphone.
In Blyth, J., Dietrich, S., Camp, L. J. (Eds.), Financial
Cryptography and Data Security, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, 7398, 68-79. https://
doi.org/10.1007/978-3-642-34638-5

42. Khalaf, A., Humadi, A. M., Akeel, W., Hashim, A. S. Stu-
dents‘ Success Prediction Based on Bayes Algorithms.
International Journal of Computer Applications, 2017,
178(7), 6-12. https://doi.org/10.5120/ijca2017915506

43. Khammas, B. M., Monemi, A., Bassi, J. S., Ismail, I.,
Nor, S. M., Marsono, M. N. Feature Selection and Ma-
chine Learning Classification for Malware Detection.

https://doi.org/10.1007/978-3-642-33704-8
https://doi.org/10.1007/978-3-642-33704-8
https://doi.org/10.1145/1653662.1653691
https://doi.org/10.1016/j.cose.2017.06.001
https://doi.org/10.1016/j.cose.2017.06.001
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1145/2335356.2335360
https://doi.org/10.1145/2335356.2335360
https://doi.org/10.1007/978-3-642-30921-2_17
https://doi.org/10.1007/978-3-642-30921-2_17
https://doi.org/10.1145/2307636.2307663
https://doi.org/10.1145/2307636.2307663
https://doi.org/10.1016/j.diin.2013.06.011
https://doi.org/10.1109/GLOCOM.2004.1378409
https://doi.org/10.1109/GLOCOM.2004.1378409
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1016/j.diin.2018.01.001
https://doi.org/10.1016/j.diin.2015.01.001
https://doi.org/10.1016/j.diin.2015.01.001
https://doi.org/10.1155/2015/479174
https://doi.org/10.1155/2015/479174
https://doi.org/10.1007/978-3-642-34638-5
https://doi.org/10.1007/978-3-642-34638-5
https://doi.org/10.5120/ijca2017915506

247Information Technology and Control 2019/2/48

Jurnal Teknologi, 2015, 77(1), 243-250. https://doi.
org/10.11113/jt.v77.3558

44. Kim, H., Smith, J., Shin, K. G. Detecting Energy-Greedy
Anomalies and Mobile Malware Variants. In Procee-
ding of the 6th international conference on Mobile Sys-
tems, Applications, and Services (MobiSys‘08), Brec-
kenridge, CO, USA: ACM, 2008, 239-252. https://doi.
org/10.1145/1378600.1378627

45. King, J., Lampinen, A., Smolen, A. Privacy: Is There
an App for That? In Proceedings of the Seventh Sym-
posium on Usable Privacy and Security (SOUPS‘11),
New York, NY, USA: ACM Press, 2011, 1-20. https://doi.
org/10.1145/2078827.2078843

46. Kumar, A., Kuppusamy, K. S., Aghila, G. FAMOUS:
Forensic Analysis of MObile Using Scoring of Appli-
cation Permission. Future Generation Computer Sys-
tems, 2018, 83, 158-172. https://doi.org/10.1016/j.futu-
re.2018.02.001

47. Kumar, M. Beware! New Android Malware Infected 2
Million Google Play Store Users, 2017. Retrieved Janu-
ary 1, 2019, from http://thehackernews.com/2017/04/
android-malware-playstore.html

48. Li, B., Zhang, Y., Li, J., Yang, W., Gu, D. APPSPEAR: Au-
tomating the Hidden-Code Extraction and Reassem-
bling of Packed Android Malware. Journal of Systems
and Software, 2018, 140, 3-16. https://doi.org/10.1016/j.
jss.2018.02.040

49. Liang, S., Du, X. Permission-Combination-Based Sche-
me for Android Mobile Malware Detection. In 2014
IEEE International Conference on Communicati-
ons (ICC), Sydney, Australia: IEEE, 2014, 2301-2306.
https://doi.org/10.1109/ICC.2014.6883666

50. Liu, L., Yan, G., Zhang, X., Chen, S. Virusmeter: Pre-
venting Your Cellphone from Spies. Recent Advances
in Intrusion Detection, 2009, 244-264. https://doi.
org/10.1007/978-3-642-04342-0_13

51. Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N., Malek,
S., Stavrou, A. A Whitebox Approach for Automated Se-
curity Testing of Android Applications on the Cloud. In
7th International Workshop on Automation of Software
Test (AST 2012), Zurich, Switzerland: IEEE Press, 2012,
22-28. https://doi.org/10.1109/IWAST.2012.6228986

52. Milosevic, N., Dehghantanha, A., Choo, K. K. R. Machine
Learning Aided Android Malware Classification. Com-
puters and Electrical Engineering, 2017, 61, 266-274.
https://doi.org/10.1016/j.compeleceng.2017.02.013

53. Morris, D. Z. Android Malware Judy’ Hits as Many as
36.5 Million Phones, 2017. Retrieved January 1, 2019,

from  http://fortune.com/2017/05/28/android-mal-
ware-judy/

54. Mylonas, A., Kastania, A., Gritzalis, D. Delegate the
Smartphone User? Security Awareness in Smartpho-
ne Platforms. Computers and Security, 2013, 34, 47-66.
https://doi.org/10.1016/j.cose.2012.11.004

55. Nauman, M., Khan, S., Zhang, X. Apex: Extending Android
Permission Model and Enforcement with User-Defined
Runtime Constraints. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communi-
cations Security (ASIA CCS‘10), Beijing, China: ACM,
2010, 328-332. https://doi.org/10.1145/1755688.1755732

56. Patil, M. D., Sane, S. S. Effective Classification after
Dimension Reduction: A Comparative Study. Interna-
tional Journal of Scientific and Research Publications,
2014, 4(7), 1-4.

57. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju,
R., Nita-Rotaru, C., Molloy, I. Using Probabilistic Ge-
nerative Models for Ranking Risks of Android Apps.
In Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security (CCS‘12), Ralei-
gh, North Carolina, USA, 2012, 241-252. https://doi.
org/10.1145/2382196.2382224

58. Platt, J. C. Sequential Minimal Optimization: A
Fast Algorithm for Training Support Vector Machi-
nes. Advances in Kernel Methods, 1998. https://doi.
org/10.1.1.43.4376

59. Popper, B. Google Announces over 2 Billion Monthly Ac-
tive Devices on Android, 2017. Retrieved January 1, 2019,
from https://www.theverge.com/2017/5/17/15654454/
android-reaches-2-billion-monthly-active-users

60. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.
Paranoid Android: Versatile Protection For Smartpho-
nes. In Annual Computer Security Applications Con-
ference (ACSAC), Austin, Texas, USA, 2010, 347-356.
https://doi.org/10.1145/1920261.1920313

61. pxb1988/dex2jar: Tools to Work with Android .dex and
java .class Files, 2018. Retrieved January 1, 2019, from
https://github.com/pxb1988/dex2jar

62. Rastogi, V., Chen, Y., Enck, W. AppsPlayground : Au-
tomatic Security Analysis of Smartphone Applicati-
ons. In CODASPY ‚13 Proceedings of the third ACM
conference on Data and Application Security and Pri-
vacy, San Antonio, Texas, USA, 209-220. https://doi.
org/10.1145/2435349.2435379

63. Requesting Permissions at Run Time, 2018. Retrieved
April 1, 2018, from https://developer.android.com/trai-
ning/permissions/requesting.html

https://doi.org/10.11113/jt.v77.3558
https://doi.org/10.11113/jt.v77.3558
https://doi.org/10.1145/1378600.1378627
https://doi.org/10.1145/1378600.1378627
https://doi.org/10.1145/2078827.2078843
https://doi.org/10.1145/2078827.2078843
https://doi.org/10.1016/j.future.2018.02.001
https://doi.org/10.1016/j.future.2018.02.001
https://doi.org/10.1016/j.jss.2018.02.040
https://doi.org/10.1016/j.jss.2018.02.040
https://doi.org/10.1109/ICC.2014.6883666
https://doi.org/10.1007/978-3-642-04342-0_13
https://doi.org/10.1007/978-3-642-04342-0_13
https://doi.org/10.1109/IWAST.2012.6228986
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.1016/j.cose.2012.11.004
https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1145/2382196.2382224
https://doi.org/10.1145/2382196.2382224
https://doi.org/10.1145/1920261.1920313
https://doi.org/10.1145/2435349.2435379
https://doi.org/10.1145/2435349.2435379

Information Technology and Control 2019/2/48248

64. Roy, K., Kar, S., Das, R. N. Understanding the Basics of
QSAR for Applications in Pharmaceutical Sciences and
Risk Assessment. Elsevier Science, 2015. https://doi.
org/10.1016/C2014-0-00286-9

65. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X.,
Bringas, P. G. On the Automatic Categorisation of An-
droid Applications. In 2012 IEEE Consumer Communi-
cations and Networking Conference (CCNC 2012), Las
Vegas, NV, USA, 2012, 149-153. https://doi.org/10.1109/
CCNC.2012.6181075

66. Sayfullina, L., Eirola, E., Komashinsky, D., Palumbo, P.,
Miche, Y., Lendasse, A., Karhunen, J. Efficient Detec-
tion of Zero-Day Android Malware Using Normalized
Bernoulli Naive Bayes. In Proceedings of the14th IEEE
International Conference on Trust, Security and Pri-
vacy in Computing and Communications (TrustCom
2015), Helsinki, Finland, 2015, 198-205. https://doi.
org/10.1109/Trustcom.2015.375

67. Security Center - Overview, 2018. Retrieved April 1,
2018, from https://www.android.com/security-center/

68. Security Tips, 2018. Retrieved April 29, 2018, from
https://developer.android.com/training/articles/secu-
rity-tips#RequestingPermissions

69. Shabtai, A., Tenenboim-Chekina, L., Mimran, D., Ro-
kach, L., Shapira, B., Elovici, Y. Mobile Malware De-
tection Through Analysis of Deviations in Application
Network Behavior. Computers Security, 2014, 43, 1-18.
https://doi.org/10.1016/j.cose.2014.02.009

70. Shaun Aimoto, 2016. Five Ways Android Malware is
Becoming More Resilient. Retrieved May 6, 2018, from
https://www.symantec.com/connect/blogs/five-ways-
android-malware-becoming-more-resilient

71. Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., Murthy, K.
R. K. Improvements to the SMO Algorithm for SVM Re-
gression. IEEE Transactions on Neural Networks, 2000,
11(5), 1188-1193. https://doi.org/10.1109/72.870050

72. Singh, P., Tiwari, P., Singh, S. Analysis of Malicious
Behavior of Android Apps. Procedia Computer Sci-
ence, 2016, 79, 215-220. https://doi.org/10.1016/j.pro-
cs.2016.03.028

73. Smartphone OS Global Market Share 2009-2017, 2018.
Retrieved July 7, 2018, from https://www.statista.
com/statistics/266136/global-market-share-held-by-
smartphone-operating-systems/

74. Suarez-Tangil, G., Dash, S. K., Holloway, R., Ahmadi, M.,
Giacinto, G., Kinder, J., Cavallaro, L. DroidSieve: Fast
and Accurate Classification of Obfuscated Android
Malware. Proceedings of the 7th ACM Conference on

Data and Application Security and Privacy (CODASPY
2017), Scottsdale, Arizona, USA, 2017, 309-320. https://
doi.org/10.1145/3029806.3029825

75. Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P.,
Blasco, J. Dendroid: A Text Mining Approach to Analy-
zing and Classifying Code Structures in Android Mal-
ware Families. Expert Systems with Applications, 2014,
41(4 PART 1), 1104-1117. https://doi.org/10.1016/j.
eswa.2013.07.106

76. Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., Riba-
gorda, A. Evolution, Detection and Analysis of Malware
for Smart Devices. IEEE Communications Surveys and
Tutorials, 2014, 16(2), 961-987. https://doi.org/10.1109/
SURV.2013.101613.00077

77. Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., Cavalla-
ro, L. The Evolution of Android Malware and Android
Analysis Techniques. ACM Computing Surveys, 2017,
49(4), 1-41. https://doi.org/10.1145/3017427

78. The Judy Malware: Possibly the Largest Malware
Campaign Found on Google Play, 2017. Retrieved
December 26, 2018, from https://blog.checkpoint.
com/2017/05/25/judy-malware-possibly-largest-mal-
ware-campaign-found-google-play/

79. Wain, K., Au, Y., Zhou, Y. F., Huang, Z., Lie, D. PSco-
ut: Analyzing the Android Permission Specification.
In CCS ‚12 Proceedings of the 2012 ACM Conference
on Computer and Communications Security, Raleigh,
North Carolina, USA: ACM, 2012, 217-228. https://doi.
org/10.1145/2382196.2382222

80. Wang, C., Li, Z., Mo, X., Yang, H., Zhao, Y. An Android
Malware Dynamic Detection Method Based on Service
Call Co-occurrence Matrices. Annals of Telecommu-
nications, 2017, 72(9-10), 1-9. https://doi.org/10.1007/
s12243-017-0580-9

81. Wang, Y., Zheng, J., Sun, C., Mukkamala, S. Quantitati-
ve Security Risk Assessment of Android Permissions
and Applications. In Wang, L., Shafiq, B. (Eds.), 27th
Data and Applications Security and Privacy (DBSec),
Newark, NJ, USA: Springer, 2013, 226-241. https://doi.
org/10.1007/978-3-642-39256-6_15

82. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M. Malicious
Android Applications in the Enterprise: What Do They
Do and How Do We Fix It? In ICDEW ‚12 Proceedings of
the 2012 IEEE 28th International Conference on Data
Engineering Workshops, Arlington, Virginia, USA: IEEE,
2012, 251-254. https://doi.org/10.1109/ICDEW.2012.81

83. Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., Wu, K.-P.
DroidMat: Android Malware Detection through Mani-

https://doi.org/10.1016/C2014-0-00286-9
https://doi.org/10.1016/C2014-0-00286-9
https://doi.org/10.1109/CCNC.2012.6181075
https://doi.org/10.1109/CCNC.2012.6181075
https://doi.org/10.1109/Trustcom.2015.375
https://doi.org/10.1109/Trustcom.2015.375
https://doi.org/10.1016/j.cose.2014.02.009
https://doi.org/10.1109/72.870050
https://doi.org/10.1016/j.procs.2016.03.028
https://doi.org/10.1016/j.procs.2016.03.028
https://doi.org/10.1145/3029806.3029825
https://doi.org/10.1145/3029806.3029825
https://doi.org/10.1016/j.eswa.2013.07.106
https://doi.org/10.1016/j.eswa.2013.07.106
https://doi.org/10.1109/SURV.2013.101613.00077
https://doi.org/10.1109/SURV.2013.101613.00077
https://doi.org/10.1145/3017427
https://doi.org/10.1145/2382196.2382222
https://doi.org/10.1145/2382196.2382222
https://doi.org/10.1007/s12243-017-0580-9
https://doi.org/10.1007/s12243-017-0580-9
https://doi.org/10.1007/978-3-642-39256-6_15
https://doi.org/10.1007/978-3-642-39256-6_15
https://doi.org/10.1109/ICDEW.2012.81

249Information Technology and Control 2019/2/48

fest and API Calls Tracing. In 2012 Seventh Asia Joint
Conference on Information Security, Minato, Tokyo,
Japan, 2012, 62-69. https://doi.org/10.1109/AsiaJ-
CIS.2012.18

84. Xue, Y., Meng, G., Liu, Y., Tan, T. H., Chen, H., Sun, J.,
Zhang, J. Auditing Anti-Malware Tools by Evolving
Android Malware and Dynamic Loading Technique.
IEEE Transactions on Information Forensics and Se-
curity, 2017, 12(7), 1529-1544. https://doi.org/10.1109/
TIFS.2017.2661723

85. Yang, M., Wang, S., Ling, Z., Liu, Y., Ni, Z. Detection of
Malicious Behavior in Android Apps Through API Calls
and Permission Uses Analysis. Concurrency and Com-
putation: Practice and Experience, 2017, 29(19), 1-13.
https://doi.org/10.1002/cpe.4172

86. Yerima, S. Y., Sezer, S., McWilliams, G., Muttik, I. A New
Android Malware Detection Approach Using Bayesian
Classification. In 2013 IEEE 27th International Confe-
rence on Advanced Information Networking and Appli-
cations (AINA), Barcelona, Spain: IEEE, 2013, 121-128.
https://doi.org/10.1109/AINA.2013.88

87. Yu, J., Huang, Q., Yian, C. H. DroidScreening: A Practical
Framework for Real-World Android Malware Analysis.

Security and Communication Networks, 2016, 9(11),
1435-1449. https://doi.org/10.1002/sec.1430

88. Yuan, Z., Lu, Y., Xue, Y. DroidDetector: Android Mal-
ware Characterization and Detection Using Deep Le-
arning. Tsinghua Science and Technology, 2016, 21(1),
114-123. https://doi.org/10.1109/TST.2016.7399288

89. Zheng, M., Sun, M., Lui, J. C. S. DroidTrace: A Ptrace
Based Android Dynamic Analysis System with Forward
Execution Capability. In IWCMC 2014 - 10th Internati-
onal Wireless Communications and Mobile Computing
Conference, Nicosia, Cyprus, 2014, 128-133. https://doi.
org/10.1109/IWCMC.2014.6906344

90. Zhou, Y., Jiang, X. Dissecting Android Malware: Cha-
racterization and Evolution. In Proceedings of the
33rd IEEE Symposium on Security and Privacy, San
Francisco, CA, USA: IEEE, 2012, 95-109. https://doi.
org/10.1109/SP.2012.16

91. Zhu, H. J., You, Z. H., Zhu, Z. X., Shi, W. L., Chen, X.,
Cheng, L. DroidDet: Effective and Robust Detection of
Android Malware Using Static Analysis Along with Ro-
tation Forest Model. Neurocomputing, 2017, 272, 638-
646. https://doi.org/10.1016/j.neucom.2017.07.030

https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/TIFS.2017.2661723
https://doi.org/10.1109/TIFS.2017.2661723
https://doi.org/10.1002/cpe.4172
https://doi.org/10.1109/AINA.2013.88
https://doi.org/10.1002/sec.1430
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1109/IWCMC.2014.6906344
https://doi.org/10.1109/IWCMC.2014.6906344
https://doi.org/10.1109/SP.2012.16
https://doi.org/10.1109/SP.2012.16
https://doi.org/10.1016/j.neucom.2017.07.030

