ITC 4/47

Journal of Information Technology and Control
Vol. 47 / No. 4 / 2018
pp.714-727
DOI 10.5755/j01.itc.47.4.19593

A Data Hiding Technique by Mixing MFPVD and LSB Substitution in a Pixel

A Data Hiding Technique by Mixing MFPVD and LSB Substitution in a Pixel

Gandharba Swain
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India-522502, gswain1234@gmail.com

Corresponding author: gswain1234@gmail.com

Pixel difference range mismatch at sender and receiver is a major problem with pixel value differencing (PVD) steganography techniques. This paper proposes a new steganography technique combining modulus function PVD (MFPVD) and least significant bit (LSB) substitution to address the range mismatch problem. It uses 2×3 size pixel blocks to utilize the edges in five directions. The two LSBs of all the pixels of the block form the lower bit plane block. It is also known as remainder block. Similarly, the six most significant bits (MSBs) of all the pixels of the block form the higher bit plane block. It is also known as quotient block. The quotient block is formed by applying quotient division on all the pixels of the pixel block. Similarly, the remainder block is formed by applying remainder division on all the pixels of the pixel block. MFPVD is applied on the quotient block. The central quotient in the quotient block is considered as reference value and five difference values with five neighboring quotients are calculated. Based on the average of these five difference values, the hiding capacity in all the five directions is decided. The central remainder value in the remainder block acts as an indicator to represent the number of bits hidden in each of these five quotients, so that data extraction can be done successfully. In remaining five remainders LSB substitution is applied. The experimental results prove that there are no step effects in pixel difference histograms of stego-images. It means that the pixel difference histogram (PDH) analysis cannot detect this proposed technique. Further, it is also justified that the proposed technique achieves higher hiding capacity as compared to the existing techniques without compromising the peak signal-to-noise ratio (PSNR).
KEYWORDS: Steganography, PVD, MF PVD, PDH analysis, RS analysis, data hiding.

1. Introduction

Pixel value differencing (PVD) steganography is one of the popular data hiding techniques in spatial domain. The primary goal of this technique is to hide more number of bits in edge regions as compared to the smooth regions. The first PVD steganography technique used pixel value differencing in 1×2 pixel blocks
[27]. In this technique the hiding capacity is much lesser. The hiding capacity has been improved by using 2×2 pixel blocks in $[3,10]$. The hiding capacity and security is further improved by utilizing multidirectional edges in 3×3 pixel blocks [5]. It has been found that the pixel difference histogram (PDH) analysis can detect the

PVD steganography [14]. PDH is a curve with pixel difference on X-axis and frequency on Y-axis. For an original image it is a smooth curve, without any zig-zag appearance. This zig-zag appearance is known as step effect. In PDHs of stego-images of PVD technique step effect is identified. Wang et al. proposed a PVD steganography using modulus function (MF) [26]. Instead of the pixel value difference, the remainder of pixel value division is utilized to hide the secret bits. This technique gives higher hiding capacity and lower distortion. Zhao et al. advanced this PVD technique by using indeterminate equation and achieved higher peak sig-nal-to-noise ratio (PSNR) [29].
In PVD steganography, if the quantization range is different for different blocks, then it is known as adaptive PVD. An adaptive PVD using 1×3 pixel blocks is proposed in [12]. Subsequently to improve upon the hiding capacity and PSNR, 2×2 pixel block adaptive PVD and 2×3 pixel block adaptive PVD have been proposed in [19] and [15], respectively. A mixture of least significant bit (LSB) substitution and non-adaptive PVD is proposed using 1×3 pixel blocks by Khodaei and Faez [8]. In this technique, data hiding is performed using LSB substitution in middle pixel and PVD in its neighboring pixels. This technique suffers with fall off boundary problem (FOBP) and detected by PDH analysis. These two drawbacks are addressed in [22] using modified LSB substitution and PVD in 2×3 and 3×3 pixel blocks. Gulve and Joshi [7] used five pair differencing with LSB substitution to achieve higher embedding capacity.
The traditional edge detection techniques can be used to identify the edges and accordingly embedding capacity in a block can be varied. Chen et al. combined canny and fuzzy edge detectors to increase edge pixels so that hiding capacity could be increased [4]. Fuzzy logic based edge detection is proposed in [24] to increase the hiding capacity and decrease the distortion. A secret key has been used to rotate the original cover image and secret bits are embedded into the edge areas of the modified cover image using LSB matching [11]. The technique discussed in [1] recognizes edge and non-edge pixels of the cover image after removing 5 LSBs of each pixel. Chakraborty et al. proposed an adaptive steganography technique using a modified median edge detector to predict the edges [2].
Zhang and Yang proposed exploiting modification direction (EMD) steganography [28]. The main goal in it is that a group of secret bits be converted to a digit in $\left(2^{n+1}\right)$-ary notational system, where n is the size of the
pixel block. This secret digit can be hidden in the pixel block by adding ± 1 to only one pixel. In this technique, the hiding capacity is not appreciable. Kim advanced the EMD technique using basis vector, and ($2^{n+x}-1$)ary notational system, where n and x are user defined values [9]. Shen and Huang made the hiding capacity of a block adaptive by using PVD with EMD to achieve higher hiding capacity and better PSNR [18]. Nguyen et al. used multiple bit planes and pixel block complexity measure to perform adaptive embedding, wherein more number of bits are hidden in high textured regions as compared to low textured regions [13].
Darabkh et al. [6] proposed an improved LSB substitution technique based on geometric equations to achieve higher security. LSB substitution has been combined with PVD in [23] to improve upon the security and hiding capacity. Furthermore, LSB substitution, PVD, and EMD have been combined together in the embedding procedure to optimize the performance [16]. Sahu and Swain [17] proposed a PVD technique using 1×5 pixel blocks, wherein one of the five pixels is paired with other four pixels to compute four difference values. Based on these difference values and improved embedding logic, the embedding performance is improved. New kinds of techniques known as quotient value differencing (QVD) [21] and PVD with overlapped pixel blocks [20] have been proposed in recent literature.
This paper proposes a mixture of MFPVD and LSB substitution using 2×3 size non-disjoint pixel blocks. The main focus of this proposed technique is to address two problems, (i) PDH analysis, and (ii) mismatch of the pixel difference range at sender and receiver. Further, it is also justified that the proposed technique achieves higher hiding capacity as compared to the existing techniques without compromising the PSNR.

2. Related Work

2.1. Wang et al.'s MFPVD Technique [26]

Wang et al. [26] proposed a MFPVD technique using 1×2 pixel blocks. The embedding and extraction procedures of Wang et al.'s technique are described in this section. The image is scanned in raster-scan order and divided into 1×2 non-disjoint blocks. Suppose ($\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}$) is such a block. The following steps are used for embedding data in this block.

Step 1: Calculate the difference value, $d=\left|P_{x}-P_{y}\right|$. This d value belongs to one of the six ranges in Table 1. The hiding capacity of this range is t.
Step 2: Take t bits of data, convert to decimal value, t^{\prime}. Calculate the remainder value, $F=\left(P_{x}+P_{y}\right) \bmod 2^{t}$.
Step 3: Calculate $m=\left|F-t^{\prime}\right|$ and $m_{1}=\left(2^{t}-m\right)$. Then the decimal value t^{\prime} is embedded in the block $\left(\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}\right)$ and the stego-pixel block is calculated using Equation (1) or Equation (2). If $P_{x} \geq P_{y}$, then Equation (1) is applicable, otherwise Equation (2) is applicable.

$$
\begin{align*}
& \text { (} \mathrm{P}_{\mathrm{x}}^{\prime}, \mathrm{P}_{\mathrm{y}}^{\prime} \text {) } \\
& \left(\left(P_{x}-\left[\frac{m}{2}\right], P_{y^{-}}\left\lfloor\frac{m}{2}\right]\right) \text {, if } F>t^{\prime} \text { and } m \leq 2^{t-1}\right. \\
& =\left\{\begin{array}{l}
\left(P_{x}+\left\lfloor\frac{m_{1}}{2}\right\rfloor, P_{y}+\left\lceil\frac{m_{1}}{2}\right\rceil\right), \text { if } F>t^{\prime} \text { and } m>2^{t-1} \\
\left(P_{x}+\left\lfloor\frac{m}{2} \left\lvert\,, P_{y^{+}}+\left\lfloor\left.\frac{m}{2} \right\rvert\,\right)\right., \text { if } F \leq t^{\prime} \text { and } m \leq 2^{t-1}\right.\right. \\
\left.\left(P_{x}-\left\lceil\frac{\left[\frac{m_{1}}{2}\right.}{2}\right\rceil, P_{y^{-}}-\frac{m_{1}}{2}\right\rfloor\right), \text { if } F \leq t^{\prime} \text { and } m>2^{t-1}
\end{array},\right. \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \left(P_{x}^{\prime}, P_{y}^{\prime}\right) \\
& =\left\{\begin{array}{l}
\left(P_{x^{-}}-\left|\frac{m}{2}\right|, P_{y^{-}}\left[\left.\frac{m}{2} \right\rvert\,\right), \text { if } F>t^{\prime} \text { and } m \leq 2^{t-1}\right. \\
\left(P_{x}+\left\lceil\frac{m_{1}}{2}\left|, P_{y}+\frac{m_{1}}{2}\right|\right), \text { if } F>t^{\prime} \text { and } m>2^{t-1}\right. \\
\left(P_{x}+\left\lceil\frac{m}{2}\right\rceil, P_{y^{\prime}}+\left\lfloor\left.\frac{m}{2} \right\rvert\,\right], \text { if } F \leq t^{\prime} \text { and } m \leq 2^{t-1}\right. \\
\left(P_{x^{-}}-\left[\frac{m_{1}}{2}\right], P_{y^{-}}\left[\left.\frac{m_{1}}{2} \right\rvert\,\right), \text { if } F \leq t^{\prime} \text { and } m>2^{t-1}\right.
\end{array} .\right. \tag{2}
\end{align*}
$$

Step 4: After embedding, if fall off boundary problem (FOBP) occurs, then it is addressed using Equation (3) or Equation (4). If $\left|P_{x}^{\prime}-P_{y}^{\prime}\right|>128$, then Equation (3) is applicable, otherwise Equation (4) is applicable.

$$
\left(\mathrm{P}_{\mathrm{x}}^{\prime}, \mathrm{P}_{\mathrm{y}}^{\prime}\right)=\left\{\begin{array}{l}
\left(0, \mathrm{P}_{\mathrm{x}}^{\prime}+\mathrm{P}_{\mathrm{y}}^{\prime}\right), \text { if } \mathrm{P}_{\mathrm{x}}^{\prime}<0 \tag{3}\\
\left(\mathrm{P}_{\mathrm{x}}^{\prime}+\mathrm{P}_{\mathrm{y}}^{\prime}, 0\right), \text { if } \mathrm{P}_{\mathrm{y}}^{\prime}<0 \\
\left(255, \mathrm{P}_{\mathrm{x}}^{\prime}+\mathrm{P}_{\mathrm{y}}^{\prime}-255\right), \text { if } \mathrm{P}_{\mathrm{x}}^{\prime}>255 \\
\left(\mathrm{P}_{\mathrm{x}}^{\prime}+\mathrm{P}_{\mathrm{y}}^{\prime}-255,255\right), \text { if } \mathrm{P}_{\mathrm{y}}^{\prime}>255
\end{array},\right.
$$

Table 1

The Range table in Wang et al.'s MF PVD technique [26]

$$
\left(\mathrm{P}_{\mathrm{x}}^{\prime}, \mathrm{P}_{\mathrm{y}}^{\prime}\right)=\left\{\begin{array}{l}
\left(\mathrm{P}_{\mathrm{x}}^{\prime}+2^{t-1}, \mathrm{P}_{y}^{\prime}\right), \text { if } \mathrm{P}_{\mathrm{x}}^{\prime}<0 \tag{4}\\
\left(\mathrm{P}_{\mathrm{x}}^{\prime}, \mathrm{P}_{\mathrm{y}}^{\prime}+2^{t-1}\right), \text { if } \mathrm{P}_{y}^{\prime}<0 \\
\left(\mathrm{P}_{\mathrm{x}}^{\prime}-2^{-1-1}, \mathrm{P}_{\mathrm{y}}^{\prime}\right), \text { if } \mathrm{P}_{\mathrm{x}}^{\prime}>255 \\
\left(\mathrm{P}_{\mathrm{x}}^{\prime}, \mathrm{P}_{\mathrm{y}}^{\prime}-2^{\mathrm{t}-1}\right), \text { if } \mathrm{P}_{\mathrm{y}}^{\prime}>255
\end{array}\right. \text {. }
$$

The extraction of data from the stego-image is performed in the following manner. The stego-image is scanned in raster-scan order and divided into 1×2 non-disjoint blocks. Suppose ($\mathrm{P}_{\mathrm{x}}^{\prime}, \mathrm{P}_{\mathrm{y}}^{\prime}$) is such a block. The difference value, $d=\left|P_{x}^{\prime}-P_{y}^{\prime}\right|$ is calculated. This d value belongs to a range in Table 1, whose hiding capacity is t. The decimal value hidden in this block is t'. It is calculated as $\mathrm{t}^{\prime}=\left(\mathrm{P}_{\mathrm{x}}^{\prime}+\mathrm{P}_{\mathrm{y}}^{\prime}\right) \bmod 2^{\mathrm{t}}$. Then t^{\prime} is converted to t binary bits. This is the extracted binary data.

2.2. Improvement of Wang et al.'s [26] MFPVD Technique

Although Wang et al.'s MFPVD technique gives acceptable PSNR and hiding capacity, but in certain cases the extraction cannot be done properly due to the range mismatch. It can be understood by the following discussion. Let us consider a block $\left(\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}\right)=(83,51)$.
Embedding procedure: Calculate the difference value, $d=\left|P_{x}-P_{y}\right|=|83-51|=32$. This d value belongs to the range $[32,63]$ of the Table 1 . Thus the hiding capacity is 5 . Now take 5 bits of secret binary data to be hidden in this block. Assume that it is 01101_{2}. Thus the decimal value of this five bits is 13 , that means $t^{\prime}=13$.
Calculate $\mathrm{F}=\left(\mathrm{P}_{\mathrm{x}}+\mathrm{P}_{\mathrm{y}}\right) \bmod 2^{\mathrm{t}}=(83+51) \bmod 32=6$.
Calculate $\mathrm{m}=\left|\mathrm{F}-\mathrm{t}^{\prime}\right|=|6-13|=7$.
Calculate $\mathrm{m}_{1}=\left(2^{\mathrm{t}}-\mathrm{m}\right)=32-7=25$.
In this case $P_{x} \geq P_{y}$, so Equation (1) should be referred. Condition (3) of Equation (1) i.e. $\mathrm{F} \leq \mathrm{t}$ and $\mathrm{m} \leq 2^{\mathrm{t}-1}$ is satisfied. So, the stego-block is
$\left(\mathrm{P}_{\mathrm{x}}^{\prime}, \mathrm{P}_{\mathrm{y}}^{\prime}\right)=\left(\mathrm{P}_{\mathrm{x}}+\left\lfloor\frac{\mathrm{m}}{2}\right\rfloor, \mathrm{P}_{\mathrm{y}}+\left\lceil\frac{\mathrm{m}}{2}\right\rceil\right)=(86,55)$.
Extraction procedure: The stego-pixel block, $\left(P_{x}^{\prime}, P_{y}^{\prime}\right)=(86,55), d=\left|P_{x}^{\prime}-P_{y}^{\prime}\right|=|86-55|=31$. This difference value, d belongs to the range $[16,31]$ of Table 1.

Range	$[0,7]$	$[8,15]$	$[16,31]$	$[32,63]$	$[64,127]$	$[128,255]$
Capacity, t	3	3	4	5	6	7

The hiding capacity as per this range is 4 , i.e. $t=4$. Thus 4 bits are to be extracted, but actually 5 bits are hidden. Thus this problem is known as embedding and extraction range mismatch.
To address this problem a MFPVD with LSB substitution using 2×3 pixel blocks have been proposed in this paper.

3. Proposed 2×3 Pixel Block MFPVD with LSB Substitution

The image is scanned in raster-scan order and divided into 2×3 non-disjoint blocks. For example Figure 1(a) is such a block. The pixel P_{x} is the central pixel. $\mathrm{P}_{1}, \mathrm{P}_{2}$, P_{3}, P_{4} and P_{5} are its left, right, bottom-left, bottom, and bottom-right neighboring pixels respectively. The embedding in a block is performed by the following steps.
Step 1: From the pixel block, the quotient block i.e. higher bit-plane block is formed by applying quotient division on every pixel using Equation (5), this block is shown in Figure 1(b). Similarly, the remainder block i.e. lower bit-plane block is formed by applying remainder division on every pixel using Equation (6), this block is shown in Figure 1(c).
$Q_{x}=P_{x} \operatorname{div} 4, Q_{i}=P_{i} \operatorname{div} 4$, for $i=1$ to 5,

$$
R_{x}=P_{x} \bmod 4, R_{i}=P_{i} \bmod 4, \text { for } i=1 \text { to } 5 .
$$

Here $d i v$ and \bmod are the quotient and remainder division functions respectively.
Step 2: Calculate the average quotient value difference d using Equation (7):

$$
\begin{equation*}
\mathrm{d}=\left\lceil\frac{1}{5} \sum_{\mathrm{i}=1}^{5}\left(\left|\mathrm{Q}_{\mathrm{x}}-\mathrm{Q}_{\mathrm{i}}\right|\right)\right\rceil \tag{7}
\end{equation*}
$$

Step 3: This difference value d belongs to a range R_{i} in Table 2. The hiding capacity of this range is t. If t value is 2 , then the stego-value of R_{x} i.e. R_{x}^{\prime} is set to 0 . If t value is 3 then R_{x}^{\prime} is set to 1 . Similarly, if t value is 4, then R_{x}^{\prime} is set to 2. This R_{x}^{\prime} value is the indicator for using t value while hiding data in quotients of this block and will be used at the time of extraction. For $\mathrm{i}=1$ to 5 , take two binary bits from binary data stream, convert to decimal value, it is the stego-value R_{i}^{\prime} for R_{i}.

Table 2
The range table of the proposed technique

Range, R_{i}	$[0,15]$	$[16,31]$	$[32,63]$
Capacity, t	2	3	4

Step 4: Calculate the remainder, F_{i} using Equation (8):

$$
\begin{equation*}
F_{i}=\left(Q_{x}+Q_{i}\right) \bmod 2^{t}, \text { for } i=1 \text { to } 5 \tag{8}
\end{equation*}
$$

For $i=1$ to 5 , take t bits of data and convert it to decimal value $\mathrm{t}_{\mathrm{i}}^{\prime}$. Calculate $\mathrm{m}_{\mathrm{i}}=\left|\mathrm{F}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}}^{\prime}\right|$ and $\mathrm{n}_{\mathrm{i}}=2^{\mathrm{t}}-\mathrm{m}_{\mathrm{i}}$.
Step 5: For $i=1$ to 5 , after hiding t bits in quotient Q_{i}, the stego-quotient $\mathrm{Q}_{\mathrm{i}}^{\prime}$, is calculated using Equations (9):
$Q_{i}^{\prime}=\left\{\begin{array}{l}\left(Q_{i}-m_{i}\right), \text { if }\left(F_{i}>t_{i}^{\prime}\right) \text { and }\left(m_{i} \leq 2^{t-1}\right) \\ \left(Q_{i}+n_{i}\right), \text { if }\left(F_{i}>t_{i}^{\prime}\right) \text { and }\left(m_{i}>2^{t-1}\right) \\ \left(Q_{i}+m_{i}\right), \text { if }\left(F_{i} \leq t_{i}^{\prime}\right) \text { and }\left(m_{i} \leq 2^{t-1}\right) \\ \left(Q_{i}-n_{i}\right), \text { if }\left(F_{i} \leq t_{i}^{\prime}\right) \text { and }\left(m_{i}>2^{t-1}\right)\end{array}\right.$.
Step 6: Now the fall off boundary problem (FOBP) is to be addressed. If any of these stego-quotients, Q_{i}^{\prime} is less than 0 or greater than 63, then FOBP arises. It is addressed using Equation (10):

$$
\mathrm{Q}_{\mathrm{i}}^{\prime}=\left\{\begin{array}{l}
\left(\mathrm{Q}_{\mathrm{i}}^{\prime}+2^{t}\right), \text { if } \mathrm{Q}_{i}^{\prime}<0 \tag{10}\\
\left(\mathrm{Q}_{\mathrm{i}}^{\prime}-2^{t}\right), \text { if } \mathrm{Q}_{\mathrm{i}}^{\prime}>63
\end{array}, \quad \text { for } \mathrm{i}=1 \text { to } 5\right.
$$

Step 7: The stego-pixel values are calculated by Equation (11) and the stego-pixel block is as shown in Figure 1(d):
$P_{x}^{\prime}=Q_{x}^{\prime} \times 4+R_{x}^{\prime}, P_{i}^{\prime}=Q_{i}^{\prime} \times 4+R_{i}^{\prime}$, for $i=1$ to 5.

Figure 1
(a) Original block, (b) Quotient block, (c) Remainder and
(d) Stego-pixel block

R_{1}	R_{x}	R_{2}
R_{3}	R_{4}	R_{5}

c

P_{1}^{\prime}	$\mathrm{P}_{\mathrm{x}}^{\prime}$	P_{2}^{\prime}
P_{3}^{\prime}	P_{4}^{\prime}	P_{5}^{\prime}

d

Figure 2
The flowchart for the embedding procedure of the proposed MFPVD+LSB technique

The extraction of hidden data is very simple. The stego-image is scanned in raster-scan order and divided into 2×3 non-disjoint blocks. For example Figure 1(d) is such a block. The pixel P_{x}^{\prime} is the central pixel. $\mathrm{P}_{1}^{\prime}, \mathrm{P}_{2}^{\prime}, \mathrm{P}_{3}^{\prime}, \mathrm{P}_{4}^{\prime}$ and P_{5}^{\prime} are its neighboring pixels. The extraction is performed by the following steps.
Step 1: From this stego-pixel block, the decimal equivalent of six most significant bits (MSBs) of each pixel is calculated by applying quotient division as in Equation (12). Similarly, the decimal equivalent of two LSBs of every pixel is calculated by remainder division as in Equation (13):
$\mathrm{Q}_{\mathrm{x}}^{\prime}=\mathrm{P}_{\mathrm{x}}^{\prime} \operatorname{div} 4, \mathrm{Q}_{\mathrm{i}}^{\prime}=\mathrm{P}_{\mathrm{i}}^{\prime} \operatorname{div} 4$, for $\mathrm{i}=1$ to 5,
$R_{x}^{\prime}=P_{x}^{\prime} \bmod 4, R_{i}^{\prime}=P_{i}^{\prime} \bmod 4$, for $i=1$ to 5.

Step 2: If R_{x}^{\prime} value is 0 , then set $\mathrm{t}=2$. If $\mathrm{R}_{\mathrm{x}}^{\prime}$ value is 1 , then set $t=3$. If R_{x}^{\prime} value is 2 , then set $\mathrm{t}=4$.
Step 3: For $i=1$ to 5 , each of the remainders, R_{i}^{\prime} is converted to two binary bits and added to extracted bit stream.
Step 4: For i=1 to 5, calculate $\mathrm{t}_{\mathrm{i}}^{\prime}$ using Equation (14):
$\mathrm{t}_{\mathrm{i}}^{\prime}=\left(\mathrm{Q}_{\mathrm{x}}^{\prime}+\mathrm{Q}_{\mathrm{i}}^{\prime}\right) \bmod 2^{\mathrm{t}}$.
Step 5: For $i=1$ to 5, convert each t_{i}^{\prime} value to t binary bits. Add these bits to the extracted bit stream. Thus a total of $(5 \times 2+5 \times t)$ numbers of bits are extracted.
To facilitate the readers for a quick understanding of the embedding and extraction procedures, the flowcharts for embedding and extraction procedures are given in Figures 2 and 3, respectively.

Figure 3
The flowchart for the extraction procedure of the proposed MFPVD+LSB technique

4. An Example of Embedding and Extraction Procedures

Embedding procedure: Let us apply the embedding procedure on a block shown in Figure 4(a). The pixel values are, $P_{x}=46, P_{1}=45, P_{2}=47, P_{3}=100, P_{4}=101$, $P_{5}=102$.

Figure 4
Example of (a) original, (b) quotient, (c) remainder, and (d) stego blocks

45	46	47
100	101	102
a		
1	2	3
0	1	2
25	25	25
11 11 11\quad26 46 61 118 93 88 d		

Step 1: From the original block the quotient block is formed using Equation (5) and it is shown in Figure $4(\mathrm{~b}) . \mathrm{Q}_{\mathrm{x}}=46 \operatorname{div} 4=11, \mathrm{Q}_{1}=45 \operatorname{div} 4=11, \mathrm{Q}_{2}=47 \operatorname{div} 4$ $=11, Q_{3}=100 \operatorname{div} 4=25, Q_{4}=101 \operatorname{div} 4=25$, and $Q_{5}=102$ $\operatorname{div} 4=25$. Similarly the remainder block is formed using Equation (6) and it is shown in Figure 4(c). $R_{x}=46$ $\bmod 4=2, R_{1}=45 \bmod 4=1, R_{2}=47 \bmod 4=3, R_{3}=100$ $\bmod 4=0, R_{4}=101 \bmod 4=1$, and $R_{5}=102 \bmod 4=2$.
Step 2: An average quotient value difference, d is calculated using Equation (7).
$\mathrm{d}=$
$\left[\frac{1}{5}\{|46-45|+|46-47|+|46-100|+|46-101|+|46-102|\}\right]=$ $=\left\lceil\frac{167}{5}\right\rceil=\lceil 33.4\rceil=34$.

Step 3: This d value belongs to the range [32, 63], sot=4, then R_{x}^{\prime} value is set to 2 . Suppose the binary data to be hidden is $100110010000011010100000100001_{2}$. For $i=1$ to 5 , take 2 bits of data and get R_{i}^{\prime} value. Hence, $R_{1}^{\prime}=2, R_{2}^{\prime}=1, R_{3}^{\prime}=2, R_{4}^{\prime}=1$, and $R_{5}^{\prime}=0$.
Step 4: Using Equation (8), $\mathrm{F}_{1}=\left(\mathrm{Q}_{\mathrm{x}}+\mathrm{Q}_{1}\right) \bmod 2^{1}=(11+$ 11) $\bmod 2^{4}=6$. Similarly, $F_{2}=6, F_{3}=4$, and $F_{5}=4$.

Take next 4 bits of data from secret data stream, this is 0001_{2} and convert it to decimal value, it is 1 . Thus t_{1} is 1 . Calculate $m_{1}=\left|F_{1}-\mathrm{t}_{1}^{\prime}\right|=|6-1|=5$, and $n_{1}=2^{4}-\mathrm{m}_{1}=(16-$
5) = 11. Similarly, $\mathrm{t}_{2}^{\prime}=10, \mathrm{~m}_{2}=4, \mathrm{n}_{2}=12, \mathrm{t}_{3}^{\prime}=8, \mathrm{~m}_{3}=4, \mathrm{n}_{3}=$ $12, \mathrm{t}_{4}^{\prime}=2, \mathrm{~m}_{4}=2, \mathrm{n}_{4}=14, \mathrm{t}_{5}^{\prime}=1, \mathrm{~m}_{5}=3$, and $\mathrm{n}_{5}=13$.
Step 5: Using Equation (9) it can be found that, $\left(F_{1}>t_{1}^{\prime}\right)$ and $\left(m_{1} \leq 2^{t-1}\right)$ satisfies. Thus $Q_{1}^{\prime}=\left(Q_{1}-m_{1}\right)=6$. Similarly, $Q_{2}^{\prime}=15, Q_{3}^{\prime}=29, Q_{4}^{\prime}=23$, and $Q_{5}^{\prime}=22$.
Step 6: All these stego-values $Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}, Q_{4}^{\prime}$, and Q_{5}^{\prime} lies in between 0 and 63, hence FOBP does not occur. Thus Equation (10) is not applicable.
Step 7: The stego-values of the pixels are calculated by Equation (11), $P_{x}^{\prime}=Q_{x}^{\prime} \times 4+R_{x}^{\prime}=11 \times 4+2=46$. Similarly, $P_{1}^{\prime}=26, P_{2}^{\prime}=61, P_{3}^{\prime}=118, P_{4}^{\prime}=93$, and $P_{5}^{\prime}=88$. The stego-pixel block is shown in Figure 4(d).
Extraction procedure: Now let us apply the extraction procedure to the block shown in Figure 4(d). The pixel $\mathrm{P}_{\mathrm{x}}^{\prime}=46, \mathrm{P}_{1}^{\prime}=26, \mathrm{P}_{2}^{\prime}=61, \mathrm{P}_{3}^{\prime}=118, \mathrm{P}_{4}^{\prime}=93$, and $\mathrm{P}_{5}^{\prime}=88$.
Step 1: From these stego-pixels, the quotients and remainders are calculated using Equations (12) and (13) respectively. So, $Q_{x}^{\prime}=11, Q_{1}^{\prime}=6, Q_{2}^{\prime}=15, Q_{3}^{\prime}=29, Q_{4}^{\prime}=$ $23, \mathrm{Q}_{5}^{\prime}=22, \mathrm{R}_{\mathrm{x}}^{\prime}=2, \mathrm{R}_{1}^{\prime}=2, \mathrm{R}_{2}^{\prime}=1, \mathrm{R}_{3}^{\prime}=2, \mathrm{R}_{4}^{\prime}=1$, and $\mathrm{R}_{5}^{\prime}=0$.
Step 2: $\mathrm{R}_{\mathrm{x}}^{\prime}$ value is 2, so $\mathrm{t}=4$.
Step 3: For $i=1$ to 5 , R_{i}^{\prime} value is converted to 2 binary bits, that means each of the values $2,1,2,1,0$ are converted to 2 binary bits. Hence the extracted bits from remainders are 1001100100_{2}.
Step 4: Using Equation (14), $\mathrm{t}_{1}^{\prime}=\left(\mathrm{Q}_{\mathrm{x}}^{\prime}+\mathrm{Q}_{1}^{\prime}\right) \bmod 2^{1}=$ $(11+6) \bmod 2^{4}=1$. Similarly, $\mathrm{t}_{2}^{\prime}=10, \mathrm{t}_{3}^{\prime}=8, \mathrm{t}_{4}^{\prime}=2$, and $\mathrm{t}_{5}^{\prime}=1$.
Step 5: For $i=1$ to 5 , convert t_{i}^{\prime} value to t binary bits. That means convert each of the values $1,10,8,2$, and 1 into 4 binary bits. Thus the extracted bits from the quotients are 00011010100000100001_{2}.
From remainders and quotients all the bits extracted are $100110010000011010100000100001_{2}$. These bits are same as the embedded bits.

5. Results and Discussion

MATLAB is used to simulate the proposed MFPVD+LSB substitution technique. The RGB images collected from SIPI image data base [25] are used for testing the technique. The images are of size 512×512. Each pixel is 3 bytes, so the total size of a test image is $512 \times 512 \times 3$ bytes. Each byte is considered as a single unit of calculation. Testing is performed with a large number of images. Eight original test images are shown in Figure 5. Their respective stego-images are shown in Figure 6. Eight lakhs and forty thousand

Figure 5
Original images (size $512 \times 512 \times 3$ bytes)

Figure 6
Stego-images of proposed MFPVD+LSB substitution technique. In each of these images, eight lakhs and forty thousand $(840,000)$ bits of data has been hidden.

$\mathrm{PSNR}=39.52$

PSNR $=39.53$

PSNR $=39.28$

PSNR $=39.37$

PSNR $=38.62$

PSNR $=39.47$

PSNR $=39.19$

PSNR $=39.37$
$(840,000)$ bits of data has been hidden in each of these stego-images. No observable marks are identified from these stego-images.
The proposed MFPVD+LSB substitution technique is compared with the existing techniques in [26] and [22]. The comparison is performed in terms of PSNR, hiding capacity, quality index (Q) and bit rate i.e. bits per byte (BPB) [14]. PSNR is a measure of distortion in stego-image. Lesser distortion means higher PSNR and vice versa. It is based on mean square error (MSE). Equations (15) and (16) are used to measure the MSE and PSNR respectively. In Equation (15), $p_{i j}$ and $q_{i j}$ are the pixel values of the original and stego-images respectively. The m and n are the number of rows and number of columns in the image respectively.

$$
\begin{equation*}
\mathrm{MSE}=\frac{1}{\mathrm{~m} \times \mathrm{n}} \quad \sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathrm{p}_{\mathrm{ij}}-\mathrm{q}_{\mathrm{ij}}\right)^{2} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{PSNR}=10 \times \log _{10} \frac{255 \times 255}{\mathrm{MSE}} \tag{16}
\end{equation*}
$$

The hiding capacity refers to the maximum number of bits that can be hidden in the image. It is sometimes represented as BPB i.e. the average number of bits that can be hidden per a byte of the image. The Q is a measure of equivalence between original image and stego-image. It is calculated using Equation (17):

$$
\begin{equation*}
\mathrm{Q}=\frac{4 \sigma_{\mathrm{xy}} \overline{\mathrm{p}} \overline{\mathrm{q}}}{\left(\sigma_{\mathrm{x}}^{2}+\sigma_{\mathrm{y}}^{2}\right)\left(\overline{\mathrm{p}}^{2}+\overline{\mathrm{q}}^{2}\right)} . \tag{17}
\end{equation*}
$$

In Equation (17), \bar{p} and \bar{q} are the mean pixel values of the original and stego-images respectively. The σ_{x}^{2} and σ_{y}^{2} are the standard deviation for the original and stego-images respectively. The term σ_{xy} is the covariance. These are computed by Equations (18)-(22):

$$
\begin{equation*}
\overline{\mathrm{p}}=\frac{1}{\mathrm{~m} \times \mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{ij}} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\mathrm{q}}=\frac{1}{\mathrm{~m} \times \mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{q}_{\mathrm{ij}} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\mathrm{x}}^{2}=\frac{1}{\mathrm{~m} \times \mathrm{n}-1} \sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathrm{p}_{\mathrm{ij}}-\overline{\mathrm{p}}\right)^{2} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\mathrm{y}}^{2}=\frac{1}{\mathrm{~m} \times \mathrm{n}-1} \sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathrm{q}_{\mathrm{ij}}-\overline{\mathrm{q}}\right)^{2} \tag{21}
\end{equation*}
$$

$\sigma_{x y}=\frac{1}{m \times n-1} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(p_{i j}-\bar{p}\right)\left(q_{i j}-\bar{q}\right)$.
Tables 3 and 4 record the results of the existing and proposed techniques. The BPB of the proposed technique is 3.34 . It can be observed that, without compromising the PSNR, the hiding capacity and BPB of the proposed technique is higher than that of the existing techniques. For the proposed technique, the improved capacity is not only the admiring factor, but also the correctness of data extraction unlike Wang et al.'s [26] technique. The extraction is correctly done by inserting the indicator bits in the central pixel of the block during embedding, which is referred during extraction.

The proposed MFPVD+LSB substitution technique is analyzed by PDH analysis. The PDH analysis is performed by calculating the difference value between every pair of pixels [14]. A pair comprises of two consecutive pixels. These difference values will be from -255 to +255 including 0 . The frequency of each of these difference values is calculated. A graph is plotted, with the pixel difference value on X -axis and frequency on Y-axis. The graph obtained is called as the PDH. The PDH of original image will be a smooth curve. If the PDH of the stego-image is also a smooth curve then steganography is not detected. If the PDH of stego-image shows step effects, then steganography is detected. Figure 7 represents the PDH analysis on Lena, Baboon, Tiffany, Peppers, Jet, Boat, House, and Pot images for the proposed MFPVD+LSB substitution technique. There are eight sub-figures in total. Each sub-figure represents two curves. The solid line curve is for the original image and the dotted line curve is for the stego-image. The curve of original image will be smooth in nature means free from zig-zag appearance. This zig-zag appearance is called as step effect. In all the eight cases, the PDH curves of stego-images do not show any step effects. Hence it can be concluded that the proposed technique is tolerant to PDH analysis.
The RS analysis performs some statistical calculation in the following way [14]. Define a function, F_{1} : $2 \mathrm{n} \leftrightarrow 2 \mathrm{n}+1$. It defines two transformations, (i) from value 2 n to value $2 \mathrm{n}+1$, and (ii) from value $2 \mathrm{n}+1$ to value $2 n$. Similarly, define another function F_{-1} : $2 n$ $\leftrightarrow 2 \mathrm{n}-1$. It defines other two transformations, (i) from

Table 3
The results of the existing technique [22]

| Images
 $512 \times 512 \times 3$ | Swain's 2×3 PVD with MLSB substitution | | | Swain's 3×3 PVD with MLSB substitution | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | PSNR | Capacity | Q | BPB | PSNR | Capacity | Q | BPB |
| Lena | 41.14 | 2379222 | 0.999 | 3.03 | 41.04 | 2371255 | 0.999 | 3.02 |
| Baboon | 34.35 | 2496404 | 0.996 | 3.17 | 33.76 | 2502616 | 0.996 | 3.18 |
| Tiffany | 37.27 | 2376135 | 0.996 | 3.02 | 37.2 | 2366437 | 0.996 | 3.01 |
| Peppers | 35.56 | 2379292 | 0.998 | 3.03 | 35.15 | 2371837 | 0.998 | 3.02 |
| Jet | 39.57 | 2384676 | 0.998 | 3.03 | 39.52 | 2377031 | 0.998 | 3.02 |
| Boat | 35.84 | 2409235 | 0.998 | 3.06 | 35.32 | 2405009 | 0.998 | 3.06 |
| House | 36.9 | 2404582 | 0.998 | 3.06 | 37.58 | 2399229 | 0.998 | 3.05 |
| Pot | 40.35 | 2369274 | 0.999 | 3.01 | 40.34 | 2359271 | 0.999 | 3 |
| Average | 37.62 | 2399853 | 0.998 | 3.05 | 37.49 | 2394086 | 0.998 | 3.04 |

Table 4
The Results of Wang et al.'s MFPVD [26] and proposed MFPVD+LSB technique

$\begin{gathered} \text { Images } \\ 512 \times 512 \times 3 \end{gathered}$	Wang et al.'s 1×2 MFPVD				Proposed 2×3 MFPVD+LSB substitution			
	PSNR	Capacity	Q	BPB	PSNR	Capacity	Q	BPB
Lena	38.09	2470171	0.998	3.14	39.52	2622545	0.999	3.33
Baboon	40.37	2811651	0.999	3.57	39.28	2635620	0.9988	3.35
Tiffany	37.23	2444837	0.996	3.11	38.62	2624980	0.9975	3.34
Peppers	38.74	2470673	0.999	3.14	39.19	2625140	0.9991	3.34
Jet	36.73	2446005	0.996	3.11	39.53	2625185	0.9981	3.34
Boat	41.98	2575764	0.999	3.27	39.37	2626535	0.9992	3.34
House	37.68	2524705	0.998	3.21	39.47	2625075	0.9988	3.34
Pot	41.39	2398616	0.999	3.05	39.37	2623855	0.9993	3.34
Average	39.03	2517803	0.998	3.2	39.29	2626117	0.9987	3.34

value $2 n$ to value $2 n-1$, and (ii) from value $2 n-1$ to value 2 n . The image, say M is divided into a number of equal size blocks. Suppose such a block is G whose pixels are $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$. Then use the function $f=$ $\sum_{i=1}^{n-1}\left|X_{i+1}-X_{i}\right|$ to measure the smoothness of G. Then apply F_{1} to all the blocks of M and define the two parameters R_{m} and S_{m} as in Equations (23) and (24) respectively. Similarly, apply F_{-1} to all the blocks of M and define the two parameters $\mathrm{R}_{-\mathrm{m}}$ and $\mathrm{S}_{-\mathrm{m}}$ as in Equations (25) and (26) respectively.
$\mathrm{R}_{\mathrm{m}}=\frac{\text { Number of blocks satisfying } \mathrm{f}\left(\mathrm{F}_{1}(\mathrm{G})\right)>\mathrm{f}(\mathrm{G})}{\text { Total number of blocks }}$,
$\mathrm{S}_{\mathrm{m}}=\frac{\text { Number of blocks satisfying } \mathrm{f}\left(\mathrm{F}_{1}(\mathrm{G})\right)<\mathrm{f}(\mathrm{G})}{\text { Total number of blocks }}$,
$\mathrm{R}_{-\mathrm{m}}=\frac{\text { Number of blocks satisfying } \mathrm{f}\left(\mathrm{F}_{-1}(\mathrm{G})\right)>\mathrm{f}(\mathrm{G})}{\text { Total number of blocks }}$,
$\mathrm{S}_{-\mathrm{m}}=\frac{\text { Number of blocks satisfying } \mathrm{f}\left(\mathrm{F}_{-1}(\mathrm{G})\right)<\mathrm{f}(\mathrm{G})}{\text { Total number of blocks }}$.

Figure 7
PDH analysis of the proposed 2×3 MFPVD+LSB substitution technique, (a) Lena, (b) Baboon, (c) Tiffany, (d) Peppers, (e) Jet, (f) Boat, (g) House, and (h) Pot images. In all the eight sub-figures, the solid line curve is for the original image, and the dotted line curve is for the stego-image

Figure 8
RS analysis of the proposed 2×3 MFPVD+LSB substitution technique, (a) Tiffany, and (b) Baboon images. In both the subfigures, the lines for R_{m} and R_{-m} are close to each other. Similarly the lines for S_{m} and S_{-m} are close to each other. Furthermore, the condition $R_{m} \approx R_{-m}>S_{m} \approx S_{-m}$ also satisfies

$\begin{array}{ll}\ldots \ldots \ldots . . \\ R m & -\cdot-\cdot-S m \\ - & ---S-m\end{array}$

RS analysis is performed by using these four parameters. If the condition $R_{m} \approx R_{-m}>S_{m} \approx S_{-m}$ is true, then $R S$ analysis fails to detect the steganography technique. If the condition $R_{-m}-S_{-m}>R_{m}-S_{m}$ is true, then the $R S$ analysis succeeds in detecting the steganography technique.
The RS analysis of the proposed technique on Tiffany and Baboon images are shown in Figure 8. Tiffany is a smooth image and Baboon is an edge image. It can be observed from Figure 8 that for the proposed technique the condition $R_{m} \approx R_{-m}>S_{m} \approx S_{-m}$ satisfies for the edge image, Baboon. It also satisfies for smooth image, Tiffany. As Tiffany is the smooth image and Baboon is the edge image, it can be predicted that the results of all the remaining images will fall in between these two images. Thus based on the observations of these two images, it can be concluded that the proposed technique escapes from $R S$ analysis.

6. Conclusion

This paper proposes a new steganography technique known as MFPVD+LSB substitution. It uses 2×3 size
pixel blocks to utilize the edges in five directions. From the pixel block, the quotient and remainder blocks are derived. One of the quotients is termed as central quotient. Considering the central quotient and its five neighboring quotients, five difference values are calculated. Based on the average of all the quotient value differences, the hiding capacity in all the five directions is decided. The central remainder acts as an indicator to extract the number of bits from the five quotients at the time of extraction. Each of the remaining remainders hides two bits of data using LSB substitution. The embedding equations are designed in such a way that the central pixel will not change while embedding the data. The experiments are performed with images from SIPI image data base. The experimental results reveal that the proposed technique does not show any step effect, so it is not vulnerable to PDH analysis. It is also observed that without compromising the PSNR the recorded hiding capacity values are greater than that of the related existing techniques. Furthermore, it is proved that the proposed MFPVD+LSB substitution technique is undetectable by RS analysis.

References

1. Bai, J., Chang, C. C., Nguyen, T.S., Zhu, C., Liu, Y. A High Payload Steganographic Algorithm Based on Edge Detection. Displays, 2017, 46, 42-51. https://doi.org/10.1016/ j.displa.2016.12.004
2. Chakraborty, S., Jalal, A. S., Bhatnagar, C. LSB Based Non Blind Predictive Edge Adaptive Image Steganography. Multimedia Tools and Applications, 2017, 76(6), 7973-7987. https://doi.org/10.1007/s11042-016-3449-4
3. Chang, K. C., Chang, C. P., Huang, P. S., Tu, T. M. A Novel Image Steganography Method Using Tri-Way Pixel Value Differencing. Journal of Multimedia, 2008, 3(2), 3744. https://doi.org/10.4304/jmm.3.2.37-44
4. Chen, W. J., Chang, C. C., Le, T. H. N. High Payload Steganography Mechanism Using Hybrid Edge Detector. Expert Systems with Applications, 2010, 37(4), 32923301. https://doi.org/10.1016/j.eswa.2009.09.050
5. Darabkh, K. A., Al-Dhamari, A. K., Jafar, I. F. A New Steganographic Algorithm Based on Multi Directional PVD and Modified LSB. Journal of Information Technology and Control, 2017, 46(1), 16-36. https://doi.org/10.5755/ j01.itc.46.1.15253
6. Darabkh, K. A., Jafar, I. F., Al-Zubi, R. T., Hawa, M. A New Image Steganographic Approach for Secure Communication Based on LSB Replacement Method. Information Technology and Control, 2015, 44(3), 315-328. https://doi.org/10.5755/j01.itc.44.3.8949
7. Gulve, A. K., Joshi, M. S. A High Capacity Secured Image Steganography Method with Five Pixel Pair Differencing and LSB Substitution. International Journal of Image, Graphics and Signal Processing, 2015, 7(5), 6674. doi: 10.5815/ ijigsp.2015.05.08
8. Khodaei, M., Faez, K. New Adaptive Steganographic Method Using Least-Significant-Bit Substitution and Pixel-Value Differencing. IET Image processing, 2012, 6(6), 677-686. https://doi.org/10.1049/ietipr. 2011.0059
9. Kim, C. Data Hiding by an Improved Exploiting Modifi-ca-tion Direction. Multimedia Tools and Applications, 2014, 69(3), 569-584. https://doi.org/10.1007/s11042-012-1114-0
10. Lee, Y. P., Lee, J. C., Chen, W. K., Chang, K. C., Su, I. J., Chang, C.P. High-Payload Image Hiding with Quality Recovery Using Tri-Way Pixel-Value Differencing. Information Sciences, 2012, 191, 214-225. https://doi.org/ 10.1016/ j.ins.2012.01.002
11. Luo, W., Huang, F., Huang, J. Edge Adaptive Image Steganography Based on LSB Matching Revisited. IEEE Transactions on Information Forensics and Security, 2010, 5(2), 201-214. https://doi.org/10.1109/ TIFS.2010.2041812
12. Luo, W., Huang, F., Huang, J. A More Secure Steganography Based on Adaptive Pixel-Value Differencing Scheme. Multimedia Tools and Applications, 2011, 52(2), 407-430. https://doi.org/10.1007/s11042-009-0440-3
13. Nguyen, T. D., Arch-Int, S., Arch-Int, N. An Adaptive Multi Bit-Plane Image Steganography Using Block Data Hiding. Multimedia Tools and Applications, 2016, 75(14), 8319-8345.https://doi.org/10.1007/s11042-015-2752-9
14. Pradhan, A., Sahu, A. K., Swain, G., Sekhar, K. R. Performance Evaluation Parameters of Image Steganography Techniques. IEEE International Conference on Research Advances in Integrated Navigation Systems, 2016,1-8.https://doi.org/10.1109/RAINS.2016.7764399
15. Pradhan, A., Sekhar, K. R., Swain, G. Adaptive PVD Steganography Using Horizontal, Vertical and Diagonal Edges in Six Pixel Blocks. Security and Communication Net-works, 2017, 1-13. https://doi. org/10.1155/2017/1924618
16. Pradhan, A., Sekhar, K. R., Swain, G. Digital Image Steganography Using LSB Substitution, PVD, and EMD. Mathematical Problems in Engineering, 2018, 1-11. https://doi.org/10.1155/2018/1804953
17. Sahu, A. K., Swain, G. Pixel Overlapping Image Steganography Using PVD and Modulus Function. 3D Research, 2018, 9(40), 1-14. https://doi.org/10.1007/ s13319-018-0188-5
18. Shen, S. Y., Huang, L. H. A Data Hiding Scheme using Pixel Value Differencing and Improving Exploiting Modification Directions. Computers \& Security, 2015, 48, 131-141. https://doi.org/10.1016/j.cose.2014.07.008
19. Swain, G. Adaptive Pixel Value Differencing Stega-no-graphy Using Both Vertical and Horizontal Edges. Multimedia Tools and Applications, 2016, 75, 1354113556. hhttps://doi.org/10.1007//s11042-015-2937-2
20. Swain, G. Adaptive and Non-Adaptive PVD Steganography Using Overlapped Pixel Blocks. Arabian Journal for Science and Engineering, 2018 (in press). https://doi. org/ 10.1007/ s13369-018-3163-9
21. Swain, G. Very High Capacity Image Steganography Technique Using Quotient Value Differencing and LSB Substitution. Arabian Journal for Science and Engineering, 2018 (in press). https://doi.org/10.1007/ s13369-018-3372-2
22. Swain, G. High Capacity Image Steganography Using Modified LSB Substitution and PVD against Pixel Differ-rence Histogram Analysis. Security and Communication Networks, 2018, 1-14. https://doi. org/10.1155/2018/1505 896
23. Swain, G. Digital Image Steganography Using Eight Directional PVD against RS Analysis and PDH Analysis. Advances in Multimedia, 2018, 1-13. https://doi. org/10.1155/2018/4847098
24. Tseng, H. W., Leng, H. S. High-Payload Block-Based Data Hiding Scheme Using Hybrid Edge Detector with Minimal Distortion. IET Image Processing, 2014, 8(11), 647-654. https://doi.org/10.1049/iet-ipr.2013.0584
25. USC-SIPI Image Database. [Online]. Available: http:// sipi.usc.edu/database/database.php?volume=misc
26. Wang, C. M., Wu, N. I., Tsai, C. S., Hwang, M. S. A High Quality Steganographic Method with Pixel-Value Differencing and Modulus Function. The Journal of Systems and Software, 2008, 81(1), 150-158. https://doi. org/10.1016/j. jss.2007.01.049
27. Wu, D. C., Tsai, W. H. A Steganography Method for Images by Pixel Value Differencing. Pattern Recognition Letters, 2003, 24(9), 1613-1626. https://doi.org/10.1016/ S0167-8655 (02)00402-6
28. Zhang, X., Yang, S. Efficient Steganographic Embedding by Exploiting Modification Direction. IEEE Communication Letters, 2006, 10(11), 781-783. https://doi. org/10.1109/ LCOMM.2006.060863
29. Zhao, W., Jie, Z., Xin, L., Qiaoyan, W. Data Embedding Based on Pixel Value Differencing and Modulus Function Using Indeterminate Equation. The Journal of China Universities of Posts and Telecommunications, 2015, 22(1), 95-100. https://doi.org/10.1016/ S10058885(15)60631-8
