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Abstract. In the paper, two combinations (consecutive and integrated) of vector quantization methods (self-orga-
nizing map and neural gas) and multidimensional scaling (MDS) have been investigated and compared. The vector 
quantization is used to reduce the number of dataset items. The dataset with a smaller number of items is analyzed by 
multidimensional scaling in order to reduce the number of features of data (dimensionality of space) and to map them 
onto the plane, i.e., to visualize. Some ways of the initialization (at random, on a line, by PCs and by variances) of two-
dimensional vectors in MDS have been investigated. Two ways of assignment of two-dimensional vectors in the integ-
rated combinations of MDS and vector quantization methods have been examined, too. 
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1. Introduction 

The analysis of multidimensional data X1, X2,..., Xm  
is an important part of data analysis; here m is the 
number of data items. All items are described by the 
same set of features x1, x2,..., xn; here n is the number 
of features. If the values of features are numerical 
ones, X1, X2,..., Xm are points in the n-dimensional 
space Rn, where n defines the dimensionality of the 
space. For short, these points are called n-dimensional 
points. They can be conceived as position vectors 
(bound to the origin (0, 0,…, 0)). The values 

1 2, ,...,i i inx x x  of features are the components of the 
vector (coordinates of point) iX , 1,...,i m= . We have 
a matrix of data X = { X1, X2,..., Xm} = { xij, i  = 1,..., 
m, j = 1,..., n}.  

The numbers m and n can be large. It is purposeful 
to reduce these numbers in order to facilitate the data 
analysis and exploration, and interpretation of the 
results.  

Two main problems are solved in this paper: (1) 
reducing the number of dataset items and their dimen-
sionality and (2) investigation of a dependence of the 
multidimensional scaling results on the initial states. 

2. Reducing the Number of Data Items and 
their Dimensionality 

A lot of methods of different nature have been de-
veloped for reducing the number of data items and 
their dimensionality. Vector quantization can be used 

to reduce the number m of data items. Multidimen-
sional scaling (MDS) as a dimensionality reduction 
method can be used to reduce n. MDS is useful to map 
data onto a plane, i.e., to visualize data, if the di-
mensionality is reduced to 2. The visualization allows 
us to comprehend data and processes [1, 2, 3, 4, 5, 6]. 
We have proposed to combine these two groups of 
methods in order to reduce the number of items and 
dimensionality [2, 7, 8, 9, 10, 11]. 

2.1. Vector Quantization: Self-organizing Map and 
Neural Gas 

The objective of vector quantization (VQ) for a 
dataset X is to discover the optimal codebook, 
containing a predetermined number s of codebook 
(reference, prototype) vectors n

iM R∈ , 1,...,i s= , 
which guarantees minimization of the chosen dis-
tortion metric (usually Euclidean) for all the vectors 
from X. Each codebook vector has an associated index 
used for referencing. Thus, the aim of quantization is 
to change the vectors lX , 1,...,l m= , so that the new 
vectors iM , 1,...,i s= , s  m, represent the properties 
of the vectors .lX  Vector quantization is used for data 
clustering and compression. VQ can deal with missing 
data. In the clustering case, the codebook vectors are 
representatives of clusters. In the paper, we use two 
methods for vector quantization based on neural 
networks: self-organizing map (SOM) [12] and neural 
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gas (NG) [13]. Here the neurons correspond to the 
codebook vectors. 

The self-organizing map (SOM) is a class of neural 
networks that are trained in an unsupervised manner 
using a competitive learning [12]. The neural gas is a 
biologically inspired adaptive algorithm [13]. The 
algorithm was named “neural gas” because of the 
dynamics of the vectors during the adaptation process 
which distribute themselves like a gas within the data 
space. A codebook M is an array of vectors. The 
dimensionality of the vectors is such as that of the 
analyzed vectors lX , 1,...,l m= , i.e., equal to n. The 
array 1 2{ , ,..., }sM M M M=  is one-dimensional in NG, 

n
iM R∈ , 1,...,i s= , s is the number of codebook vec-

tors. The rectangular SOM is a two-dimensional array 
(grid) of neurons { , 1, ,ijM M i= = …  rows, j = 1, ..., 

cols}, where n
ijM R∈ , rows is the number of rows of 

the grid, cols is the number of columns of the grid, 
and the total number of neurons is s rows cols= × . 

At first of the training algorithms, the initial values 
are selected: the number s of codebook vectors; the 
initial values of codebook vector components; the 
number of training epochs ê  (each analyzed vector is 
passed to the network ê  times, then the number of 
training steps max ˆt e m= × ). 

In NG, the Euclidean distances between the input 
vector lX  and each codebook vector (neuron)  Mi = 
1, ..., s, are computed. The distances are sorted in an 
ascending order. A neuron set 1 2, ,..., sW W W  is ob-
tained, where 1 2{ , ,..., }k sW M M M∈ , 1,...,k s= , and 

1lX W− ≤,...,≤ l sX W− . The neuron 1W  is called a 

winner. The neuron kW , 1,...,k s= , is adapted ac-
cording to the learning rule: ( 1) ( )k kW t W t+ = +  

( ) ( ( ))l kE t h X W tλ+ − , where t is the order number of 

iterations, max( / )( ) ( / ) t t
g f gE t E E E= , hλ =  

( 1)/ ( )k te− − λ , max( / )( ) ( / ) t t
g f gtλ = λ λ λ . The values of 

the parameters gλ , fλ , gE , fE  are predetermined. 

In SOM, the Euclidean distances from the input 
vector lX  to each codebook vector ijM , 

1, , ,i rows= … 1, ,j cols= … , are also computed. The 

vector (neuron) ˆ cM  with the minimal Euclidean 
distance to lX  is designated as a winner, where c is a 
pair of indices, i.e., 

,
arg min{|| ||}l ij

i j
c X M= − . The 

neuron ijM  is adapted according to the learning rule: 

( 1) ( ) ( )( ( ))c
ij ij ij l ijM t M t h t X M t+ = + − , where t is the 

order number of iterations, c
ijh  is a neighbourhood 

function, ( ) 0c
ijh t → , as t → ∞ . Some variants of c

ijh  

are possible. We use ( 1)c c
ij ijh α αη= + , ( ˆmax (eα =  

+ )ˆ1 ') / ,0.01e e− ; c
ijη  is the neighbourhood order in 

the grid between the neurons ijM  and ˆ cM ; ê  is the 
number of training epochs, 'e  is the order number of a 
current epoch ˆ( ' {1,..., })e e∈ . The vector ijM  is re-

computed if max[ max( , ),1]c
ij rows colsη α≤ . For ge-

nerality, notation iM  is used instead of ijM  below. 

Then the networks are trained, the quantization 
error QEE  is computed by the formula: 

( )1
1 ˆm

QE l c ll
E X M

m =
= −∑ , (1) 

where ( )ˆ c lM  is a winner for the vector lX , 

( ) 1ˆ c lM W=  in the neural gas method. 

2.2. Multidimensional Scaling 

The target of dimensionality reduction methods is 
to represent the input data in a lower-dimensional 
space so that certain properties of the dataset were 
preserved as faithfully as possible. If we have a 
dataset =X  1 2{ , ,..., }mX X X  in the n-dimensional 
space, where 1 2( , ,..., )i i i inX x x x= , 1,...,i m= , we de-
sire to get a dataset 1 2{ , ,..., }mY Y Y=Y  in d-dimensio-
nal space, where 1 2( , ,..., )i i i idY y y y= , 1,...,i m=  and 
d n< . If a sufficiently small output dimensionality 

2d =  or 3d =  is chosen, two or three dimensional 
vectors obtained may be presented in a scatter plot. 

Multidimensional scaling (MDS) refers to a group 
of methods that are widely used for dimensionality 
reduction and visualization of multidimensional data 
[14]. The goal of multidimensional scaling (MDS) is 
to find lower-dimensional data iY , 1,...,i m= , such 
that the distances between the data in the lower-
dimensional space were as close to the original 
proximities (similarity or dissimilarity) as possible. 
The stress MDSE  must be minimized. 

2( ( , ) ( , ))MDS ij i j i ji j
E w X X d Y Yδ

<
= −∑ , (2) 

where ijw  is a weight; ( , )i jX Xδ  is the value of pro-

ximity between the n-dimensional data iX  and jX , 

( , )i jd Y Y  is the distance (usually, Euclidean) between 

the two-dimensional data iY  and jY , ( , )i jd Y Y =
 

|| ||i jY Y− . If the proximity is the Euclidean distance, 

then ( , )i jX Xδ =  ( , )i jd X X . There exist a multitude 

of variants of MDS with different weights ijw  and 
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optimisation algorithms [15, 16, 17, 18], etc. In this 
paper, we use the SMACOF (Scaling by MAjorization 
of a COmplicated Function) algorithm for stress 

MDSE  (2) minimization, 1, ,ijw i j= ∀ . This method 
guarantees a monotone convergence of the stress 
function [14]. The MDS based on SMACOF is as 
follows: 
1. Set the initial values of two-dimensional vectors 

from the set 1 2{ , ,..., }mY Y Y=Y . Set 0t = . 
2. Compute the value of the stress ( ( ))MDSE tY  by 

(2). 
3. Increase the iteration counter t  by one. 
4. Compute ( )tY  by the formula ( 1)t + =Y  

1 ( ( )) ( )m B t t− Y Y , where ( ( ))B tY  has the elements 
( , ) ( , ), ,ij i j i jb d X X d Y Y i j= − ≠  if ( , )i jd Y Y

 
0≠ ; and 0ijb = , if ( , ) 0i jd Y Y = ; bii = 

1,
.

m
ijj j i

b
= ≠

−∑  

5. Compute ( ( ))MDSE tY  by (2). If EMDS (Y(t – 1)) – 
( ( ))MDSE t ε<Y  or t is equal to the maximum 

number of iterations, then stop ( ε  is a small posi-
tive constant), else go to Step 3.  

A way of comparing the mapping results is to 
calculate and estimate the value of the stress function 

MDSE  (2). The normalized stress 
2

2

( ( , ) ( , ))
ˆ

( ( , ))

i j i j
i j

MDS
i j

i j

d X X d Y Y

E
d X X

<

<

−

=
∑

∑
 (3) 

is used instead of MDSE , because the inclusion of the 
normalized parameter gives a clear interpretation of 
the mapping quality that does not depend on the scale 
in an n-dimensional space. The computational comp-
lexity of MDS based on SMACOF is 2( )O m . If we 
analyze a large dataset, MDS is time consuming. 
Many techniques of reducing the computational time 
are proposed. Some ways are based on pre-processing: 
at first, the number m of dataset items is reduced and 
then a smaller data set is analyzed by MDS. The 
reduction of m can be done by clustering or vector 
quantization methods. 

3. Integration of Vector Quantization and 
Visualization 

After training the NG or SOM network, each input 
vector iX , 1,...,i m= , from X is related to the nearest 
neuron, called a neuron-winner. Some neurons may 
remain unrelated with any vector of the set X, but 
there may occur neurons related with some input 
vectors. So, the neurons-winners represent some input 
vectors, and the number r of neurons-winners is 
smaller than that of input vectors ( r m< ). Thus, the 

number m of data items is reduced. A smaller dataset 
can be used by MDS and the time is saved. The 
consecutive combination of vector quantization me-
thods and the multidimensional scaling (Figure 1) 
have been investigated in [7, 8, 9, 10, 11, 19]. 

So, the reason to use the combination is a desire to 
decrease the computation time without losing the 
quality of mapping (visualization).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Scheme of a visualization of the neurons-
winners (consecutive combination) 

Another reason is based on improving the SOM 
visualization. As it is known, SOM itself has a visual 
presentation, e.g., u-matrix representation [12]. How-
ever, the SOM table does not answer the question, 
how much the vectors of the neighbouring cells are 
close in the n-dimensional space. It is reasonable to 
apply the distance-preserving method, like MDS, to an 
additional mapping of the neurons-winners in the 
SOM. A question arises: when the usage of MDS only 
is purposeful, and when its combination with vector 
quantization. 

The computing time of MDS only, when all the 
items of the ellipsoidal dataset [20] (m = 1338, 
n = 100) have been analyzed is presented in Figure 2 
(black line). The SOM learning has been repeated for 
several times with various numbers s of neurons. Va-
rious numbers r of neurons-winners have been obtai-
ned. The dependence of the SOM learning time on the 
number r of neurons-winners (blue curve), as well as 
of MDS on the number r of neurons-winners, when 
only they are analyzed by MDS (red curve), and the 
total time of the SOM and MDS combination (magen-
ta curve) are presented in Figure 2. We see that if the 
number r of neurons-winners is smaller than 500, it is 
worth to use the combination in order to save the 
computational time comparing with MDS only. If NG 
is used instead of SOM, the similar results are 
obtained. 

scatter plot 

two-dimensional vectors 

1 2, ,..., rY Y Y  

multidimensional scaling 

multidimensional vectors 

1 2, ,..., mX X X  

quantization method 
(SOM or NG) 

neurons-winners 

1 2ˆ ˆ ˆ, ,..., rM M M  
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Figure 2. The computational time of MDS only and its 

combination with SOM 

The visualization results of the ellipsoidal dataset 
when all data items (m = 1338) are mapped by MDS 
and only 259 neurons-winners (r = 259) of SOM are 
mapped by MDS are presented in Figure 3. We see 
that reduction of the number of data items does not 
aggravate the quality of visualization, however the 
computing time is saved essentially. 

a)  

b)  

Figure 3. Mapping of an ellipsoidal dataset: (a) all data 
items are mapped by MDS, (b) only 259 neurons-winners  

of SOM are mapped by MDS 

3.1. The Integrated Combination 

Note that, if the MDS stress MDSE  is minimized 
in some iterative way, it is important to select the 
proper initial values of d-dimensional vectors 

1 2, ,..., mY Y Y  (in our case, d = 2). The dependence of 
the MDS results on the initial values of these vectors 
remains a topical problem. We have proposed and 
investigated the integrated combination of SOM and 
MDS in [7, 8] as a new way of initialization of two-

dimensional vectors. In this paper, we propose to use 
NG instead of SOM. 

The idea of the integrated combination is as fol-
lows: n-dimensional vectors 1 2, ,..., mX X X  are ana-
lyzed by using the MDS method, taking into account 
the process of SOM or NG training. Thus, the 
integrated combination consists of two parts: (1) SOM 
or NG training and (2) computing the two-dimen-
sional points, corresponding to the neurons-winners of 
SOM or NG, by the MDS method. These two parts are 
performed alternately. 

At first, some notation and definitions are intro-
duced: 
• Let the training set consist of n-dimensional 

vectors 1 2, ,..., mX X X , 1 2( ( , ,...,i i iX x x= xin),  i = 
1, ..., m). We need to get the two-dimensional vec-
tors, called projections, 1 2, ,..., mY Y Y ,  (Yi = (yi1, 
yi2), i = 1, ..., m)). 

• The neural network (SOM or NG) is trained using 
ê  training epochs. 

• All the ê  epochs are divided into equal training 
parts – blocks. Before starting the training of the 
neural network, we choose the number of blocks γ 
into which the training process will be divided. 
Each block contains ν training epochs ( ê  = νγ). 
Denote by q a block of the training process 
consisting of ν epochs ( 1,...,q γ= ). 

• Denote neurons-winners, obtained by the qth block 
of the training process, as ( ) ( ) ( )

1 2, ,...,
q

q q q
rM M M  

and two-dimensional projections of these neurons-
winners, calculated by the MDS method, as 

( ) ( ) ( )
1 2, ,...,

q

q q q
rY Y Y  | ( ( ) ( ) ( )

1 2( , ),q q q
i i iY y y=  i = 1, ..., 

rq). Note that the number of neurons-winners qr  
will be smaller than or equal to m. 
We suggest the following way of integrating the 

SOM or NG and MDS methods: 
Step 1: network training begins ( 1q = ). After the 

first ν training epochs, the training is stopped 
temporally. The neurons-winners 

1

(1) (1) (1)
1 2, ,..., rM M M , 

obtained after the first block ( 1q = ) of the training 
process, are analyzed by MDS. The initial coordinates 
of two-dimensional vectors (0) (0) (0)

1 2( , ),i i iY y y=  

11,..., ,i r=  must be set for MDS. There are some 

possible ways. The initial coordinates (0) (0)
1 2( , )i iy y  can 

be set: 
(1) at random in the interval (0, 1); 

(2) on a line: (0)
1 1 3iy i= + , (0)

2 2 3iy i= + ; 

(3) according to two largest principal components 
(PCs); 
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(4) according to the components whose variances 
are the largest ones. 

After MDS has been performed, the two-dimensio-
nal projections 

1

(1) (1) (1)
1 2, ,..., rY Y Y  of neurons-winners 

are obtained. 
Steps from 2 to γ: network training is continued 

( 2,...,q γ= ). The neurons-winners obtained after each 
qth block of the training process are analyzed by using 
MDS. The initial coordinates of two-dimensional 
vectors ( ) ( ) ( )

1 2, ,...,
q

q q q
rY Y Y  are selected for MDS taking 

into account the result of the (q–1) block. Note that 
1q qr r −≠  in general. The way of selecting the initial 

coordinates is presented below. We must determine the 
initial coordinates of each two-dimensional vector 

( )q
iY  correspondent to the neuron-winner ( )q

iM , 
1,..., qi r= . The sequence of steps is as follows: 

• Determine vectors from { 1 2, ,..., mX X X } that are 

related with ( )q
iM . Note that some vectors from 

{ 1 2, ,..., mX X X } can be related with ( )q
iM . De-

note these vectors by 
1 2
, ,...i iX X  | 

(
1 2
, ,...i iX X ∈ 1 2{ , ,..., }mX X X ). 

• Determine neurons-winners of the (q–1) block that 
were related with 

1 2
, ,...i iX X  Denote these 

neurons-winners by 
1 2

( 1) ( 1), ,...q q
j jM M− −  | (

1

( 1) ,q
jM −   

2

( 1) ,...q
jM − ∈

1

( 1) ( 1) ( 1)
1 2{ , ,..., }

q

q q q
rM M M

−

− − − ), and 

their two-dimensional projections, obtained as a 
result of MDS, by 

1 2

( 1) ( 1), ,...q q
j jY Y− −  | (

1 2

( 1) ( 1), ,...q q
j jY Y− − ∈  ( 1)

1{ ,qY −

 

1

( 1) ( 1)
2 ,..., }

q

q q
rY Y

−

− − ), 

• There are two possible ways of assignment: 
by proportion: the initial coordinates of ( )q

iY  are 
set to be equal to the mean value of the set of 
vectors {

1 2

( 1) ( 1), ,...q q
j jY Y− − }. In Figure 4 (top), two 

points 
1

( 1)q
jY −  and 

2

( 1)q
jY −  are coincident, a point 

( )1 2 3

( ) ( 1) ( 1) ( 1)1
3

q q q q
i j j jY Y Y Y− − −= + +  is closer to the 

points 
1

( 1)q
jY −  than to 

3

( 1)q
jY − . 

by midpoint: as the coincident vectors can be 
between the vectors {

1 2

( 1) ( 1), ,...q q
j jY Y− − }, the initial 

coordinates of ( )q
iY  are set to be equal to the mean 

value of the set of only the non-coincident points 

{
1 2

( 1) ( 1), ,...q q
j jY Y− − }. In Figure 4 (bottom), ( )q

iY =
 

( )1 3

( 1) ( 1)1
2

q q
j jY Y− −+ .  

After the assignment, the two-dimensional vectors 
( ) ( ) ( )

1 2, ,...,
q

q q q
rY Y Y  | ( ) ( ) ( )

1 2( ( , ),q q q
i i iY y y=  1,..., qi r= ) of 

the neurons-winners are calculated using MDS. 
The training of the neural network is continued 

until q γ= . After the γth block, we get two-

dimensional projections ( ) ( ) ( )
1 2, ,..., rY Y Y

γ

γ γ γ  of the n-

dimensional neurons-winners ( ) ( ) ( )
1 2, ,..., rM M M

γ

γ γ γ  

that are uniquely related with the vectors X1, X2, ..., 
Xm. The two-dimensional vectors ( ) ( ) ( )

1 2, ,..., rY Y Y
γ

γ γ γ  

obtained can be presented on a scatter plot (see Fi-
gure 5). 

 
Figure 4. Two ways of assignment: 

by  proportion (top), by midpoint (bottom) 

4. Experimental Results 

Some experiments have been carried out in order 
to ascertain: (1) which vector quantization method 
(SOM or NG) is more suitable to use in the com-
bination with MDS; (2) which initialization way of 
two-dimensional points is most suitable in the 
consecutive combination of SOM or NG and MDS, as 
well as in the first block of the integrated combination 
(when the points are generated at random, on a line, 
according to two principal components (PCs), ac-
cording to the components with the largest variances); 
(3) which way of assignment in the integrated 
combination is the most suitable one (by midpoint or 
by proportion). 

The results of experimental investigation of some 
datasets are presented here: Iris (m = 150, n = 4) [21], 
hepta (m = 212, n = 3) [22], rand_data (m = 1500, 
n = 5) (here each component is generated at random in 
the interval (0,1)). SOM and NG are trained during 
200 epochs ( ˆ 200e = ). The training process is divided 
into γ = 2, 4, 8, 10, 25 blocks in the integrated 
combination, and ν = 100, 50, 25, 20, 8, respectively. 
100 iterations are performed in MDS. The values of 
the normalized stress ˆ

MDSE (3) subject to the initiali-
zation and assignment ways for three datasets are 
presented in Tables 1–3. When choosing a random 

( )q
iY

1 2

( 1)( 1) , qq
j jY Y −−

3

( 1)q
jY −

1 2

( 1) ( 1),q q
j jY Y− −

3

( 1)q
jY −

( )q
iY
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initialization, ten experiments are done for each 
dataset and the averaged values are presented in 
Tables 1–3 and Figure 6. The smallest values are in an 
italic font and the most frequent values are in bold. 

The number s of neurons is set such that the same or a 
similar number r of neurons-winners were obtained by 
both vector quantization methods in order to compare 
the results obtained in the sense of the MDS stress. 

 

 
Figure 5. Scheme of the integrated combination of SOM or NG and multidimensional scaling 

Table 1. The values of the MDS normalized stress subject to the initialization (at random, on a line, by PCs, by variance) and 
assignment (by midpoint, by proportion) ways for the iris dataset. SOM (a) (EQE = 0.2225, r = 93) and NG (b) (EQE = 0.0988, 
r = 94) are used in the consecutive and integrated combinations with MDS 
a) 

at random on a line by PCs by variances 
consecutive 0.0363 0.0366 0.0276 0.0265 

γ ν midpoint proportion midpoint proportion midpoint proportion midpoint proportion 
2 100 0.0385 0.0386 0.0484 0.0484 0.0395 0.0436 0.0438 0.0438 
4 50 0.0371 0.0373 0.0265 0.0271 0.0382 0.0269 0.0382 0.0382 
8 25 0.0335 0.0296 0.0265 0.0265 0.0265 0.0265 0.0347 0.0265 
10 20 0.0281 0.0265 0.0347 0.0265 0.0265 0.0265 0.0265 0.0265 in

te
gr

at
ed

 

25 8 0.0298 0.0290 0.0347 0.0265 0.0347 0.0265 0.0347 0.0265 

b) 

at random on a line by PCs by variances 
consecutive 0.0489 0.0642 0.0335 0.0358 

γ ν midpoint proportion midpoint proportion midpoint proportion midpoint proportion 
2 100 0.0451 0.0452 0.0381 0.0561 0.0335 0.0335 0.0335 0.0335 
4 50 0.0399 0.0417 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 
8 25 0.0366 0.0363 0.0335 0.0335 0.0335 0.0335 0.0335 0.0335 
10 20 0.0392 0.0384 0.0335 0.0335 0.0335 0.0349 0.0349 0.0349 in

te
gr

at
ed

 

25 8 0.0369 0.0388 0.0506 0.0335 0.0335 0.0335 0.0335 0.0335 
 

When comparing the results, obtained by the con-
secutive and integrated combinations, smaller values 
of the normalized stress are obtained by the integrated 
combination in many cases. Thus, the integrated 
combination is superior to the consecutive one. It is 
quite evident, if the points are initiated on a line or at 
random (Figure 6). The values of the MDS normalized 
stress, obtained by the consecutive combination and 
the smallest values of the stress, obtained by the 
integrated combination, are presented in Figure 6. 

In most cases, the normalized stress is slightly 
larger, if NG is used instead of SOM in combinations. 
However, the quantization error QEE  (1) is consi-
derably smaller, therefore NG is more suitable in the 
combinations.  

When the number γ  of blocks of the integrated 
combination is increased, the normalized stress is 
rather fluctuating however it is no larger than that 
obtained by the consecutive combination. 
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The smallest value of the normalized stress for the 
iris dataset is obtained, if the initial values of two-
dimensional points are set by variances, when SOM is 
used in the consecutive combination, ˆ 0.0265MDSE = , 

and by principal components, when NG is used 
ˆ 0.0335MDSE = . However, the same minimal value of 

the normalized stress is obtained by the integrated 
combination, when other initialization ways are used. 

Table 2. The values of the MDS normalized stress subject to the initialization (at random, on a line, by PCs, by variance) and 
assignment (by midpoint, by proportion) ways for the hepta dataset. SOM (a) (EQE = 0.3115, r = 86) and NG (b) (EQE = 0.1765, 
r = 94) are used in the consecutive and integrated combinations with MDS 
a) 

at random on a line by PCs by variances 
consecutive 0.2182 0.2270 0.2042 0.2042 

γ ν midpoint proportion midpoint proportion midpoint proportion midpoint proportion 
2 100 0.2004 0.2066 0.1994 0.1994 0.1994 0.1994 0.1994 0.1994 
4 50 0.2078 0.2345 0.1994 0.1994 0.1994 0.2042 0.2270 0.2487 
8 25 0.1994 0.2109 0.1994 0.2270 0.1994 0.1994 0.1994 0.2270 
10 20 0.1994 0.2051 0.1994 0.2042 0.1994 0.1994 0.1994 0.2042 in

te
gr

at
ed

 

25 8 0.1994 0.2081 0.1994 0.1994 0.1994 0.1994 0.1994 0.1994 

b) 

at random on a line by PCs by variances 
consecutive 0.2053 0.2115 0.1964 0.1964 

γ ν midpoint proportion midpoint proportion midpoint proportion midpoint proportion 
2 100 0.1877 0.1877 0.2043 0.2043 0.1964 0.1964 0.2043 0.2043 
4 50 0.2084 0.2084 0.2322 0.2322 0.2043 0.2043 0.2056 0.2056 
8 25 0.2194 0.2194 0.1964 0.1964 0.1964 0.1964 0.1964 0.1964 
10 20 0.2008 0.2052 0.1964 0.1964 0.1964 0.1964 0.1964 0.1964 in

te
gr

at
ed

 

25 8 0.2115 0.2031 0.2115 0.1964 0.2115 0.1964 0.2115 0.1964 

Table 3. The values of the MDS normalized stress subject to the initialization (at random, on a line, by PCs, by variance) and 
assignment (by midpoint, by proportion) ways for the rand_data dataset. SOM (a) (EQE = 0.2139, r = 394) and NG (b) 
(EQE = 0.1380, r = 400) are used in the consecutive and integrated combinations with MDS 
a) 

at random on a line by PCs by variances 
consecutive 0.3223 0.3189 0.3153 0.3140 

γ ν midpoint proportion midpoint proportion midpoint proportion midpoint proportion 
2 100 0.3244 0.3247 0.3252 0.3237 0.3241 0.3239 0.3241 0.3216 
4 50 0.3217 0.3225 0.3217 0.3220 0.3217 0.3220 0.3218 0.3229 
8 25 0.3176 0.3200 0.3178 0.3148 0.3176 0.3142 0.3177 0.3206 
10 20 0.3157 0.3155 0.3164 0.3162 0.3164 0.3164 0.3164 0.3167 in

te
gr

at
ed

 

25 8 0.3159 0.3161 0.3162 0.3161 0.3160 0.3161 0.3162 0.3161 

b) 

at random on a line by PCs by variances 
consecutive 0.3202 0.3223 0.3119 0.3103 

γ ν midpoint proportion midpoint proportion midpoint proportion midpoint proportion 
2 100 0.3192 0.3143 0.3179 0.3179 0.3125 0.3123 0.3140 0.3116 
4 50 0.3168 0.3159 0.3160 0.3160 0.3183 0.3187 0.3115 0.3140 
8 25 0.3129 0.3122 0.3132 0.3157 0.3115 0.3115 0.3103 0.3115 
10 20 0.3124 0.3131 0.3116 0.3223 0.3116 0.3119 0.3115 0.3103 in

te
gr

at
ed

 

25 8 0.3115 0.3115 0.3115 0.3220 0.3115 0.3115 0.3115 0.3115 
 

The smallest value of the normalized stress 
ˆ 0.1994MDSE =  for the hepta dataset is obtained by 

the integrated SOM and MDS combination inde-
pendent of the initialization way. When NG is used, 
the most frequent value ˆ 0.1964MDSE =  is obtained by 
the consecutive combination, if the initial values are 
set by variances or PCs. The same value is obtained by 

the integrated combination, if the initial values are set 
on a line. If the random initialization is used, the 
smallest value ˆ 0.1877MDSE =  is obtained by the 
integrated combination, γ = 2. There is no value of the 
normalized stress that could be minimal and repeated 
for the rand_data dataset in contrast to the iris and 
hepta ones. However, the tendency of stress decline is 
shown in the integrated combination, when the 
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number γ of blocks is increased. When two ways of 
assignment (by midpoint and proportion) in the 

integrated combination are compared, no great dif-
ferences were noticed. 
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consecutive (NG) integrated (NG)

 
Figure 6. The values of the MDS normalized stress, obtained by the consecutive and integrated combinations, for the iris dataset 

(left) and the hepta dataset (right) 

5. Conclusions 

In the paper, two combinations (consecutive and 
integrated) of vector quantization and multidimensio-
nal scaling have been investigated. It is reasonable to 
use combinations, not only MDS with a certain 
number of neurons in order to save the computing 
time. 

A conclusion on the usage of SOM and NG in 
combinations with MDS has been drawn: since the 
quantization error, obtained by NG, is considerably 
smaller than by SOM, if the number of neurons-
winners is the same, it is reasonable to use NG in the 
combinations, though the MDS stress is slightly larger 
in these cases. 

A conclusion on the assignment of the initial 
values of two-dimensional points in the integrated 
combination has been drawn: both proposed ways (by 
midpoint and by proportion) can be used, because any 
essential differences in the results obtained are not 
observed. 

Some conclusions on the initialization of the 
values of two-dimensional points in the consecutive 
combination and the first block of the integrated 
combination have been drawn: 
• If the initialization by the first two PCs or the 

components having the largest variances is used, 
rather a small MDS stress is obtained by the con-
secutive combination, however, sometimes it is 
possible to reduce it by the integrated combi-
nation. 

• If the initialization, when the values are generated 
at random or set on a line, is used, the integrated 
combination is superior to the consecutive one in 
the sense of the MDS stress. 
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