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This paper considers the problem of portfolio selection using high-frequency financial time series. Such time 
series often exhibit the stagnation effect when the assets’ returns are not changing. This effect causes a lot of un-
usual difficulties in the analysis and modelling of such series. In classical statistics, when the distributional law 
has two first moments, i.e. mean and variance, the relationship between the two random variables is described 
by the covariance or correlation. However, if the financial data follow the stable law, and empirical studies of-
ten support this assumption, covariance and especially correlation often cannot be calculated. In this work, 
alternative relation measures are applied to deal with the portfolio selection problem using the mixed-stable 
modelling. The modelling is applied to the high-frequency financial time series obtained from the German DAX 
index intra-daily data. The performance of the mixed-stable model is compared with alternative approaches. 
The portfolio selection problem is formulated as the optimization problem, with covariances replaced by the 
generalized power-correlations. The results of the portfolio selection strategy without the relationship coeffi-
cients matrix are also presented. 
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1. Introduction
The obvious wish of any financial investor is to know 
how to select the financial assets into a portfolio such 
that the expected return is maximized for a chosen 
level of risk. Mathematical foundation for this prob-
lem was laid by H. Markowitz in 1952 with his classi-
cal portfolio selection model [22]. It has gained a wide 
recognition as a basis of the modern portfolio theory. 
However, since its introduction, it has drawn a lot of 
criticism that its assumptions do not match the real 
financial markets. Over the years, a lot of alternative 
and more refined models have been proposed (see, 
e.g., [7, 8, 9, 19, 20] and references therein).
One of the main points of criticism is that the modern 
portfolio theory assumes that portfolio returns are 
normally distributed. However, the real-world finan-
cial data often do not follow this assumption. Their 
behaviour is characterized by such features as skew-
ness, kurtosis, heavy tails, self-similarity and multi-
fractality [28, 29, 34, 35].
During the last decades numerous alternatives have 
been proposed: the mixture of normals by Kon (1984) 
[17], the compound log-normal and normal distribu-
tion by Clark (1973) [5], the mixed diffusion-jump 
model by Press (1967) [27], the logistic distribution 
by Smith (1981) [32], the scaled-t distribution by 
Praetz (1972) [26], the exponential power distribu-
tion by Hsu (1982) [11], the normal-inverse Gaussian 
distribution [2] by Barndorff-Nielsen (1995), etc. Sta-
ble distribution proposed by Mandlebrot (1963) and 
Fama (1965) has received special attention due to its 
unique properties [28, 29]. A summary of the litera-
ture covering history and properties of these models 
is presented in [1, 31] and references therein.
In this work, a long time series of high-frequency 
financial data are considered. The performance of 
several aforementioned models is considered and 
compared with the mixed-stable model [14]. Howev-
er, at this point, it needs to be noticed that although 
probabilistic/statistical methods are by far the most 
popular in the analysis of financial time series, there 
are other approaches as well.
The statistical approach is restricted in determining 
the underlying dynamics of the assets’ price evolu-
tion. Some recent studies show the presence of non-
linear dependence and deterministic chaos in the 
real-world financial time series [23, 30]. This leads 

to the increasing interest in an alternative approach 
when high-frequency financial time series are ob-
tained from the chaotic finance systems [16, 21]. In-
terestingly, in a chaotic system, large and apparently 
random price fluctuations are caused by the internal 
dynamics of the system and not by external random 
(unpredictable) shocks.
This paper continues the research on application 
of stable distribution laws for modelling of finan-
cial data [4, 14]. The main subject of this research, 
high-frequency financial series, often exhibit the 
stagnation effect when the stock prices do not change 
over certain periods of time. Such a behaviour is of-
ten observed for smaller companies and in developing 
financial markets. This effect causes a lot of unusual 
difficulties in the analysis and modelling of high-fre-
quency financial time series. Mixed-stable model has 
been proposed to deal with this feature of modelled 
data (see [12]).
The application of the mixed-stable model for the 
analysis of large sets of high-frequency financial data 
and the insufficiency of the classical Gaussian as well 
as standard α-stable models has been demonstrated 
in [14]. This approach is computationally very de-
manding, especially for long financial series. Howev-
er, the application of parallel computing makes it both 
precise and practical, as it has been shown in [3, 4].
The main contribution of this paper is in application 
of mixed-stable modelling approach for the solution 
of portfolio selection problem. It is clear that in a fi-
nancial portfolio management it is essential to deter-
mine relationships between different stock returns. 
According to classical statistics, the relationship 
between returns is described by the covariance and 
correlation, when the data are assumed to have finite 
first and second moments. However, if financial data 
follow the infinite-variance distribution, and empiri-
cal studies often support this assumption [31, 36], the 
classical Markowitz portfolio selection model [22] 
becomes inapplicable.
In this work, the generalized Markowitz portfolio se-
lection model is formulated by using the generalized 
power-correlation measures, proposed by Belovas 
et al. [13]. Optimal financial portfolios of nine Ger-
man DAX index stocks are constructed, using the 
high-frequency data series and estimated parameters 
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of mixed-stable models. Results of the portfolio selec-
tion strategies with and without relationship coeffi-
cients matrix are presented.
The rest of the paper is organized as follows. Section 
2 presents the modelling methodology and financial 
data used in this study, briefly introducing stable and 
mixed-stable models as well as alternative approach-
es with finite-variance distributions. In Section 3, the 
performance of mixed-stable model is compared with 
these alternative approaches, modelling the high fre-
quency financial data under consideration. In Section 
4, the relationship (generalized power-correlation) 
measures are described and obtained for stocks of 
nine companies of German DAX index. Section 5 is 
devoted to the portfolio selection problem. Portfolio 
selection models with and without relationship coef-
ficients matrix are formulated and results of the mod-
elling are presented. Some conclusions are drawn in 
Section 6.

2. Data and models
In this work, the problem of portfolio selection is con-
sidered using the high-frequency trading data of nine 
stocks listed in German DAX index (a blue chip stock 
market index consisting of the 30 major German com-
panies). Intra-daily trading data were used for the pe-
riod from January 2, 2007 to December 28, 2007 with 

Table 1 
Empirical moments of high-frequency series of DAX stocks returns with time step of 16 minutes

all financial transactions of corresponding stocks.  
Before the analysis, raw non-homogeneous intra-daily 
trading data were aggregated into the equally-spaced 
homogeneous intra-daily time series of stock returns 
with different time steps. The aggregation was done 
with the previous-tick interpolation, since the lin-
ear interpolation relies on the future information, 
whereas the previous-tick interpolation is based on 
the information that is already known [6]. Having 
obtained equally-spaced price series, one can calcu-
late the corresponding series of logarithmic returns 
{ }jX :

1= ln lnj j jX P P -- .
As was already discussed, the time series observed in 
the finance often deviate from the Gaussian model. 
This is also true for the high-frequency financial data 
[6] and the German equity market returns [10, 33]. 
Statistical analysis performed in this study has also 
demonstrated that the obtained financial data series 
are asymmetric. The empirical kurtosis shows that 
the density functions of these series are more peaked 
than the Gaussian density functions. In Table 1, the 
results of such analysis are presented for high-fre-
quency time series obtained with the time step of 16 
minutes for stocks of nine DAX companies under con-
sideration.
High-frequency financial data have some unusual 
properties. They can contain a high percent of obser-
vations with no price change, i.e. in a high-frequency 
time series, a large number of returns is equal to zero. 

Nr. Company Mean St. dev. Skewness Kurtosis

1 Deutsche Bank −1.76×10−5 3.08×10−3 -0.141 33.791

2 BASF SE +3.99×10−5 2.61×10−3 0.485 29.870

3 Continental AG −1.15×10−6 3.20×10−3 0.463 15.431

4 MAN SE +6.22×10−5 3.74×10−3 0.629 20.635

5 Merck KGaA +1.38×10−5 3.17×10−3 0.785 19.388

6 Siemens AG +4.60×10−5 3.18×10−3 -0.428 34.202

7 Volkswagen AG +7.69×10−5 2.88×10−3 0.169 16.468

8 Allianz SE −7.32×10−6 2.77×10−3 0.528 29.442

9 Münch. Rück +7.82×10−7 2.30×10−3 0.085 19.470
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The yearly time series that are used in this study con-
tain between two and twenty percent of zeros with the 
time step of 16 minutes. To deal with this stagnation 
effect, the mixed-stable model [12, 14] is employed.
Next, the stable and mixed-stable models are briefly 
presented for the sake of self-containment of this pa-
per. Several alternative non-Gaussian modelling ap-
proaches are also presented to be compared with the 
mixed-stable model in Section 3. These alternative 
non-Gaussian models have finite-variance distribu-
tions. This would allow us to stay within the stan-
dard mean-variance approach [22] solving the main 
problem of this study, i.e. portfolio selection problem. 
Some studies claim that finite-variance models can 
outperform the stable distribution [36].

2.1 Stable and mixed-stable models
As is known, the probability density function of a 
stable distribution cannot be written analytically in 
general, except for a few special cases [29]. Therefore, 
it is usually described by its characteristic function 

( ; , , , )tϕ α β σ µ , which depends on four parameters: 
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where (0, 2]α ∈  is the stability index, [ 1,1]β ∈ - is 
the skewness parameter, > 0σ is the scale parame-
ter, µ∈ is the location or shift parameter. In finan-
cial modelling it is usually observed that > 1α  [28]. 
More on stable distributions and their properties can 
be found in [29].

In this work, the maximum likelihood method [15] is 
used to estimate the parameters of the selected mod-
els. It is known to be the most accurate method for 
the evaluation of parameters of a stable model [25]. 
According to this method, the vector of stable param-
eters = ( , , , )α β µ σΘ  is estimated from the set of re-
turns { }kX  by maximizing the log-likelihood function: 
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Note that precise and fast calculation of ( , )kp X Θ  
values in the optimization target function (2) is a 
non-trivial task. In this work, the improper integral 
of probability density function (3) was evaluated us-
ing the methods developed and approved in previous 
works [3, 4].
As was already discussed, to deal with the stagna-
tion effect in modelled data, i.e. zero returns, the 
mixed-stable model is employed [12]. The probability 
density function of a mixed-stable distribution is de-
fined in the following way: 

( , , ) = (1 ) ( , ) ( ),f x r r p x r xδΘ - Θ + (6)

where ( , )p x Θ  is the probability density function (3) 
of a α -stable distribution (1) and ( )xδ  is the Dirac 
delta function. The new parameter (0,1)r ∈  is the 
index of stagnation. See [14] for more details on the 
mixed-stable model and its properties.
Parameters of the mixed-stable model (6) can be es-
timated by maximizing the following likelihood func-
tion: 

=1

( , ) = (1 ) ( , ),
n k

k n k k
n i j

j

l r C r r p X
-

-Θ - Θ∏ (7)

where 
1 2

{ , , , }i i in k
X X X

-
  is a set of non-zero re-

turns, obtained by excluding k zero returns from the 
initial set 1 2{ , , , }nX X X  of returns, obtained from 
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high-frequency data by the previously described pro-
cedure.
The local optimization of the first factor (1 )n k kr r--  
yields =max

kr
n

. The optimization of the second factor 
in (7) is equivalent to the optimization of the log-like-
lihood function (2) of the stable distribution with 
the set 

1 2
{ , , , }i i in k

X X X
-

  of non-zero returns. As 
in previous works [3, 4], the log-likelihood function 
(2) is optimized using the Nelder-Mead method [24]. 
Even though this method is not the fastest one, it is 
very robust and does not require any derivative (gra-
dient, Hessian) calculation, which is problematic for 
the considered target function.
Next, five alternative finite-variance distributions for 
the modelling of stock returns are briefly presented: 
the mixed diffusion-jump model, the scaled-t distri-
bution, the mixture of normals distribution, the lo-
gistic distribution and the normal-inverse Gaussian 
distribution.

2.2 Mixed diffusion-jump model
A process, which mixes the Brownian motion and a 
compound Poisson process, was introduced by Press 
(1967) [27] to model the stock prices: 

( ) = ( ) ( ) ( ) ( )( 1) ( ).Q
DdP t aP t dt P t dB t P t e dN tσ+ + -

( ) = ( ) ( ) ( ) ( )( 1) ( ).Q
DdP t aP t dt P t dB t P t e dN tσ+ + -

(8)

Here P(t) is the stock price, B(t) is the standard 
Brownian motion, N(t) is the homogeneous Poisson 
process with parameter λ . Q  is the normal variate 
with mean Qµ  and variance 2

Qσ .
Using Ito’s lemma, one can solve the stochas-
tic differential equation (8) for the stock return 

( ) = ln ( ) ln ( 1)X t P t P t- -  to obtain 
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This model has five parameters: λ , Dµ , Dσ , Qµ , Qσ , 
which were evaluated using the maximum likelihood 
method. In this work, the infinite sum in definition 
of density function (10) was truncated up to twelve 
terms, what is considered accurate enough for prac-
tical purposes [31].

2.3 Mixture of normals
Kon (1984) [17] has proposed to use a mixture of nor-
mals to model stock returns. In this work, the mixture 
of two normals: 2

1 1( , )N µ σ  and 2
2 2( , )N µ σ  is consid-

ered with probabilities p and 1 p- , accordingly. The 
probability density function of such mixture is given by 

2 2( ) ( )1 2
2 22 21 2

1 2

1( ) = .
2 2

x x

p pg x e e

µ µ

σ σ

σ π σ π

- -
- --

+ (11)

Note that this model also has five parameters: p, 1µ , 1σ , 
2µ , 2σ , which will be evaluated using the maximum 

likelihood method in Section 3.
It has been reported that the mixture of exactly two 
normals is showing the best results in this family [36]. 
Note that the mixture of two normal distributions al-
lows skewness in the data.

2.4 Scaled-t distribution
This model was originally proposed by Praetz (1972) 
[26] and over the years has yearned significant rec-
ognition in modelling of stock returns [1]. The prob-
ability density function of the scaled-t distribution is 
given by 

1
2 2

2
2

1( ) ( )2( ) = 1 .
( 2)( ) ( 2)

2

xg x

νν
µ

ν ν σπ ν σ

+
-

+
Γ  -

+ - Γ -
(12)

Here Rµ ∈  is the location parameter, > 0σ  is the 
scale parameter, and > 2ν  is the degrees of freedom 
parameter. This distribution is known to have heavier 
tails than the normal distribution. This finite-vari-
ance model has three parameters, which were evalu-
ated by the maximum likelihood method.

2.5 Logistic distribution
Smith (1981) [32] has first proposed to use this distri-
bution to model stock returns. This model was tested 
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in several studies with different data [1]. The proba-
bility density function of the logistic distribution is 
given by 

2( ) = ,

1

x

x

eg x

e

µ
σ

µ
σσ

-

- 
+ 

 

(13)

where Rµ ∈  is the location parameter and > 0σ  is the 
scale parameter. The logistic distribution has similar 
shape to the normal distribution but has heavier tails 
(higher kurtosis). This model has only two parame-
ters, which were evaluated by the maximum likeli-
hood method.

2.6 Normal-inverse Gaussian distribution
Barndorff-Nielsen (1995) [2] has proposed to use the 
normal-inverse Gaussian distribution to model stock 
returns. The probability density function of this dis-
tribution is given by 

( )2 2
1

2 2 ( )2 2

( )
( ) = .

( ) x

K x
g x

x e σ α β β µ

ασ α σ µ

π σ µ - - - -

+ -

+ -
(14)

Here 1K  denotes the modified Bessel function of the 
third kind, Rµ ∈  is the location (shift) parameter, 

> 0σ  is the scale parameter. Parameter α  describes 
the tail heaviness and β  is the asymmetry parameter. 

The family of normal-inverse Gaussian laws is a very 
flexible system that includes heavy-tailed and skewed 
distributions. This model has four parameters, which 
were evaluated by the maximum likelihood method.

3. Results of the modelling
First, the parameters of the mixed-stable (MS) model 
were estimated by the maximum likelihood method 
for the time series of returns of nine DAX stocks, ob-
tained from the high-frequency data with time step 
of 16 minutes (∆t = 16). The obtained parameters are 
presented in Table 2. All these parameters were ob-
tained using twelve digits accuracy of calculation of 
probability density function (3) and eight digits accu-
racy of maximum likelihood optimization (2). 
However, there appears to be a problem when trying 
to test the adequacy of the constructed models. Since 
the mixed-stable model has a discontinuous distri-
bution function, the classic methods, e.g. Kolmogor-
ov-Smirnov or Anderson-Darling tests [15], cannot 
be applied. In this work, all constructed mixed-stable 
models were tested using the Koutrouvelis goodness-
of-fit test [18], which is based on the empirical char-
acteristic function. As can be seen from Table 8, none 
of the nine constructed models was rejected. These 
results provide additional trust in the descriptive 
power of stable laws for modelling financial data, in-
cluding the high-frequency intra-daily data as in the 
considered case.

Table 2 
ML estimates of MS parameters for DAX data series with time step ∆t =16 min

Nr. Company r α β μ σ

1 Deutsche Bank 0.025 1.555 0.028 −1.62×10−6 1.32×10−3

2 BASF SE 0.031 1.623 0.083 +6.06×10−5 1.30×10−3

3 Continental AG 0.027 1.559 -0.018 −2.21×10−5 1.50×10−3

4 MAN SE 0.023 1.555 0.035 +5.07×10−5 1.71×10−3

5 Merck KGaA 0.028 1.588 0.031 +3.97×10−6 1.54×10−3

6 Siemens AG 0.029 1.558 0.068 +7.31×10−5 1.43×10−3

7 Volkswagen AG St 0.027 1.507 0.081 +9.92×10−5 1.29×10−3

8 Allianz SE 0.021 1.536 0.001 −5.81×10−7 1.21×10−3

9 Münch. Rück 0.026 1.603 -0.003 +3.68×10−5 1.12×10−3
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Next, the selected models with finite-variance dis-
tributions have been tested in dealing with the 
considered data. Five parameters of the mixed dif-
fusion-jump (MDJ) model were estimated by the 
maximum likelihood method for the time series of re-
turns of nine DAX stocks, obtained from the high-fre-
quency data with time step ∆t = 16 min. The obtained 
parameters are presented in Table 3. All nine con-
structed mixed diffusion-jump models were tested 
with Kolmogorov-Smirnov goodness-of-fit test. As 
can be seen from Table 8, all nine models were reject-
ed, which suggests that this model in incapable of de-
scribing considered data.  

Table 3 
ML estimates of MDJ parameters for DAX data series with time step ∆t =16 min

Nr. Company λ µD σD µQ σQ

1 Deutsche Bank 0.120 −1.88×10−5 0.002 +1.00×10−5 0.007

2 BASF SE 0.229 −7.88×10−6 0.002 +2.05×10−4 0.004

3 Continental AG 0.197 −4.50×10−6 0.002 +1.00×10−5 0.006

4 MAN SE 0.188 +9.69×10−6 0.002 +1.05×10−4 0.007

5 Merck KGaA 0.228 −3.00×10−5 0.002 +1.90×10−4 0.005

6 Siemens AG 0.192 +7.18×10−6 0.002 +2.05×10−4 0.006

7 Volkswagen AG St 0.293 +2.30×10−7 0.001 +2.60×10−4 0.004

8 Allianz SE 0.203 −2.75×10−6 0.001 +4.99×10−5 0.005

9 Münch. Rück 0.213 +6.95×10−6 0.001 −2.89×10−5 0.004

Five parameters of the mixture of two normals (MN) 
model were estimated by the maximum likelihood 
method for the time series of returns of nine DAX 
stocks, obtained from the high-frequency data with 
time step ∆t = 16 min. The obtained parameters are 
presented in Table 4. All nine constructed mixture 
of two normals models were tested with Kolmogor-
ov-Smirnov goodness-of-fit test. As can be seen from 
Table 8, all nine models were rejected.
Three parameters of the scaled-t model were estimat-
ed by the maximum likelihood method for the time 
series of returns of nine DAX stocks, obtained from 
the high-frequency data with time step ∆t = 16 min. 

Nr. Company p µ1 σ1 µ2 σ2

1 Deutsche Bank 0.087 −2.03×10−5 0.009 −1.71×10−5 0.002

2 BASF SE 0.117 +2.79×10−4 0.006 +9.75×10−6 0.002

3 Continental AG 0.133 +3.04×10−5 0.007 −8.71×10−6 0.002

4 MAN SE 0.125 +4.40×10−4 0.009 +1.00×10−5 0.002

5 Merck KGaA 0.131 +3.10×10−4 0.007 −3.00×10−5 0.002

6 Siemens AG 0.117 +2.96×10−4 0.008 +1.23×10−5 0.002

7 Volkswagen AG St 0.173 +4.00×10−4 0.006 +1.00×10−5 0.002

8 Allianz SE 0.123 −1.10×10−4 0.007 +7.67×10−6 0.002

9 Münch. Rück 0.122 −5.11×10−5 0.005 +7.88×10−6 0.001

Table 4
ML estimates of MN parameters for DAX data series with time step ∆t =16 min
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The obtained parameters are presented in Table 5. 
The adequacy of constructed scaled-t models was 
tested with Kolmogorov-Smirnov goodness-of-fit 
test. As can be seen from Table 8, scaled-t models for 
stock returns of two DAX companies (BASF SE and 
Münchener Rück) were rejected. Scaled-t models for 
seven other DAX stocks were not rejected.
Two parameters of the logistic model were estimated 
by the maximum likelihood method for the time se-
ries of returns of nine DAX stocks, obtained from the 
high-frequency data with time step ∆t = 16 min. The 
obtained parameters are presented in Table 6. The ad-
equacy of the constructed logistic models was tested 

Table 5
ML estimates of scaled-t parameters for DAX data series 
with time step ∆t =16 min

Nr. Company ν µ σ

1 Deutsche Bank 2.467 −2.60×10−5 3.48×10−3

2 BASF SE 2.918 +4.86×10−6 2.72×10−3

3 Continental AG 2.553 −5.58×10−6 3.73×10−3

4 MAN SE 2.546 +1.35×10−5 4.31×10−3

5 Merck KGaA 2.710 −2.29×10−5 3.50×10−3

6 Siemens AG 2.529 +1.00×10−5 3.62×10−3

7 Volkswagen AG St 2.362 +1.93×10−5 3.79×10−3

8 Allianz SE 2.469 −4.02×10−6 3.25×10−3

9 Münch. Rück 2.791 +2.74×10−6 2.47×10−3

Table 6 
ML estimates of logistic parameters for DAX data series 
with time step ∆t =16 min

Nr. Company µ σ

1 Deutsche Bank −1.93×10−5 1.34×10−3

2 BASF SE +1.97×10−5 1.24×10−3

3 Continental AG −8.41×10−6 1.50×10−3

4 MAN SE +2.53×10−5 1.73×10−3

5 Merck KGaA −1.32×10−5 1.50×10−3

6 Siemens AG +2.68×10−5 1.44×10−3

7 Volkswagen AG St +4.20×10−5 1.33×10−3

8 Allianz SE −3.61×10−6 1.25×10−3

9 Münch. Rück +3.26×10−6 1.09×10−3

with Kolmogorov-Smirnov goodness-of-fit test. As can 
be seen from Table 8, all nine models were rejected.
Four parameters of the normal-inverse Gaussian 
(NIG) model were estimated by the maximum like-
lihood method for the time series of returns of nine 
DAX stocks, obtained from the high-frequency data 
with time step ∆t = 16 min. The obtained parameters 
are presented in Table 7. The adequacy of construct-
ed normal-inverse Gaussian models was tested with 
Kolmogorov-Smirnov goodness-of-fit test. As can be 
seen from Table 8, normal-inverse Gaussian models 
for stock returns of five out of nine considered DAX 
companies were rejected.

Table 7  
ML estimates of NIG parameters for DAX data series with time step ∆t =16 min

Nr. Company α β µ σ

1 Deutsche Bank 191.801 +2.78×10−4 −2.85×10−5 1.55×10−3

2 BASF SE 271.709 +1.76×10−2 −2.55×10−6 1.68×10−3

3 Continental AG 190.316 +8.70×10−5 −4.71×10−6 1.83×10−3

4 MAN SE 163.263 +8.06×10−2 +1.28×10−5 2.10×10−3

5 Merck KGaA 205.197 +1.08×10−3 −2.61×10−5 1.92×10−3

6 Siemens AG 191.320 +9.67×10−4 +5.33×10−6 1.72×10−3

7 Volkswagen AG St 194.317 +2.23×10−3 +1.36×10−5 1.53×10−3

8 Allianz SE 214.446 −2.80×10−5 −6.30×10−6 1.47×10−3

9 Münch. Rück 292.801 +1.46×10−5 +1.70×10−7 1.43×10−3
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The results of all tests for adequacy of constructed 
models with finite- and infinite-variance distribu-
tions are presented in Table 8, where ‘-’ stands for 
‘rejected’ and ‘+’ stands for ‘not rejected’. As one can 
see from Table 8, mixed diffusion-jump, mixture of 
two normals, and logistic models performed poorly 
dealing with the high-frequency intra-daily financial 
data considered in this study. Four-parameter nor-
mal-inverse Gaussian distribution described empiri-
cal data worse than three-parameter scaled-t model. 
The latter models lead us to equivocal results. Only 
the mixed-stable distribution has properly described 
returns of all financial series. However, these results 
for finite- and infinite-variance distribution families 
call for more in-depth research with different ade-
quacy tests and especially with diverse financial data 
samples (e.g. pre- and post-crash), since outliers in-
duce heavy tails.

4. Relationship measures
The modern portfolio theory provides a mathemati-
cal foundation for the management of financial port-
folios. It quantifies the effect of diversification, i.e. 
selection of various financial assets into a portfolio. 
Even though this effect is naturally understandable to 
all kinds of investors, it is difficult to model. It is clear 
that the performance of the portfolio selection model 
[22] critically depends on the correct estimation of 
relationship between different stocks.

Table 8 
Results of tests for adequacy of constructed models: ‘-’ stands for ‘rejected’, ‘+’ for ‘not rejected’

Nr. Company MS MDJ MN Scaled-t Log NIG

1 Deutsche Bank + - - + - -

2 BASF SE + - - - - -

3 Continental AG + - - + - +

4 MAN SE + - - + - +

5 Merck KGaA + - - + - -

6 Siemens AG + - - + - -

7 Volkswagen AG St + - - + - +

8 Allianz SE + - - + - +

9 Münch. Rück + - - - - -

In classical statistics, when the distributional law 
has two first moments, i.e. mean and variance, the 
relationship between the two random variables is de-
scribed by the covariance or correlation. However, if 
the financial data follow the stable law, and this study 
supports this assumption, covariance and correlation 
often cannot be calculated. For the considered data, 
the index of stability is 1 < < 2α  (see Table 2) and 
the variance does not exist.
In this work, generalized power-correlation measures 
proposed by Belovas et al. [13] are employed to describe 
the relationship between different DAX stocks. The 
generalized power-correlation measure is defined as a 
function of two stable random variables  X and Y: 

( ) ( )
( ) ( )

( , ) = 1 ,
( ) ( )

( ) ( )

X X Y YE
X Y

X Y
X X Y YE E

X Y

γ

γ γ

µ µ
σ σ

ρ
µ µ

σ σ

• •

• •
•

• •

• •

- -
-

-
- -

+
(15)

where = min( , )X Yγ α α , 
Xα  and Yα  are stability in-

dexes of random variables X and Y, respectively, µ•
and σ• are standardization constants: centering and 
normalizing constants, respectively.
In this work, performance of three different stan-
dardizations [13] is tested for the considered data: 
universal standardization ( )Uρ , absolute deviation 
standardization ( )Aρ  and median deviation standard-
ization ( )Mρ .
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Universal standardization. The centering and nor-
malizing constants ( Uµ  and Uσ ) are set to be equal to 
the location and scale parameters of the mixed-stable 
model, µ  and σ  from Table 2, respectively. Note that 
this standardization can be applied for every possible 
estimate of stability index α  and in case of = 2γ  (i.e. 
Gaussian distribution) Uµ  and Uσ  are the mean and 
the standard deviation, respectively.
First, using the mixed-stable models from Table 2, 
generalized power-correlation measures (15) of se-
lected nine DAX stocks were calculated with the uni-
versal standardization. The obtained results (i.e. ma-
trix ,{ }U ijρ , , = 1, ,9i j  ) are presented in Table 9.  
Absolute deviation standardization. Centering and 
normalizing constants ( Aµ and Aσ  respectively) are 
set to be equal to the mean and absolute deviation of 
corresponding random variables. This standardiza-
tion is applicable in the case 1 < < 2γ , i.e. when the 
mean exists.
Next, using the mixed-stable models from Table 2, 
generalized power-correlation measures (15) of se-
lected nine DAX stocks were calculated with the ab-
solute deviation standardization. The obtained re-
sults (i.e. matrix ,{ }A ijρ , , = 1, ,9i j  ) are presented in 
Table 10.  
Median deviation standardization. Centering con-
stant Mµ  is set to be equal to the median of the corre-
sponding random variable. Normalizing constant Mσ  

is set to be equal to the median of absolute deviation 
of the corresponding random variable. This standard-
ization is also applicable in the case < 1γ , i.e. when 
the mean does not exist.
Finally, using the mixed-stable models from Table 2, 
generalized power-correlation measures (15) of se-
lected nine DAX stocks were calculated with the me-
dian deviation standardization. The obtained results 
(i.e. matrix ,{ }M ijρ , , = 1, ,9i j  ) are presented in Ta-
ble 11.   
As Tables 9-11 indicate, all three standardizations 
are producing very similar results for the considered 
data. The differences between obtained matrices of 
generalized power-correlation measures are small (in 
the third significant digit):   

(16)

Similarly to the Pearson correlation coefficient, the 
generalized power-correlation measure (15) indi-
cates the strength of a linear dependence between the 
two random variables. However, in the general statis-
tical practice, both coefficients are used to indicate 
the departure of two variables from independence.

Table 9 
Generalized power-correlation measures with universal standardization

Nr. Company DB BASF CAG MAN Merck SAG VW ASE MR

1 Deutsche Bank 1.000 0.430 0.396 0.425 0.286 0.444 0.335 0.534 0.512

2 BASF SE 0.430 1.000 0.359 0.384 0.291 0.385 0.309 0.429 0.450

3 Continental AG 0.396 0.359 1.000 0.399 0.278 0.357 0.353 0.399 0.386

4 MAN SE 0.425 0.384 0.399 1.000 0.281 0.415 0.327 0.397 0.385

5 Merck KGaA 0.286 0.291 0.278 0.281 1.000 0.292 0.232 0.281 0.286

6 Siemens AG 0.444 0.385 0.357 0.415 0.292 1.000 0.290 0.431 0.411

7 Volkswagen AG St 0.335 0.309 0.353 0.327 0.232 0.290 1.000 0.329 0.322

8 Allianz SE 0.534 0.429 0.399 0.397 0.281 0.431 0.329 1.000 0.568

9 Münch. Rück 0.512 0.450 0.386 0.385 0.286 0.411 0.322 0.568 1.000
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Table 10 
Generalized power-correlation measures with absolute deviation standardization

Nr. Company DB BASF CAG MAN Merck SAG VW ASE MR

1 Deutsche Bank 1.000 0.432 0.396 0.425 0.287 0.445 0.335 0.534 0.514

2 BASF SE 0.432 1.000 0.359 0.384 0.291 0.386 0.310 0.431 0.450

3 Continental AG 0.396 0.359 1.000 0.399 0.278 0.357 0.353 0.399 0.386

4 MAN SE 0.425 0.384 0.399 1.000 0.282 0.415 0.327 0.397 0.385

5 Merck KGaA 0.287 0.291 0.278 0.282 1.000 0.293 0.233 0.282 0.286

6 Siemens AG 0.445 0.386 0.357 0.415 0.293 1.000 0.289 0.431 0.412

7 Volkswagen AG St 0.335 0.310 0.353 0.327 0.233 0.289 1.000 0.329 0.322

8 Allianz SE 0.534 0.431 0.399 0.397 0.282 0.431 0.329 1.000 0.570

9 Münch. Rück 0.514 0.450 0.386 0.385 0.286 0.412 0.322 0.570 1.000

Table 11  
Generalized power-correlation measures with median deviation standardization

Nr. Company DB BASF CAG MAN Merck SAG VW ASE MR

1 Deutsche Bank 1.000 0.430 0.396 0.425 0.287 0.444 0.335 0.534 0.512

2 BASF SE 0.430 1.000 0.359 0.384 0.291 0.385 0.309 0.430 0.450

3 Continental AG 0.396 0.359 1.000 0.399 0.278 0.357 0.353 0.399 0.385

4 MAN SE 0.425 0.384 0.399 1.000 0.282 0.415 0.327 0.396 0.385

5 Merck KGaA 0.287 0.291 0.278 0.282 1.000 0.292 0.232 0.282 0.286

6 Siemens AG 0.444 0.385 0.357 0.415 0.292 1.000 0.289 0.431 0.412

7 Volkswagen AG St 0.335 0.309 0.353 0.327 0.232 0.289 1.000 0.329 0.322

8 Allianz SE 0.534 0.430 0.399 0.396 0.282 0.431 0.329 1.000 0.568

9 Münch. Rück 0.512 0.450 0.385 0.385 0.286 0.412 0.322 0.568 1.000

To test the significance of the obtained relationship 
measures ijρ , the following bootstrap algorithm is em-
ployed:  
1 Generate a pair of mixed-stable series for the i th  

and  j th stocks using estimated parameters from 
Table 2. 

2 Calculate the k th value of relation measure k
ijρ  be-

tween generated series. 
3 Repeat steps 1 and 2 for k = 1... N  and construct the 

ordered series of estimates ( )k
ijρ . 

4 Check the 95% confidence interval for ijρ  span-
ning from the 2.5 th to the 97.5 th percentile of the 
resampled k

ijρ  values. 

5. Portfolio selection
High-frequency financial data considered in this 
study follow the infinite-variance distribution. 
Hence, the classical Markowitz portfolio selection 
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model [22] is inapplicable. Next, two strategies for 
portfolio selection are formulated and considered.

5.1 The portfolio selection strategy with the 
relationship coefficients matrix
For the considered data, the portfolio selection prob-
lem can be formulated as a generalized Markowitz 
optimization problem [19] replacing the covariance 
matrix by the matrix of generalized power-correla-
tion measures (15): 

( )
=1 =1 =1=1

1 ,min
n n n

i j ij i i
i j iiw

λ w w ρ λ w µ
 

- - 
 

∑∑ ∑
∑

(17)

where 0iw  …  ≥ 0 is the weight of the i th equity in the port-
folio, iµ  is the location parameter (expected return of 
the i th equity), ijρ  

is the relationship measure between 
the i th and  j th  equities (generalized power-correla-
tion), and [ ]0,1λ ∈  is the optimization constant (risk 
tolerance factor). The first constituent of this objec-
tive function characterizes the risk of portfolio (port-
folio return variance), while the second one defines 
the expected return of portfolio.
The optimization problem (17) was solved with 1=

2
λ . 

The optimal portfolios were obtained for all the three 
relationship matrices of generalized power-correlation 
measures with universal, absolute deviation and me-
dian deviation standardizations (see Tables 9-11). The 
obtained optimal weights are presented in Table 12.

Table 12 
Optimal portfolios constructed with and without 
relationship coefficients

Nr. Company ωi
U ωi

A ωi
M ωi

1 Deutsche Bank 0.055 0.054 0.055 0.000

2 BASF SE 0.106 0.106 0.106 0.195

3 Continental AG 0.113 0.113 0.113 0.034

4 MAN SE 0.103 0.103 0.102 0.000

5 Merck KGaA 0.207 0.207 0.207 0.139

6 Siemens AG 0.109 0.110 0.109 0.108

7 Volkswagen AG St 0.177 0.177 0.177 0.218

8 Allianz SE 0.060 0.060 0.060 0.044

9 Münch. Rück 0.070 0.070 0.070 0.260

As can be expected from the small differences in the 
relationship matrices, differences between the opti-
mal weights are also very small. As can be seen from 
Table 12, the choice of standardization is not signif-
icant for the data considered in this study. However, 
this issue is still worth further investigation.

5.2 The portfolio selection strategy without 
the relationship coefficients matrix

The portfolio selection problem can be formulated 
without the relationship matrix. In the case of stable 
distribution, the portfolio selection problem may be 
formulated with the following objective function [28]: 
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where 1,= ( , , )nw w w
  is the vector of weights of 

stocks in the portfolio, jiX  
is the return of the i th stock 

at the j th time moment, , iα  and iµ  are the 
stability index and location parameter of stable model 
of the i th stock, respectively.
To find an optimal portfolio the following optimiza-
tion problem must be solved: 

 
1

=1 =1
=1

1 1( ) = ,
N n

n
i ji i

i ij i
i

F X
N

 

    
 

   
 
  


 

 

 

 

min∑�������������
������). (19)

Adding the constraint 
=1

=
n

i i P
i

w µ µ∑  to (17) and (19), 

one will obtain portfolios with a fixed return Pµ .
In this work, the optimization problem (19) was solved 
using the high-frequency data of nine DAX stocks. 
Obtained optimal weights are presented in the last 
column of Table 12. A noticeably different structure 
of the portfolio was obtained if comparing to the solu-
tions of the problem (17). Interestingly, some stocks 
were actually excluded from the optimal portfolio.

6. Conclusions
Historically, Gaussian models were applied to the 
portfolio optimization problem for a long time. How-
ever, it has been shown many times in various studies 
that the stock price returns often do not follow the 
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Gaussian distribution. Therefore, over the years, a 
number of alternative approaches has been proposed. 
In this paper, the descriptive power of α -stable laws 
was re-examined modelling the high-frequency trad-
ing data of nine German DAX index stocks. The re-
sults of the performed tests have demonstrated the 
indisputable advantage of stable models against the 
five rival models (mixed diffusion-jump, mixture of 
two normals, the scaled-t, logistic and normal-inverse 
Gaussian distributions).
While constructing an optimal portfolio, it is critical-
ly important to determine the possible relationships 
between different stock returns. However, if the fi-
nancial data follow the stable law, classical relation-
ship measures (covariance, correlation) cannot be 
applied because the second moment does not exist. 
In this paper, the generalized Markowitz problem is 
formulated and solved replacing the covariance ma-
trix by the matrix of generalized power-correlation 

measures. Three generalized power-correlation mea-
sures with universal, absolute deviation and median 
deviation standardizations showed very close results.
An alternative formulation of the portfolio selection 
problem without the relationship matrix was also 
formulated and solved. It has produced interesting 
results with an essentially different structure of the 
portfolio. Such results encourage further research on 
application of stable modelling approach for financial 
portfolio management.
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Summary / Santrauka

This paper considers the problem of portfolio selection using high-frequency financial time series. Such time 
series often exhibit the stagnation effect when the assets’ returns are not changing. This effect causes a lot 
of unusual difficulties in the analysis and modelling of such series. In classical statistics, when the distribu-
tional law has two first moments, i.e. mean and variance, the relationship between the two random variables 
is described by the covariance or correlation. However, if the financial data follow the stable law, and empir-
ical studies often support this assumption, covariance and especially correlation often cannot be calculated. 
In this work, alternative relation measures are applied to deal with the portfolio selection problem using the 
mixed-stable modelling. The modelling is applied to the high-frequency financial time series obtained from the 
German DAX index intra-daily data. The performance of the mixed-stable model is compared with alternative 
approaches. The portfolio selection problem is formulated as the optimization problem, with covariances re-
placed by the generalized power-correlations. The results of the portfolio selection strategy without the rela-
tionship coefficients matrix are also presented.

Straipsnyje nagrinėjamas vertybinių popierių portfelio sudarymo uždavinys panaudojant didelio dažnio akcijų 
grąžų laiko eilutes. Tokiose laiko eilutėse dažnai stebimas stagnacijos efektas, kai akcijos kaina nesikeičia ir 
eilutėje gaunamos nulinės grąžos. Šis efektas sukelia neįprastas problemas tokių laiko eilučių analizėje ir mo-
deliavime.
Sudarant vertybinių popierių portfelį, labai svarbu yra tinkamai įvertinti ryšį tarp atskirų akcijų grąžų. Klasi-
kinėje statistinėje analizėje, kai tikimybinis skirtinis turi pirmuosius du momentus, sąryšis tarp dviejų atsitik-
tinių dydžių aprašomas kovariacijos ir koreliacijos koeficiento pagalba. Tačiau, kai duomenis yra pasiskirstę 
pagal stabilųjį dėsnį, o empirinių finansinių duomenų tyrimai dažnai patvirtina tokią prielaidą, dispersija, o kai 
kada ir vidurkis, neegzistuoja.
Darbe yra sudaromi mišrūs-stabilūs modeliai didelio dažnio akcijų grąžų laiko eilutėms, gautoms iš prekybos 
biržoje duomenų devynioms Vokietijos akcijų indekso DAX įmonėms. Sudaryti mišrieji-stabilieji modeliai yra 
palyginami su alternatyviais modeliais, turinčiais baigtinę dispersiją.
Vertybinių popierių portfelio sudarymo uždavinys yra formuluojamas kaip optimizacijos uždavinys kovariaci-
jos matricą pakeičiant matrica su apibendrintais ryšio stiprumo matais. Kartu nagrinėjama kita portfelio suda-
rymo strategija, kai optimizacijos uždavinys sudaromas be akcijų sąryšių matricos.




