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In this paper, a robust adaptive control method for a class of fourth-order systems is proposed. The used struc-
ture for this controller is a combination of decoupled sliding mode approach and feedback linearization tech-
nique. The decoupled sliding mode is applied to guarantee the sliding condition, and by applying the feedback 
linearization method, a linear control law with adaptive coefficients is employed. The final control effort is de-
fined as the weighting summation of the decoupled sliding mode and feedback linearization controllers. Then, 
the controller coefficients are optimized using the multi-objective genetic algorithm. Finally, to show effective-
ness of the proposed approach, it is applied to handle the cart-pole, ball-beam, and ball-wheel systems and the 
results are compared with those reported in the literature.
KEYWORDS: Feedback linearization, Decoupled sliding mode, Robust adaptive control, Multi-objective ge-
netic algorithm.

1. Introduction
Over the past few years, control of nonlinear systems 
with uncertainties as a pivotal problem in the field of 
control engineering has been intensively studied by 

researchers. One of the most popular methods wide-
ly applied to handle uncertainties and external dis-
turbances is sliding mode control (SMC) [13]. This 
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method has major advantages, such as guaranteed 
stability, robustness against parametric variations, 
fast dynamic response, and ease of implementation. 
In the sliding-mode control theory, control dynam-
ics have two sequential modes [13, 15]. The first is the 
reaching mode and the second is the sliding mode. At 
the first stage, a parameter, called sliding surface, is 
defined as a weighting summation of error and at the 
second stage, a control law is designed in order to push 
the states toward the sliding surface. Mahmoodabadi 
et al. proposed an optimal robust sliding mode track-
ing controller for a biped robot [11]. Unlike the SMC 
technique which can be applied to the systems with 
the canonical form only, Decoupled Sliding Mode 
Control (DSMC) is suitable to control systems with 
the non-canonical forms. In DSMC, the fourth order 
systems are divided into two subsystems; then, the 
sliding surfaces are separately designed for each of 
them, and a control law which converts the state vari-
ables to the desired vector is designed. This control 
law can be used for both subsystems since the targets 
of the subsystems are achieved. In [6], the control of 
nonlinear systems based on DSMC with reliance on 
concepts of fuzzy-neural network is presented. Mah-
moodabadi et al. introduce an online optimal control 
based on DSMC in order to decrease dependence of 
initial conditions on electromechanical systems [10]. 
Mahmoodabadi et al. presented an optimal control for 
the inverted pendulum system using DSMC [9]. In [2, 
3], DSMC with time-varying coefficients for sliding 
surfaces is investigated in which the coefficients are 
computed based on fuzzy rules.
Another way to control uncertain systems with 
known dynamic structure, but unknown constant or 
slowly-varying parameters is adaptive control [13]. 
This type of controller usually includes a control law 
whose parameters are adjusted based on a suitable 
mechanism, and the most important part in such a 
controller is tuning mode of the control parameters. 
In [12], an adaptive robust PID control subject to su-
pervisory decoupled sliding mode control is proposed 
for an inverted pendulum and cart system. In [14], an 
adaptive robust hybrid of PID and sliding control is 
designed for a biped robot.
In addition, much attention always have been paid to 
the linearization of nonlinear systems and use of a lin-
ear controller by researchers. The method of Jacobean 
linearization equations has been used for many years, 

but this method is applicable for small range around 
the equilibrium point. Feedback linearization (FBL), 
as one of nonlinear control methods, uses the method 
of changing variables instead of approximating vari-
ables, and is applicable to a wider range in comparison 
with the Jacobean method [7, 13]. In [4], an FBL meth-
od is approximately applied to a ball-beam system, and 
[5] uses the FBL method to control of a ball-wheel sys-
tem. In [1], a combination of FBL and DSMC is imple-
mented to control a cart-pole system.
In the present paper, a control law based on the 
weighting sum of the FBL and DSMC methods is 
proposed, as the main idea of this is to enhance effi-
ciency and robustness against uncertainties. First, 
FBL and DSMC are simultaneously implemented; 
then, the coefficients of FBL controller are set based 
on an approximate gradient descend method so that 
the sliding condition in DSMC method can be met. 
Thereafter, the control parameters are obtained using 
the multi-objective genetic algorithm optimization 
(MOGA) so that the integral of time multiplied by ab-
solute error is minimized. The good advantage of this 
work that plays the key role in the control field is to 
have a series of optimum points as Pareto front.
The paper is organized in five sections. Section 2 re-
views the DSMC and FBL methods. The proposed 
control strategy is presented in Section 3. In Section 
4, numerical simulation of the proposed method is 
given for three popular systems in control laboratory 
setting compared with conventional methods in other 
articles. Finally, conclusions are provided in Section 5.

2. Decoupled Sliding Mode and 
Feedback Linearization Controllers
Consider a fourth order under actuated nonlinear 
system in the non-canonical form as follows:
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[14], an adaptive robust hybrid of PID and sliding control is designed for a biped robot.
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linear controller by researchers. The method of Jacobean linearization equations has been used for many 
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13]. In [4], an FBL method is approximately applied to a ball-beam system, and [5] uses the FBL method 
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The paper is organized in five sections. Section 2 reviews the DSMC and FBL methods. The proposed 
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2.1. Decoupled Sliding Mode Control (DSMC)
The main idea behind decoupled sliding mode con-
trol is to design a control law in a way that several 
subsystems are simultaneously controlled using only 
one input [10]. For the fourth order systems, the state 
variables x1 and x2 are chosen to form the subsystem 
A (primary target) and the state variables x3 and x4 are 
used to form the subsystem B (secondary target), and 
the following sliding surfaces are defined:
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defined:

s1 = c1(𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧) + 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (5)

s2 = c2𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡), (6)

where c1 and c2 are strictly positive design parameters and 𝑧𝑧𝑧𝑧 is a mediator variable of a decaying 
oscillation signal whose value is dependent on s2, and can be expressed as follows:

𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑠𝑠𝑠𝑠2
∅𝑧𝑧𝑧𝑧
� 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , (7)

where, 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 transfers s2 to the proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡):

|𝑧𝑧𝑧𝑧| ≤ 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 0 < 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 1 . (8)

It is ensured that 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) is finite if Equation (8) holds. Moreover, ∅𝑧𝑧𝑧𝑧 is the boundary layer of 𝑠𝑠𝑠𝑠2 and 
transfers 𝑠𝑠𝑠𝑠2 to a proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). Function sat is also defined as below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(∅) = �𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠
(∅)               |∅| ≥ 1

∅                          |∅| ≤ 1 . (9)

Equation (5) means the control objective 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) is changed from 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 0 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0 to 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) =
𝑧𝑧𝑧𝑧 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0. To ensure the stability of the system, the control effort should be defined as follows:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 , (10)

where 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 and 𝐺𝐺𝐺𝐺 are design parameters and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) is the equivalent control input obtained by using ṡ1 =
0 as follows:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 1
𝑔𝑔𝑔𝑔1
�c1��̇�𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)�−𝑓𝑓𝑓𝑓1(𝐱𝐱𝐱𝐱)�. (11)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) keeps the states on the sliding surface and non-continuous statement moves the states toward 
sliding surface.

2.2 Feedback Linearization (FBL)

Suppose the governing equations are according to Equations (1) to (4). Feedback linearization is done in 
two ways, input-states and input-output. For input-state linearization, one must check controllability 
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations:

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12)

(5)

3 
 

2.1. Decoupled Sliding Mode Control (DSMC)

The main idea behind decoupled sliding mode control is to design a control law in a way that several 
subsystems are simultaneously controlled using only one input [10]. For the fourth order systems, the 
state variables 𝑥𝑥𝑥𝑥1 and 𝑥𝑥𝑥𝑥2 are chosen to form the subsystem A (primary target) and the state variables 𝑥𝑥𝑥𝑥3
and 𝑥𝑥𝑥𝑥4 are used to form the subsystem B (secondary target), and the following sliding surfaces are
defined:

s1 = c1(𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧) + 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (5)

s2 = c2𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡), (6)

where c1 and c2 are strictly positive design parameters and 𝑧𝑧𝑧𝑧 is a mediator variable of a decaying 
oscillation signal whose value is dependent on s2, and can be expressed as follows:

𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑠𝑠𝑠𝑠2
∅𝑧𝑧𝑧𝑧
� 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , (7)

where, 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 transfers s2 to the proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡):

|𝑧𝑧𝑧𝑧| ≤ 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 0 < 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 1 . (8)

It is ensured that 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) is finite if Equation (8) holds. Moreover, ∅𝑧𝑧𝑧𝑧 is the boundary layer of 𝑠𝑠𝑠𝑠2 and 
transfers 𝑠𝑠𝑠𝑠2 to a proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). Function sat is also defined as below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(∅) = �𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠
(∅)               |∅| ≥ 1

∅                          |∅| ≤ 1 . (9)

Equation (5) means the control objective 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) is changed from 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 0 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0 to 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) =
𝑧𝑧𝑧𝑧 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0. To ensure the stability of the system, the control effort should be defined as follows:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 , (10)

where 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 and 𝐺𝐺𝐺𝐺 are design parameters and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) is the equivalent control input obtained by using ṡ1 =
0 as follows:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 1
𝑔𝑔𝑔𝑔1
�c1��̇�𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)�−𝑓𝑓𝑓𝑓1(𝐱𝐱𝐱𝐱)�. (11)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) keeps the states on the sliding surface and non-continuous statement moves the states toward 
sliding surface.

2.2 Feedback Linearization (FBL)

Suppose the governing equations are according to Equations (1) to (4). Feedback linearization is done in 
two ways, input-states and input-output. For input-state linearization, one must check controllability 
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations:

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12)

(6)

where c1 and c2 are strictly positive design parameters 
and z is a mediator variable of a decaying oscillation 
signal whose value is dependent on s2, and can be ex-
pressed as follows:
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2.1. Decoupled Sliding Mode Control (DSMC)

The main idea behind decoupled sliding mode control is to design a control law in a way that several 
subsystems are simultaneously controlled using only one input [10]. For the fourth order systems, the 
state variables 𝑥𝑥𝑥𝑥1 and 𝑥𝑥𝑥𝑥2 are chosen to form the subsystem A (primary target) and the state variables 𝑥𝑥𝑥𝑥3
and 𝑥𝑥𝑥𝑥4 are used to form the subsystem B (secondary target), and the following sliding surfaces are
defined:

s1 = c1(𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧) + 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (5)

s2 = c2𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡), (6)

where c1 and c2 are strictly positive design parameters and 𝑧𝑧𝑧𝑧 is a mediator variable of a decaying 
oscillation signal whose value is dependent on s2, and can be expressed as follows:

𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑠𝑠𝑠𝑠2
∅𝑧𝑧𝑧𝑧
� 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , (7)

where, 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 transfers s2 to the proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡):

|𝑧𝑧𝑧𝑧| ≤ 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 0 < 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 1 . (8)

It is ensured that 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) is finite if Equation (8) holds. Moreover, ∅𝑧𝑧𝑧𝑧 is the boundary layer of 𝑠𝑠𝑠𝑠2 and 
transfers 𝑠𝑠𝑠𝑠2 to a proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). Function sat is also defined as below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(∅) = �𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠
(∅)               |∅| ≥ 1

∅                          |∅| ≤ 1 . (9)

Equation (5) means the control objective 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) is changed from 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 0 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0 to 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) =
𝑧𝑧𝑧𝑧 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0. To ensure the stability of the system, the control effort should be defined as follows:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 , (10)

where 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 and 𝐺𝐺𝐺𝐺 are design parameters and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) is the equivalent control input obtained by using ṡ1 =
0 as follows:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 1
𝑔𝑔𝑔𝑔1
�c1��̇�𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)�−𝑓𝑓𝑓𝑓1(𝐱𝐱𝐱𝐱)�. (11)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) keeps the states on the sliding surface and non-continuous statement moves the states toward 
sliding surface.

2.2 Feedback Linearization (FBL)

Suppose the governing equations are according to Equations (1) to (4). Feedback linearization is done in 
two ways, input-states and input-output. For input-state linearization, one must check controllability 
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations:

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12)

(7)

where, zupper transfers s2 to the proper range of x1(t):
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2.1. Decoupled Sliding Mode Control (DSMC)

The main idea behind decoupled sliding mode control is to design a control law in a way that several 
subsystems are simultaneously controlled using only one input [10]. For the fourth order systems, the 
state variables 𝑥𝑥𝑥𝑥1 and 𝑥𝑥𝑥𝑥2 are chosen to form the subsystem A (primary target) and the state variables 𝑥𝑥𝑥𝑥3
and 𝑥𝑥𝑥𝑥4 are used to form the subsystem B (secondary target), and the following sliding surfaces are
defined:

s1 = c1(𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧) + 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (5)

s2 = c2𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡), (6)

where c1 and c2 are strictly positive design parameters and 𝑧𝑧𝑧𝑧 is a mediator variable of a decaying 
oscillation signal whose value is dependent on s2, and can be expressed as follows:

𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑠𝑠𝑠𝑠2
∅𝑧𝑧𝑧𝑧
� 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , (7)

where, 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 transfers s2 to the proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡):

|𝑧𝑧𝑧𝑧| ≤ 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 0 < 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 1 . (8)

It is ensured that 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) is finite if Equation (8) holds. Moreover, ∅𝑧𝑧𝑧𝑧 is the boundary layer of 𝑠𝑠𝑠𝑠2 and 
transfers 𝑠𝑠𝑠𝑠2 to a proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). Function sat is also defined as below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(∅) = �𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠
(∅)               |∅| ≥ 1

∅                          |∅| ≤ 1 . (9)

Equation (5) means the control objective 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) is changed from 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 0 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0 to 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) =
𝑧𝑧𝑧𝑧 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0. To ensure the stability of the system, the control effort should be defined as follows:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 , (10)

where 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 and 𝐺𝐺𝐺𝐺 are design parameters and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) is the equivalent control input obtained by using ṡ1 =
0 as follows:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 1
𝑔𝑔𝑔𝑔1
�c1��̇�𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)�−𝑓𝑓𝑓𝑓1(𝐱𝐱𝐱𝐱)�. (11)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) keeps the states on the sliding surface and non-continuous statement moves the states toward 
sliding surface.

2.2 Feedback Linearization (FBL)

Suppose the governing equations are according to Equations (1) to (4). Feedback linearization is done in 
two ways, input-states and input-output. For input-state linearization, one must check controllability 
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations:

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12)

(8)

It is ensured that x1(t) is finite if Equation (8) holds. 
Moreover, ∅z is the boundary layer of s2 and transfers 
s2 to a proper range of x1(t). Function sat is also de-
fined as below:
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2.1. Decoupled Sliding Mode Control (DSMC)

The main idea behind decoupled sliding mode control is to design a control law in a way that several 
subsystems are simultaneously controlled using only one input [10]. For the fourth order systems, the 
state variables 𝑥𝑥𝑥𝑥1 and 𝑥𝑥𝑥𝑥2 are chosen to form the subsystem A (primary target) and the state variables 𝑥𝑥𝑥𝑥3
and 𝑥𝑥𝑥𝑥4 are used to form the subsystem B (secondary target), and the following sliding surfaces are
defined:

s1 = c1(𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧) + 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (5)

s2 = c2𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡), (6)

where c1 and c2 are strictly positive design parameters and 𝑧𝑧𝑧𝑧 is a mediator variable of a decaying 
oscillation signal whose value is dependent on s2, and can be expressed as follows:

𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑠𝑠𝑠𝑠2
∅𝑧𝑧𝑧𝑧
� 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , (7)

where, 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 transfers s2 to the proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡):

|𝑧𝑧𝑧𝑧| ≤ 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 0 < 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 1 . (8)

It is ensured that 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) is finite if Equation (8) holds. Moreover, ∅𝑧𝑧𝑧𝑧 is the boundary layer of 𝑠𝑠𝑠𝑠2 and 
transfers 𝑠𝑠𝑠𝑠2 to a proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). Function sat is also defined as below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(∅) = �𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠
(∅)               |∅| ≥ 1

∅                          |∅| ≤ 1 . (9)

Equation (5) means the control objective 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) is changed from 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 0 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0 to 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) =
𝑧𝑧𝑧𝑧 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0. To ensure the stability of the system, the control effort should be defined as follows:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 , (10)

where 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 and 𝐺𝐺𝐺𝐺 are design parameters and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) is the equivalent control input obtained by using ṡ1 =
0 as follows:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 1
𝑔𝑔𝑔𝑔1
�c1��̇�𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)�−𝑓𝑓𝑓𝑓1(𝐱𝐱𝐱𝐱)�. (11)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) keeps the states on the sliding surface and non-continuous statement moves the states toward 
sliding surface.

2.2 Feedback Linearization (FBL)

Suppose the governing equations are according to Equations (1) to (4). Feedback linearization is done in 
two ways, input-states and input-output. For input-state linearization, one must check controllability 
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations:

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12)

(9)

Equation (5) means the control objective u(t) is 
changed from x1(t) = 0, x2(t)=0 to  x1(t) = z, x2(t) = 0. To 
ensure the stability of the system, the control effort 
should be defined as follows:
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2.1. Decoupled Sliding Mode Control (DSMC)

The main idea behind decoupled sliding mode control is to design a control law in a way that several 
subsystems are simultaneously controlled using only one input [10]. For the fourth order systems, the 
state variables 𝑥𝑥𝑥𝑥1 and 𝑥𝑥𝑥𝑥2 are chosen to form the subsystem A (primary target) and the state variables 𝑥𝑥𝑥𝑥3
and 𝑥𝑥𝑥𝑥4 are used to form the subsystem B (secondary target), and the following sliding surfaces are
defined:

s1 = c1(𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧) + 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (5)

s2 = c2𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡), (6)

where c1 and c2 are strictly positive design parameters and 𝑧𝑧𝑧𝑧 is a mediator variable of a decaying 
oscillation signal whose value is dependent on s2, and can be expressed as follows:

𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑠𝑠𝑠𝑠2
∅𝑧𝑧𝑧𝑧
� 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , (7)

where, 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 transfers s2 to the proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡):

|𝑧𝑧𝑧𝑧| ≤ 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 0 < 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 1 . (8)

It is ensured that 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) is finite if Equation (8) holds. Moreover, ∅𝑧𝑧𝑧𝑧 is the boundary layer of 𝑠𝑠𝑠𝑠2 and 
transfers 𝑠𝑠𝑠𝑠2 to a proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). Function sat is also defined as below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(∅) = �𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠
(∅)               |∅| ≥ 1

∅                          |∅| ≤ 1 . (9)

Equation (5) means the control objective 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) is changed from 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 0 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0 to 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) =
𝑧𝑧𝑧𝑧 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0. To ensure the stability of the system, the control effort should be defined as follows:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 , (10)

where 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 and 𝐺𝐺𝐺𝐺 are design parameters and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) is the equivalent control input obtained by using ṡ1 =
0 as follows:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 1
𝑔𝑔𝑔𝑔1
�c1��̇�𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)�−𝑓𝑓𝑓𝑓1(𝐱𝐱𝐱𝐱)�. (11)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) keeps the states on the sliding surface and non-continuous statement moves the states toward 
sliding surface.

2.2 Feedback Linearization (FBL)

Suppose the governing equations are according to Equations (1) to (4). Feedback linearization is done in 
two ways, input-states and input-output. For input-state linearization, one must check controllability 
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations:

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12)

(10)

where Ps and G are design parameters and ueq(t) is 
the equivalent control input obtained by using  ṡ1=0 
as follows:
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2.1. Decoupled Sliding Mode Control (DSMC)

The main idea behind decoupled sliding mode control is to design a control law in a way that several 
subsystems are simultaneously controlled using only one input [10]. For the fourth order systems, the 
state variables 𝑥𝑥𝑥𝑥1 and 𝑥𝑥𝑥𝑥2 are chosen to form the subsystem A (primary target) and the state variables 𝑥𝑥𝑥𝑥3
and 𝑥𝑥𝑥𝑥4 are used to form the subsystem B (secondary target), and the following sliding surfaces are
defined:

s1 = c1(𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧) + 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (5)

s2 = c2𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡), (6)

where c1 and c2 are strictly positive design parameters and 𝑧𝑧𝑧𝑧 is a mediator variable of a decaying 
oscillation signal whose value is dependent on s2, and can be expressed as follows:

𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑠𝑠𝑠𝑠2
∅𝑧𝑧𝑧𝑧
� 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , (7)

where, 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 transfers s2 to the proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡):

|𝑧𝑧𝑧𝑧| ≤ 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 0 < 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 1 . (8)

It is ensured that 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) is finite if Equation (8) holds. Moreover, ∅𝑧𝑧𝑧𝑧 is the boundary layer of 𝑠𝑠𝑠𝑠2 and 
transfers 𝑠𝑠𝑠𝑠2 to a proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). Function sat is also defined as below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(∅) = �𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠
(∅)               |∅| ≥ 1

∅                          |∅| ≤ 1 . (9)

Equation (5) means the control objective 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) is changed from 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 0 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0 to 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) =
𝑧𝑧𝑧𝑧 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0. To ensure the stability of the system, the control effort should be defined as follows:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 , (10)

where 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 and 𝐺𝐺𝐺𝐺 are design parameters and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) is the equivalent control input obtained by using ṡ1 =
0 as follows:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 1
𝑔𝑔𝑔𝑔1
�c1��̇�𝑧𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)�−𝑓𝑓𝑓𝑓1(𝐱𝐱𝐱𝐱)�. (11)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) keeps the states on the sliding surface and non-continuous statement moves the states toward 
sliding surface.

2.2 Feedback Linearization (FBL)

Suppose the governing equations are according to Equations (1) to (4). Feedback linearization is done in 
two ways, input-states and input-output. For input-state linearization, one must check controllability 
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations:

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12)

(11)

ueq(t) keeps the states on the sliding surface and 
non-continuous statement moves the states toward 
sliding surface.

2.2. Feedback Linearization (FBL)
Suppose the governing equations are according to 
Equations (1) to (4). Feedback linearization is done 
in two ways, input-states and input-output. For in-
put-state linearization, one must check controllabili-
ty conditions on 

3 
 

- - -
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations: 

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12) 

 and involutivity 
conditions on 

3 
 

- - -
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations: 

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12) 

 [7,13]. If the con-
ditions are satisfied,  

3 
 

- - -
conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations: 

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12) 

 could be derived as the first 
linear dynamics from the following equations:
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2.1. Decoupled Sliding Mode Control (DSMC)

The main idea behind decoupled sliding mode control is to design a control law in a way that several 
subsystems are simultaneously controlled using only one input [10]. For the fourth order systems, the 
state variables 𝑥𝑥𝑥𝑥1 and 𝑥𝑥𝑥𝑥2 are chosen to form the subsystem A (primary target) and the state variables 𝑥𝑥𝑥𝑥3
and 𝑥𝑥𝑥𝑥4 are used to form the subsystem B (secondary target), and the following sliding surfaces are
defined:

s1 = c1(𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧) + 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (5)

s2 = c2𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) + 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡), (6)

where c1 and c2 are strictly positive design parameters and 𝑧𝑧𝑧𝑧 is a mediator variable of a decaying 
oscillation signal whose value is dependent on s2, and can be expressed as follows:

𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑠𝑠𝑠𝑠2
∅𝑧𝑧𝑧𝑧
� 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , (7)

where, 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 transfers s2 to the proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡):

|𝑧𝑧𝑧𝑧| ≤ 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 0 < 𝑧𝑧𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 < 1 . (8)

It is ensured that 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) is finite if Equation (8) holds. Moreover, ∅𝑧𝑧𝑧𝑧 is the boundary layer of 𝑠𝑠𝑠𝑠2 and 
transfers 𝑠𝑠𝑠𝑠2 to a proper range of 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). Function sat is also defined as below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(∅) = �𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠
(∅)               |∅| ≥ 1

∅                          |∅| ≤ 1 . (9)

Equation (5) means the control objective 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) is changed from 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 0 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0 to 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) =
𝑧𝑧𝑧𝑧 , 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 0. To ensure the stability of the system, the control effort should be defined as follows:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 , (10)
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conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔} and involutivity conditions on {𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔, … ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−2𝑔𝑔𝑔𝑔} [7,13]. If the 
conditions are satisfied, 𝜁𝜁𝜁𝜁1 could be derived as the first linear dynamics from the following equations:

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 = 0            𝑖𝑖𝑖𝑖 = 0, … ,𝑠𝑠𝑠𝑠 − 2 (12)(12)
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𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔 ≠ 0, (13)

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 denotes Lie brackets f and g. n is the order of the dynamic equations. Other states can be 
obtained from the following transformation:

𝜻𝜻𝜻𝜻(𝐱𝐱𝐱𝐱) = �𝜁𝜁𝜁𝜁1, 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝜁𝜁𝜁𝜁1, …  , 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1�
𝑇𝑇𝑇𝑇, (14)

where 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝜁𝜁𝜁𝜁1 signifies Lie derivative of 𝜁𝜁𝜁𝜁1 with respect to f. Finally, the input transformation is defined as 
the following.

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼(𝐱𝐱𝐱𝐱) + 𝛽𝛽𝛽𝛽(𝐱𝐱𝐱𝐱)𝑣𝑣𝑣𝑣 , (15)

where

𝛼𝛼𝛼𝛼(𝐱𝐱𝐱𝐱) = −
𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓
𝑛𝑛𝑛𝑛𝜁𝜁𝜁𝜁1

𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓
𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1

(16)

𝛽𝛽𝛽𝛽(𝐱𝐱𝐱𝐱) = 1
𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓

𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1
, (17)

where v is a linear control input as below:
𝑣𝑣𝑣𝑣 = −𝑘𝑘𝑘𝑘1𝜁𝜁𝜁𝜁1 − 𝑘𝑘𝑘𝑘2𝜁𝜁𝜁𝜁2 − 𝑘𝑘𝑘𝑘3𝜁𝜁𝜁𝜁3 − 𝑘𝑘𝑘𝑘4𝜁𝜁𝜁𝜁4 , (18)

where 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 are constant and chosen to take the poles of the closed loop systems in the left 
imaginary axes.

The basic procedure of input-output linearization is to derive the output function 𝑦𝑦𝑦𝑦 repeatedly until the 
input 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) appears, and then 𝑢𝑢𝑢𝑢 is designed to cancel the nonlinearity [7, 13].

3. The Proposed Controller

In this paper, the proposed controller is a linear combination of DSMC and FBL methods according to the 
following equation:
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 × 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 × 𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡), (19) 
where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 are weighting coefficients. Furthermore, the control coefficients 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 of the 
FBL method are adjusted using an approximate gradient descent method according to the following:
k̇i = −γi

∂s1ṡ1
∂k1

≡ −γis1ζi       𝑖𝑖𝑖𝑖 = 1,2,3,4, (20)

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is a positive constant, and ζi is the new state which is derived after the applied FBL method.
The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
SDSAF, and Fig.1 provides its graphical representation. In this figure, the performance evaluation block 
calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
ITAE = ∫ 𝑡𝑡𝑡𝑡|𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, (21)

where 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) depicts the error signal between the desired and output states.

In addition, two constraints for the control effort are considered as follows:
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)| < 𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 (22)
∫𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 < 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢, (23)

(13)

where 
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The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
SDSAF, and Fig.1 provides its graphical representation. In this figure, the performance evaluation block 
calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
ITAE = ∫ 𝑡𝑡𝑡𝑡|𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, (21)

where 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) depicts the error signal between the desired and output states.

In addition, two constraints for the control effort are considered as follows:
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)| < 𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 (22)
∫𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 < 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢, (23)

 denotes Lie brackets f and g. n is the or-
der of the dynamic equations. Other states can be ob-
tained from the following transformation:
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where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 are weighting coefficients. Furthermore, the control coefficients 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 of the 
FBL method are adjusted using an approximate gradient descent method according to the following:
k̇i = −γi

∂s1ṡ1
∂k1

≡ −γis1ζi       𝑖𝑖𝑖𝑖 = 1,2,3,4, (20)

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is a positive constant, and ζi is the new state which is derived after the applied FBL method.
The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
SDSAF, and Fig.1 provides its graphical representation. In this figure, the performance evaluation block 
calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
ITAE = ∫ 𝑡𝑡𝑡𝑡|𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, (21)

where 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) depicts the error signal between the desired and output states.

In addition, two constraints for the control effort are considered as follows:
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)| < 𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 (22)
∫𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 < 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢, (23)
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where 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝜁𝜁𝜁𝜁1 signifies Lie derivative of 𝜁𝜁𝜁𝜁1 with respect to f. Finally, the input transformation is defined as 
the following.
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where 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 are constant and chosen to take the poles of the closed loop systems in the left 
imaginary axes.

The basic procedure of input-output linearization is to derive the output function 𝑦𝑦𝑦𝑦 repeatedly until the 
input 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) appears, and then 𝑢𝑢𝑢𝑢 is designed to cancel the nonlinearity [7, 13].

3. The Proposed Controller

In this paper, the proposed controller is a linear combination of DSMC and FBL methods according to the 
following equation:
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where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 are weighting coefficients. Furthermore, the control coefficients 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 of the 
FBL method are adjusted using an approximate gradient descent method according to the following:
k̇i = −γi
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≡ −γis1ζi       𝑖𝑖𝑖𝑖 = 1,2,3,4, (20)

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is a positive constant, and ζi is the new state which is derived after the applied FBL method.
The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
SDSAF, and Fig.1 provides its graphical representation. In this figure, the performance evaluation block 
calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
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In addition, two constraints for the control effort are considered as follows:
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where 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 are constant and chosen to take the poles of the closed loop systems in the left 
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input 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) appears, and then 𝑢𝑢𝑢𝑢 is designed to cancel the nonlinearity [7, 13].
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The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
SDSAF, and Fig.1 provides its graphical representation. In this figure, the performance evaluation block 
calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
ITAE = ∫ 𝑡𝑡𝑡𝑡|𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, (21)

where 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) depicts the error signal between the desired and output states.

In addition, two constraints for the control effort are considered as follows:
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where 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝜁𝜁𝜁𝜁1 signifies Lie derivative of 𝜁𝜁𝜁𝜁1 with respect to f. Finally, the input transformation is defined as 
the following.
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where 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 are constant and chosen to take the poles of the closed loop systems in the left 
imaginary axes.

The basic procedure of input-output linearization is to derive the output function 𝑦𝑦𝑦𝑦 repeatedly until the 
input 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) appears, and then 𝑢𝑢𝑢𝑢 is designed to cancel the nonlinearity [7, 13].

3. The Proposed Controller

In this paper, the proposed controller is a linear combination of DSMC and FBL methods according to the 
following equation:
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where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 are weighting coefficients. Furthermore, the control coefficients 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 of the 
FBL method are adjusted using an approximate gradient descent method according to the following:
k̇i = −γi

∂s1ṡ1
∂k1

≡ −γis1ζi       𝑖𝑖𝑖𝑖 = 1,2,3,4, (20)

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is a positive constant, and ζi is the new state which is derived after the applied FBL method.
The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
SDSAF, and Fig.1 provides its graphical representation. In this figure, the performance evaluation block 
calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
ITAE = ∫ 𝑡𝑡𝑡𝑡|𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, (21)

where 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) depicts the error signal between the desired and output states.

In addition, two constraints for the control effort are considered as follows:
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)| < 𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 (22)
∫𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 < 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢, (23)
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where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is a positive constant, and ζi is the new state which is derived after the applied FBL method.
The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
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calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
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where 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) depicts the error signal between the desired and output states.

In addition, two constraints for the control effort are considered as follows:
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the poles of the closed loop systems in the left imagi-
nary axes.
The basic procedure of input-output linearization is 
to derive the output function  repeatedly until the in-



Information Technology and Control 2018/2/47298

put  appears, and then  is designed to cancel the non-
linearity [7, 13].

3. The Proposed Controller
In this paper, the proposed controller is a linear com-
bination of DSMC and FBL methods according to the 
following equation:
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where 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 are constant and chosen to take the poles of the closed loop systems in the left 
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The basic procedure of input-output linearization is to derive the output function 𝑦𝑦𝑦𝑦 repeatedly until the 
input 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) appears, and then 𝑢𝑢𝑢𝑢 is designed to cancel the nonlinearity [7, 13].

3. The Proposed Controller

In this paper, the proposed controller is a linear combination of DSMC and FBL methods according to the 
following equation:
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where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 are weighting coefficients. Furthermore, the control coefficients 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 of the 
FBL method are adjusted using an approximate gradient descent method according to the following:
k̇i = −γi

∂s1ṡ1
∂k1

≡ −γis1ζi       𝑖𝑖𝑖𝑖 = 1,2,3,4, (20)

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is a positive constant, and ζi is the new state which is derived after the applied FBL method.
The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
SDSAF, and Fig.1 provides its graphical representation. In this figure, the performance evaluation block 
calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
ITAE = ∫ 𝑡𝑡𝑡𝑡|𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, (21)

where 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) depicts the error signal between the desired and output states.

In addition, two constraints for the control effort are considered as follows:
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(19)

where cs and cf are weighting coefficients. Further-
more, the control coefficients k1, k2, k3, and k4 of the 
FBL method are adjusted using an approximate gra-
dient descent method according to the following:

4 
 

𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔 ≠ 0, (13)

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 denotes Lie brackets f and g. n is the order of the dynamic equations. Other states can be 
obtained from the following transformation:

𝜻𝜻𝜻𝜻(𝐱𝐱𝐱𝐱) = �𝜁𝜁𝜁𝜁1, 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝜁𝜁𝜁𝜁1, …  , 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1�
𝑇𝑇𝑇𝑇, (14)

where 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝜁𝜁𝜁𝜁1 signifies Lie derivative of 𝜁𝜁𝜁𝜁1 with respect to f. Finally, the input transformation is defined as 
the following.

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼(𝐱𝐱𝐱𝐱) + 𝛽𝛽𝛽𝛽(𝐱𝐱𝐱𝐱)𝑣𝑣𝑣𝑣 , (15)

where

𝛼𝛼𝛼𝛼(𝐱𝐱𝐱𝐱) = −
𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓
𝑛𝑛𝑛𝑛𝜁𝜁𝜁𝜁1

𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓
𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1

(16)

𝛽𝛽𝛽𝛽(𝐱𝐱𝐱𝐱) = 1
𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓

𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1
, (17)

where v is a linear control input as below:
𝑣𝑣𝑣𝑣 = −𝑘𝑘𝑘𝑘1𝜁𝜁𝜁𝜁1 − 𝑘𝑘𝑘𝑘2𝜁𝜁𝜁𝜁2 − 𝑘𝑘𝑘𝑘3𝜁𝜁𝜁𝜁3 − 𝑘𝑘𝑘𝑘4𝜁𝜁𝜁𝜁4 , (18)

where 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 are constant and chosen to take the poles of the closed loop systems in the left 
imaginary axes.

The basic procedure of input-output linearization is to derive the output function 𝑦𝑦𝑦𝑦 repeatedly until the 
input 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) appears, and then 𝑢𝑢𝑢𝑢 is designed to cancel the nonlinearity [7, 13].

3. The Proposed Controller

In this paper, the proposed controller is a linear combination of DSMC and FBL methods according to the 
following equation:
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 × 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 × 𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡), (19) 
where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 are weighting coefficients. Furthermore, the control coefficients 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 of the 
FBL method are adjusted using an approximate gradient descent method according to the following:
k̇i = −γi

∂s1ṡ1
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where e(t) depicts the error signal between the de-
sired and output states..
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𝛻𝛻𝛻𝛻𝜁𝜁𝜁𝜁1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝑔𝑔𝑔𝑔 ≠ 0, (13)

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔 denotes Lie brackets f and g. n is the order of the dynamic equations. Other states can be 
obtained from the following transformation:

𝜻𝜻𝜻𝜻(𝐱𝐱𝐱𝐱) = �𝜁𝜁𝜁𝜁1, 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝜁𝜁𝜁𝜁1, …  , 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1�
𝑇𝑇𝑇𝑇, (14)

where 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝜁𝜁𝜁𝜁1 signifies Lie derivative of 𝜁𝜁𝜁𝜁1 with respect to f. Finally, the input transformation is defined as 
the following.

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝛼𝛼𝛼𝛼(𝐱𝐱𝐱𝐱) + 𝛽𝛽𝛽𝛽(𝐱𝐱𝐱𝐱)𝑣𝑣𝑣𝑣 , (15)

where

𝛼𝛼𝛼𝛼(𝐱𝐱𝐱𝐱) = −
𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓
𝑛𝑛𝑛𝑛𝜁𝜁𝜁𝜁1

𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓
𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1

(16)

𝛽𝛽𝛽𝛽(𝐱𝐱𝐱𝐱) = 1
𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓

𝑛𝑛𝑛𝑛−1𝜁𝜁𝜁𝜁1
, (17)

where v is a linear control input as below:
𝑣𝑣𝑣𝑣 = −𝑘𝑘𝑘𝑘1𝜁𝜁𝜁𝜁1 − 𝑘𝑘𝑘𝑘2𝜁𝜁𝜁𝜁2 − 𝑘𝑘𝑘𝑘3𝜁𝜁𝜁𝜁3 − 𝑘𝑘𝑘𝑘4𝜁𝜁𝜁𝜁4 , (18)

where 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 are constant and chosen to take the poles of the closed loop systems in the left 
imaginary axes.

The basic procedure of input-output linearization is to derive the output function 𝑦𝑦𝑦𝑦 repeatedly until the 
input 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) appears, and then 𝑢𝑢𝑢𝑢 is designed to cancel the nonlinearity [7, 13].

3. The Proposed Controller

In this paper, the proposed controller is a linear combination of DSMC and FBL methods according to the 
following equation:
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 × 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 × 𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡), (19) 
where 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 are weighting coefficients. Furthermore, the control coefficients 𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2,𝑘𝑘𝑘𝑘3, and 𝑘𝑘𝑘𝑘4 of the 
FBL method are adjusted using an approximate gradient descent method according to the following:
k̇i = −γi

∂s1ṡ1
∂k1

≡ −γis1ζi       𝑖𝑖𝑖𝑖 = 1,2,3,4, (20)

where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is a positive constant, and ζi is the new state which is derived after the applied FBL method.
The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
SDSAF, and Fig.1 provides its graphical representation. In this figure, the performance evaluation block 
calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
ITAE = ∫ 𝑡𝑡𝑡𝑡|𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, (21)

where 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) depicts the error signal between the desired and output states.

In addition, two constraints for the control effort are considered as follows:
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)| < 𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 (22)
∫𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 < 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢, (23)

(22)
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where 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 is a positive constant, and ζi is the new state which is derived after the applied FBL method.
The proposed strategy, a weighting summation of DSMC and adaptive FBL controller, is abbreviated as
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calculates the value of the objective function defined as the integral of time of the absolute errors (ITAE) 
that must be minimized:
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In addition, two constraints for the control effort are considered as follows:
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where mu and su are, respectively, maximum control 
input and maximum integral of the control input.
Furthermore, the multi-objective genetic algorithm 
(MOGA) optimization block is applied to select the 
control parameters, introduced in the first column 
of Table 2 as one of the most important parts in the 
design procedure of controllers. The specifications 
of the genetic algorithm are as: population size 200, 
tournament selection function, crossover fraction 
0.8, Pareto front population fraction 0.35 and maxi-
mum generation 5000.

Figure 1  
Graphical representation of the SDSAF controller

5 
 

where 𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 and 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢 are ,respectively, maximum control input and maximum integral of the control input.
Furthermore, the multi-objective genetic algorithm (MOGA) optimization block is applied to select the 
control parameters, introduced in the first column of Table 2 as one of the most important parts in the 
design procedure of controllers. The specifications of the genetic algorithm are as: population size 200, 
tournament selection function, crossover fraction 0.8, Pareto front population fraction 0.35 and maximum 
generation 5000.

Fig. 1. Graphical representation of the SDSAF controller

Fig. 2. The physical configuration of the cart-pole system

4. Simulation Results

In this section, the ability of the proposed controller is challenged to control three nonlinear and under-
actuated mechanical systems cart-pole, ball-beam, and ball-wheel system. For this, Pareto fronts and time 
responses by applying several methods are derived and are compared with each other.

4.1. Cart-pole
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Figure 2 
The physical configuration of the cart-pole system

4. Simulation Results
In this section, the ability of the proposed controller is 
challenged to control three nonlinear and under- ac-
tuated mechanical systems cart-pole, ball-beam, and 
ball-wheel system. For this, Pareto fronts and time re-
sponses by applying several methods are derived and 
are compared with each other.

4.1. Cart-pole
Fig. 2 shows the cart-pole system with variables  
[x1(t), x2(t), x3(t), x4(t)]=[θ(t), θ̇ (t), x(t), ẋ (t)]. Dynami-
cal equations are expressed as follows:
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Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

(24)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

(25)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

(26)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
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𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

(27)
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where 𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢 and 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢 are ,respectively, maximum control input and maximum integral of the control input.
Furthermore, the multi-objective genetic algorithm (MOGA) optimization block is applied to select the 
control parameters, introduced in the first column of Table 2 as one of the most important parts in the 
design procedure of controllers. The specifications of the genetic algorithm are as: population size 200, 
tournament selection function, crossover fraction 0.8, Pareto front population fraction 0.35 and maximum 
generation 5000.

Fig. 1. Graphical representation of the SDSAF controller

Fig. 2. The physical configuration of the cart-pole system

4. Simulation Results

In this section, the ability of the proposed controller is challenged to control three nonlinear and under-
actuated mechanical systems cart-pole, ball-beam, and ball-wheel system. For this, Pareto fronts and time 
responses by applying several methods are derived and are compared with each other.

4.1. Cart-pole

Physical specifications of the system as well as the 
initial values are assumed to be: M=1 kg, m=0.05 kg, 
L =0.5 m, |d|≤ 0.08, g = 9.8m

 s2
  , and θ(0)=-60°,  θ̇ (0)=0, 

x(0)=0, ẋ  (0)= 0.
To achieve uDSMC(t) according to Equation (10), the 
sliding surface is calculated by the use of Equations 
(5) and (6):
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Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)
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Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

(28)

For implementation of FBL methods, first, the follow-
ing nonlinear transformation is considered [1]:

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)
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Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

(29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)=𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱)+𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use ap-
proximation linearization by a new state as ζ1=∅(x) = 
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∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

)  (31) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

)  (32) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then 

(33) 

then other states would be 

obtained as follows:

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

(31)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

(32)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
⎢
⎢
⎡

𝑥𝑥𝑥𝑥2
3
4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:

�̇�𝐱𝐱𝐱 =

⎣
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𝑥𝑥𝑥𝑥2
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4𝐹𝐹𝐹𝐹
𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)

0 ⎦
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡

0
3
4𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
0
1 ⎦

⎥
⎥
⎤
�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑓𝑓𝑓𝑓(𝐱𝐱𝐱𝐱) + 𝑔𝑔𝑔𝑔(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).  

(30)

As involutivity condition is not satisfied, we use approximation linearization by a new state as 𝜁𝜁𝜁𝜁1 =
∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹

3
ln (1+sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
) [1]; then other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) − 4𝐹𝐹𝐹𝐹
3

 ( 𝑥𝑥𝑥𝑥2(t) 
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (31)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = −tan𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (𝑔𝑔𝑔𝑔 + 4𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
3 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (32)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� 2
cos3 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) −

1
cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�𝑥𝑥𝑥𝑥2

3(𝑡𝑡𝑡𝑡) − � 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 2𝑔𝑔𝑔𝑔�𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) −

2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡).

By neglecting term 2𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), then

(33)
(33)

By neglecting term 

6 
 

Fig. 2 shows the cart-pole system with variables [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), �̇�𝜃𝜃𝜃(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), �̇�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)].
Dynamical equations are expressed as follows:

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (24)

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 (25)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (26)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−43𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥2

2(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
+

4
3

4
3

(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑑𝑑𝑑𝑑 .

(27)

Physical specifications of the system as well as the initial values are assumed to be: M = 1kg, m =
0.05kg, L = 0.5m, |𝑑𝑑𝑑𝑑| ≤ 0.08, g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, and 𝜃𝜃𝜃𝜃(0) = −60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑥𝑥𝑥𝑥(0) = 0, �̇�𝑥𝑥𝑥(0) = 0.

To achieve 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) according to Equation (10), the sliding surface is calculated by the use of Equations 
(5) and (6):

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) =
𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) �𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)−𝑚𝑚𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)

𝐹𝐹𝐹𝐹�43(𝐷𝐷𝐷𝐷+𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)�
� −

𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺 ) . 

(28)

For implementation of FBL methods, first, the following nonlinear transformation is considered [1]:

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = �(𝑀𝑀𝑀𝑀 + 𝑚𝑚𝑚𝑚)− 3
4
𝑚𝑚𝑚𝑚 cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) − 3

4
𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) . (29)

Equations of motion can be rewritten as follows:
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𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
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After applying the multi-objective optimization algorithm to this problem, the Pareto fronts of the angle 
error of the pole and distance error of the cart demonstrated in Fig. 3 would be achieved. 

Fig. 3. The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC and SDSAF for the cart-pole system

Table 1. Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 3
SDSAF (point A)DSMC (point B)FBL (point C)
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12.0933.2668.85𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝐱𝐱𝐱𝐱)

The value of optimization constraints and objective functions corresponding to the optimum design 
points, A, B, and C in Pareto front and their design variables are shown in Tables1 and 2, respectively. 
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cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �

6
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 1� 𝑥𝑥𝑥𝑥24(𝑡𝑡𝑡𝑡) − �3𝑔𝑔𝑔𝑔sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) � �
4

cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 1� 𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) +
3𝑔𝑔𝑔𝑔
4𝐹𝐹𝐹𝐹

sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (2g − 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (35)

𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = 3𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 6𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

− 9𝑔𝑔𝑔𝑔
4𝐹𝐹𝐹𝐹 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

+ 3𝑔𝑔𝑔𝑔
2𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). (36)

The control input is given by

�́�𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) =
𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓

4∅(𝐱𝐱𝐱𝐱)

𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓
3∅(𝐱𝐱𝐱𝐱) , (37)

where 𝑣𝑣𝑣𝑣 is given by Equation (18), and thus 𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) is given by Equations (37) and (29).

After applying the multi-objective optimization algorithm to this problem, the Pareto fronts of the angle 
error of the pole and distance error of the cart demonstrated in Fig. 3 would be achieved. 

Fig. 3. The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC and SDSAF for the cart-pole system

Table 1. Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 3
SDSAF (point A)DSMC (point B)FBL (point C)

130150150𝐦𝐦𝐦𝐦𝐮𝐮𝐮𝐮
303255𝐬𝐬𝐬𝐬𝐮𝐮𝐮𝐮

0.96351.4363.888𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝛉𝛉𝛉𝛉)
12.0933.2668.85𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝐱𝐱𝐱𝐱)

The value of optimization constraints and objective functions corresponding to the optimum design 
points, A, B, and C in Pareto front and their design variables are shown in Tables1 and 2, respectively. 
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𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)   (34) 

𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �

6
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 1� 𝑥𝑥𝑥𝑥24(𝑡𝑡𝑡𝑡) − �3𝑔𝑔𝑔𝑔sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) � +
3𝑔𝑔𝑔𝑔
4𝐹𝐹𝐹𝐹

sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (2g − 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

)                                                                                                                                                       

 

(35) 

𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)= 3𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)− 6𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

− 9𝑔𝑔𝑔𝑔
4𝐹𝐹𝐹𝐹 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

+ 3𝑔𝑔𝑔𝑔
2𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡).  (36) 

The control input is given by 

�́�𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) =
𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓

4∅(𝐱𝐱𝐱𝐱)

𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓
3∅(𝐱𝐱𝐱𝐱) , 

(37) 

where 𝑣𝑣𝑣𝑣 is given by Equation (18), and thus 𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡)

After applying the multi-objective optimization algorithm to this problem, the Pareto fronts of the angle 
error of the pole and distance error of the cart demonstrated in Fig. 3 would be achieved.  

 

 

Fig. 3. The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC and SDSAF for the cart-pole system 

 

Table 1. Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 3 
SDSAF (point A) DSMC (point B) FBL (point C)  

130 150 150 𝐦𝐦𝐦𝐦𝐮𝐮𝐮𝐮 
30 32 55 𝐬𝐬𝐬𝐬𝐮𝐮𝐮𝐮 

0.9635 1.436 3.888 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝛉𝛉𝛉𝛉) 
12.09 33.26 68.85 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝐱𝐱𝐱𝐱) 

 

The value of optimization constraints and objective functions corresponding to the optimum design 
points, A, B, and C in Pareto front and their design variables are shown in Tables1 and 2, respectively. 
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The control input is given by
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𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (34)

𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �

6
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 1� 𝑥𝑥𝑥𝑥24(𝑡𝑡𝑡𝑡) − �3𝑔𝑔𝑔𝑔sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) � �
4

cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 1� 𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) +
3𝑔𝑔𝑔𝑔
4𝐹𝐹𝐹𝐹

sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (2g − 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (35)

𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = 3𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 6𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

− 9𝑔𝑔𝑔𝑔
4𝐹𝐹𝐹𝐹 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

+ 3𝑔𝑔𝑔𝑔
2𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). (36)

The control input is given by

�́�𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) =
𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓

4∅(𝐱𝐱𝐱𝐱)

𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓
3∅(𝐱𝐱𝐱𝐱) , (37)

where 𝑣𝑣𝑣𝑣 is given by Equation (18), and thus 𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) is given by Equations (37) and (29).

After applying the multi-objective optimization algorithm to this problem, the Pareto fronts of the angle 
error of the pole and distance error of the cart demonstrated in Fig. 3 would be achieved. 

Fig. 3. The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC and SDSAF for the cart-pole system

Table 1. Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 3
SDSAF (point A)DSMC (point B)FBL (point C)

130150150𝐦𝐦𝐦𝐦𝐮𝐮𝐮𝐮
303255𝐬𝐬𝐬𝐬𝐮𝐮𝐮𝐮

0.96351.4363.888𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝛉𝛉𝛉𝛉)
12.0933.2668.85𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝐱𝐱𝐱𝐱)

The value of optimization constraints and objective functions corresponding to the optimum design 
points, A, B, and C in Pareto front and their design variables are shown in Tables1 and 2, respectively. 

0 10 20 30 40 50 60 70 80
0

1

2

3

4

ITAE( x )

IT
A

E(
 θ 

)

FBL
DSMC
SDSAF

C

A
B

(37)

Figure 3 
The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC and SDSAF for the cart-pole system

Table 1
Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 3

SDSAF (point A)DSMC (point B)FBL (point C)

130150150mu

303255su

0.96351.4363.888ITAE (θ)

12.0933.2668.85ITAE (x)

where v is given by Equation (18), and thus uFBL(t) is 
given by Equations (37) and (29).
After applying the multi-objective optimization algo-
rithm to this problem, the Pareto fronts of the angle 
error of the pole and distance error of the cart demon-
strated in Fig. 3 would be achieved. 
The value of optimization constraints and objec-
tive functions corresponding to the optimum design 
points, A, B, and C in Pareto front and their design 
variables are shown in Tables 1 and 2, respectively. 
The results in Fig. 3 and Table 1 show that not only 
the proposed SDSAF satisfies the limitations better 
than the FBL and DSMC methods, but it also has the 
smallest value of the objective functions. 
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𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)�́�𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (34)

𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) = −4𝐹𝐹𝐹𝐹
3
� sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)� �

6
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 1� 𝑥𝑥𝑥𝑥24(𝑡𝑡𝑡𝑡) − �3𝑔𝑔𝑔𝑔sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) � �
4

cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 1� 𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) +
3𝑔𝑔𝑔𝑔
4𝐹𝐹𝐹𝐹

sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) (2g − 3𝑔𝑔𝑔𝑔
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

) (35)

𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = 3𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 6𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)
cos2 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

− 9𝑔𝑔𝑔𝑔
4𝐹𝐹𝐹𝐹 cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

+ 3𝑔𝑔𝑔𝑔
2𝐹𝐹𝐹𝐹

cos𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡). (36)

The control input is given by

�́�𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) =
𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓

4∅(𝐱𝐱𝐱𝐱)

𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓
3∅(𝐱𝐱𝐱𝐱) , (37)

where 𝑣𝑣𝑣𝑣 is given by Equation (18), and thus 𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) is given by Equations (37) and (29).

After applying the multi-objective optimization algorithm to this problem, the Pareto fronts of the angle 
error of the pole and distance error of the cart demonstrated in Fig. 3 would be achieved. 

Fig. 3. The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC and SDSAF for the cart-pole system

Table 1. Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 3
SDSAF (point A)DSMC (point B)FBL (point C)

130150150𝐦𝐦𝐦𝐦𝐮𝐮𝐮𝐮
303255𝐬𝐬𝐬𝐬𝐮𝐮𝐮𝐮

0.96351.4363.888𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝛉𝛉𝛉𝛉)
12.0933.2668.85𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝐱𝐱𝐱𝐱)

The value of optimization constraints and objective functions corresponding to the optimum design 
points, A, B, and C in Pareto front and their design variables are shown in Tables1 and 2, respectively. 
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The time responses of these optimum design points 
and obtained results in Ref. [8] are compared in Figs. 
4 and 5. Furthermore, their control inputs are illus-
trated in Fig. 6. As a result, Figs. 4, 5, and 6 conspicu-
ously show that the SDSAF method exhibits a faster 

Table 2 
Design variables for the optimum points A, B, and C of Fig. 3

SDSAF 
(point A)

DSMC 
(point B)

FBL  
(point C)

6.154.2_c1

0.530.4_c2

10.728.2_∅z

0.94370.999_Zupper

74.21_28.15γ1, k1

110.3_26.34γ2, k2

0.0695_38.9γ3, k3

0.0014_6.15γ4, k4

response than the other methods while its maximum 
overshoots are less than the others. In addition, it is 
clear that the SDSAF control method can hold the 
cart in a shorter distance, which confirms the fact 
that it is quicker than the other methods.
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Fig. 4. Time responses of the pole angle corresponding to the optimum design points A, B, and C shown in the Pareto fronts and 
[8]

Fig. 5. Time responses of the cart position corresponding to the optimum design points A, B,  and C shown in the Pareto fronts 
and [8]
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179.1__k1(0)

224.2__k2(0)

0.0007__k3(0)

0.0425__k4(0)
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4.2. Ball-beam
For the Ball-beam system shown in Fig. 7, the state 
space equations of motion are as follow with [x1(t), 
x2(t), x3(t), x4(t)] = [θ(t), θ̇ (t), r(t), ṙ (t)]]:
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where 𝐵𝐵𝐵𝐵 = 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2

𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏+𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2
that 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅 are ,respectively, inertia moment of the ball, mass of the ball, and 

radius of the ball.

The above equations were obtained with simplifying assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.

Specifications used in the simulation study are B = 0.7143, 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏 = 2 × 10−6, M = 0.05 kg, R = 0.01 m,
g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, |𝑑𝑑𝑑𝑑| ≤ 0.08, and the initial values are 𝜃𝜃𝜃𝜃(0) = 60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑟𝑟𝑟𝑟(0) = 10, �̇�𝑟𝑟𝑟(0) = 0.

By choosing the sliding surfaces 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 according to (5), (6), 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) is obtained as follow:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).

By neglecting term 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡), we obtain

(44)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (45)    

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + (−𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡))𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (46)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 

 that Jb, M, and R are, respectively, 
inertia moment of the ball, mass of the ball, and radius 
of the ball.
The above equations were obtained with simplifying 
assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.
Specifications used in the simulation study are  
B = 0.7143, Jb = 2×10-6, M = 0.05 kg, R = 0.01 m, g=9.8m

 s2
, 

|d| ≤ 0.08, and the initial values are θ(0)=60°, θ̇ (0)=0, 
r(0)=10, ṙ (0)= 0.
By choosing the sliding surfaces s1 and s2 according to 
(5), (6), uDSMC(t) is obtained as follow:

11 
 

where 𝐵𝐵𝐵𝐵 = 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2

𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏+𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2
that 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅 are ,respectively, inertia moment of the ball, mass of the ball, and 

radius of the ball.

The above equations were obtained with simplifying assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.

Specifications used in the simulation study are B = 0.7143, 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏 = 2 × 10−6, M = 0.05 kg, R = 0.01 m,
g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, |𝑑𝑑𝑑𝑑| ≤ 0.08, and the initial values are 𝜃𝜃𝜃𝜃(0) = 60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑟𝑟𝑟𝑟(0) = 10, �̇�𝑟𝑟𝑟(0) = 0.

By choosing the sliding surfaces 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 according to (5), (6), 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) is obtained as follow:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).

By neglecting term 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡), we obtain

(44)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (45)    

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + (−𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡))𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (46)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 

(42)

For implementation of FBL method, the first state is 
chosen as ζ1 = ∅(x)= x3(t) [8]; consequently, the other 
states would be obtained as follows:
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where 𝐵𝐵𝐵𝐵 = 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2

𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏+𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2
that 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅 are ,respectively, inertia moment of the ball, mass of the ball, and 

radius of the ball.

The above equations were obtained with simplifying assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.

Specifications used in the simulation study are B = 0.7143, 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏 = 2 × 10−6, M = 0.05 kg, R = 0.01 m,
g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, |𝑑𝑑𝑑𝑑| ≤ 0.08, and the initial values are 𝜃𝜃𝜃𝜃(0) = 60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑟𝑟𝑟𝑟(0) = 10, �̇�𝑟𝑟𝑟(0) = 0.

By choosing the sliding surfaces 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 according to (5), (6), 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) is obtained as follow:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).

By neglecting term 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡), we obtain

(44)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (45)    

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + (−𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡))𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (46)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 

(43)
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where 𝐵𝐵𝐵𝐵 = 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2

𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏+𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2
that 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅 are ,respectively, inertia moment of the ball, mass of the ball, and 

radius of the ball.

The above equations were obtained with simplifying assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.

Specifications used in the simulation study are B = 0.7143, 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏 = 2 × 10−6, M = 0.05 kg, R = 0.01 m,
g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, |𝑑𝑑𝑑𝑑| ≤ 0.08, and the initial values are 𝜃𝜃𝜃𝜃(0) = 60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑟𝑟𝑟𝑟(0) = 10, �̇�𝑟𝑟𝑟(0) = 0.

By choosing the sliding surfaces 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 according to (5), (6), 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) is obtained as follow:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).

By neglecting term 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡), we obtain

(44)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (45)    

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + (−𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡))𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (46)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 

(44)

By neglecting term 
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that 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅 are ,respectively, inertia moment of the ball, mass of the ball, and 

radius of the ball.

The above equations were obtained with simplifying assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.

Specifications used in the simulation study are B = 0.7143, 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏 = 2 × 10−6, M = 0.05 kg, R = 0.01 m,
g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, |𝑑𝑑𝑑𝑑| ≤ 0.08, and the initial values are 𝜃𝜃𝜃𝜃(0) = 60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑟𝑟𝑟𝑟(0) = 10, �̇�𝑟𝑟𝑟(0) = 0.

By choosing the sliding surfaces 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 according to (5), (6), 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) is obtained as follow:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).
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𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 
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that 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅 are ,respectively, inertia moment of the ball, mass of the ball, and 

radius of the ball.

The above equations were obtained with simplifying assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.

Specifications used in the simulation study are B = 0.7143, 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏 = 2 × 10−6, M = 0.05 kg, R = 0.01 m,
g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, |𝑑𝑑𝑑𝑑| ≤ 0.08, and the initial values are 𝜃𝜃𝜃𝜃(0) = 60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑟𝑟𝑟𝑟(0) = 10, �̇�𝑟𝑟𝑟(0) = 0.

By choosing the sliding surfaces 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 according to (5), (6), 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) is obtained as follow:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).

By neglecting term 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡), we obtain
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−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 
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𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).

By neglecting term 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡), we obtain

(44)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (45)    

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + (−𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡))𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (46)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 

11 
 

where 𝐵𝐵𝐵𝐵 = 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2

𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏+𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2
that 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅 are ,respectively, inertia moment of the ball, mass of the ball, and 

radius of the ball.

The above equations were obtained with simplifying assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.

Specifications used in the simulation study are B = 0.7143, 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏 = 2 × 10−6, M = 0.05 kg, R = 0.01 m,
g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, |𝑑𝑑𝑑𝑑| ≤ 0.08, and the initial values are 𝜃𝜃𝜃𝜃(0) = 60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑟𝑟𝑟𝑟(0) = 10, �̇�𝑟𝑟𝑟(0) = 0.

By choosing the sliding surfaces 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 according to (5), (6), 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) is obtained as follow:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).

By neglecting term 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡), we obtain

(44)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (45)    

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + (−𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡))𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (46)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 

(46)
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where 𝐵𝐵𝐵𝐵 = 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2

𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏+𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀2
that 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅 are ,respectively, inertia moment of the ball, mass of the ball, and 

radius of the ball.

The above equations were obtained with simplifying assumptions such as frictionless rotation center and 
rotation without sliding of the ball on the beam.

Specifications used in the simulation study are B = 0.7143, 𝐽𝐽𝐽𝐽𝑏𝑏𝑏𝑏 = 2 × 10−6, M = 0.05 kg, R = 0.01 m,
g=9.8𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, |𝑑𝑑𝑑𝑑| ≤ 0.08, and the initial values are 𝜃𝜃𝜃𝜃(0) = 60°, �̇�𝜃𝜃𝜃(0) = 0, 𝑟𝑟𝑟𝑟(0) = 10, �̇�𝑟𝑟𝑟(0) = 0.

By choosing the sliding surfaces 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 according to (5), (6), 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) is obtained as follow:

𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺)𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠. (42)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [8]; consequently, the 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (43)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = 𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) − 𝑔𝑔𝑔𝑔 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)).

By neglecting term 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡), we obtain

(44)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = −𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (45)    

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + (−𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔 cos𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡))𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (46)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡) 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)
−𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) . (47)

By applying the multi-objective optimization to three methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the value of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and C, delineated in Pareto fronts of Fig. 8. 

The time responses of these optimum design points and obtained results in [8] are compared in Figs. 9 
and 10 and their control inputs are illustrated in Fig. 11. Considerably, the SDSAF method generates 
smaller settling time, and its control input is smoother than the two other methods. 

(47)

By applying the multi-objective optimization to three 
methods FBL, DSMC, and SDSAF, the Pareto front 
is gained like that illustrated in Fig.8. Moreover, the 
constraint values and objective functions, which are 
designated in Pareto fronts, are delineated in Table 3. 

Figure 8
The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC, and SDSAF for the ball-beam system

Table 3 
Values of optimization constraints and objective functions 
at the optimum points A, B, and C of Fig. 8

SDSAF  
(point A)

DSMC  
(point B)

FBL  
(point C)

555mu

232su

2.622.752.67ITAE (θ)

21.0525.6727.7ITAE (r)
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Fig. 8. The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC, and SDSAF for the ball-beam system

Table 3. Values of optimization constraints and objective functions at the optimum points A, B, and C of Fig. 8

SDSAF (point A)DSMC (point B)FBL (point C)

555𝐦𝐦𝐦𝐦𝐮𝐮𝐮𝐮
232𝐬𝐬𝐬𝐬𝐮𝐮𝐮𝐮

2.622.752.67𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝛉𝛉𝛉𝛉)
21.0525.6727.7𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (𝐮𝐮𝐮𝐮)

Table 4. Design variables for the optimum points A, B, and C of Fig. 8
SDSAF (point A)DSMC (point B)FBL (point C)

3.292.07_𝐜𝐜𝐜𝐜𝟏𝟏𝟏𝟏
0.630.54_𝐜𝐜𝐜𝐜𝟐𝟐𝟐𝟐
8.555.4_∅𝐳𝐳𝐳𝐳

0.9770.999_𝐙𝐙𝐙𝐙𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮
0.034_10.9𝛄𝛄𝛄𝛄𝟏𝟏𝟏𝟏,𝐤𝐤𝐤𝐤𝟏𝟏𝟏𝟏
0.415_22𝛄𝛄𝛄𝛄𝟐𝟐𝟐𝟐,𝐤𝐤𝐤𝐤𝟐𝟐𝟐𝟐
0.088_20.1𝛄𝛄𝛄𝛄𝟑𝟑𝟑𝟑,𝐤𝐤𝐤𝐤𝟑𝟑𝟑𝟑
0.079_5.3𝛄𝛄𝛄𝛄𝟒𝟒𝟒𝟒,𝐤𝐤𝐤𝐤𝟒𝟒𝟒𝟒
0.911.98_𝑷𝑷𝑷𝑷𝐬𝐬𝐬𝐬
0.774.39_𝑮𝑮𝑮𝑮
0.73__𝐂𝐂𝐂𝐂𝐬𝐬𝐬𝐬
0.9__𝐂𝐂𝐂𝐂𝐟𝐟𝐟𝐟
0.52__𝐤𝐤𝐤𝐤𝟏𝟏𝟏𝟏(𝟎𝟎𝟎𝟎)
0.31__𝐤𝐤𝐤𝐤𝟐𝟐𝟐𝟐(𝟎𝟎𝟎𝟎)
0.7__𝐤𝐤𝐤𝐤𝟑𝟑𝟑𝟑(𝟎𝟎𝟎𝟎)
0.25__𝐤𝐤𝐤𝐤𝟒𝟒𝟒𝟒(𝟎𝟎𝟎𝟎)
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Clearly, the Pareto front achieved by the SDSAF 
method is better than other methods, though the val-
ue of their constraint has not distinction to the others. 
Table 4 represents design variables of points A, B, and 
C delineated in Pareto fronts of Fig. 8. 

Table 4 
Design variables for the optimum points A, B, and C of Fig. 8

SDSAF  
(point A)

DSMC 
(point B)

FBL  
(point C)

3.292.07_c1

0.630.54_c2

8.555.4_∅z

0.9770.999_Zupper

0.034_10.9γ1, k1

0.415_22γ2, k2

0.088_20.1γ3, k3

0.079_5.3γ4, k4

The time responses of these optimum design points 
and obtained results in [8] are compared in Figs. 9 and 
10 and their control inputs are illustrated in Fig. 11. 
Considerably, the SDSAF method generates smaller 
settling time, and its control input is smoother than 
the two other methods. 

Figure 9 
Time responses of the beam angle corresponding to the optimum design points A, B, and C shown in the Pareto fronts and [8]

SDSAF  
(point A)

DSMC 
(point B)

FBL  
(point C)

0.911.98_Ps

0.774.39_G

0.73__Cs

0.9__Cf

0.52__k1(0)

0.31__k2(0)

0.7__k3(0)

0.25__k4(0)
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Fig. 9. Time responses of the beam angle corresponding to the optimum design points A, B, and C shown in the Pareto fronts and 
[8]

Fig. 10. Time responses of the ball position corresponding to the optimum design points A, B, and C shown in the Pareto fronts 
and [8]
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Figure 10 
Time responses of the ball position corresponding to the optimum design points A, B, and C shown in the Pareto fronts and [8]

Figure 11 
Control input of the ball-beam system corresponding to the optimum design points A, B, and C shown in the Pareto fronts and [8]
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Fig. 9. Time responses of the beam angle corresponding to the optimum design points A, B, and C shown in the Pareto fronts and 
[8]

Fig. 10. Time responses of the ball position corresponding to the optimum design points A, B, and C shown in the Pareto fronts 
and [8]
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Fig. 11. Control input of the ball-beam system corresponding to the optimum design points A, B, and C shown in the Pareto 
fronts and [8]

4.3. Ball-wheel

The dynamic behavior of the ball-wheel system shown in Fig. 12 can be expressed by the following 
nonlinear equations:

Fig.12. The physical configuration of the ball-wheel system

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (48)
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4.3. Ball-wheel
The dynamic behavior of the ball-wheel system 
shown in Fig. 12 can be expressed by the following 
nonlinear equations:
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Fig. 11. Control input of the ball-beam system corresponding to the optimum design points A, B, and C shown in the Pareto 
fronts and [8]

4.3. Ball-wheel

The dynamic behavior of the ball-wheel system shown in Fig. 12 can be expressed by the following 
nonlinear equations:

Fig.12. The physical configuration of the ball-wheel system

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (48)
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(49)
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(50)
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(51)
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It is noted that ar = cp. Initial values are  
θ1(0) =-0.08, θ̇ 

1(0) = 0, θ2(0) = 0.08, θ̇2(0)=0. Iw, rw, mb, rb, 

Figure 12 
The physical configuration of the ball-wheel system
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49) 

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50) 

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51) 

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and: 

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑏𝑏𝑏𝑏 =
8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏) 𝑞𝑞𝑞𝑞 =
2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)    𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�

 . 

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0. 
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

 . By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode 
controller is defined as Equation (52): 
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52) 

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows: 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)   (53) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (54) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (55) 

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                             (56) 

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

 . (57)    

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too. 
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49) 

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50) 

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51) 

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and: 

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑏𝑏𝑏𝑏 =
8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏) 𝑞𝑞𝑞𝑞 =
2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)    𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�

 . 

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0. 
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

 . By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode 
controller is defined as Equation (52): 
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52) 

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows: 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)   (53) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (54) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (55) 

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                             (56) 

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

 . (57)    

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too. 
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49) 

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50) 

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51) 

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and: 

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑏𝑏𝑏𝑏 =
8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏) 𝑞𝑞𝑞𝑞 =
2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)    𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�

 . 

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0. 
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

 . By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode 
controller is defined as Equation (52): 
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52) 

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows: 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)   (53) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (54) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (55) 

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                             (56) 

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

 . (57)    

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too. 
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49) 

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50) 

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51) 

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and: 

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑏𝑏𝑏𝑏 =
8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏) 𝑞𝑞𝑞𝑞 =
2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)    𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�

 . 

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0. 
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

 . By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode 
controller is defined as Equation (52): 
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52) 

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows: 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)   (53) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (54) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (55) 

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                             (56) 

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

 . (57)    

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too. 
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49) 

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50) 

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51) 

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and: 

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑏𝑏𝑏𝑏 =
8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏) 𝑞𝑞𝑞𝑞 =
2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)    𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�

 . 

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0. 
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

 . By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode 
controller is defined as Equation (52): 
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52) 

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows: 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)   (53) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (54) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (55) 

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                             (56) 

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

 . (57)    

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too. 
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49) 

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50) 

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51) 

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and: 

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑏𝑏𝑏𝑏 =
8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏) 𝑞𝑞𝑞𝑞 =
2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)    𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�

 . 

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0. 
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

 . By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode 
controller is defined as Equation (52): 
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52) 

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows: 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)   (53) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (54) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (55) 

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                             (56) 

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

 . (57)    

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too. 
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49) 

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50) 

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51) 

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and: 

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑏𝑏𝑏𝑏 =
8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏) 𝑞𝑞𝑞𝑞 =
2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)    𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�

 . 

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0. 
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

 . By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode 
controller is defined as Equation (52): 
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52) 

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows: 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)   (53) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (54) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (55) 

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                             (56) 

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

 . (57)    

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too. 
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49) 

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50) 

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51) 

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and: 

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑏𝑏𝑏𝑏 =
8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
 

 

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏) 𝑞𝑞𝑞𝑞 =
2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)    𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�

 . 

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0. 
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

 . By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode 
controller is defined as Equation (52): 
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52) 

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows: 

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)   (53) 

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (54) 

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡)  (55) 

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                             (56) 

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

 . (57)    

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too. 
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Fig. 11. Control input of the ball-beam system corresponding to the optimum design points A, B, and C shown in the Pareto 
fronts and [8]

4.3. Ball-wheel

The dynamic behavior of the ball-wheel system shown in Fig. 12 can be expressed by the following 
nonlinear equations:

Fig.12. The physical configuration of the ball-wheel system

�̇�𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) (48)
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Time(sec)

SDSAF
DSMC
FBL
Ref.[4] [8] Ra,and km are inertia moment of the wheel, radius of 

the wheel, mass of the ball, radius of the ball, motor 
armature resistance, and motor constant, respec-
tively. The used specifications are as follows: Iw=1.71× 
10-3) kg.m2, rw = 0.075 m, mb = 0.042 kg, rb = 0.011 m, Ra = 
0.6558 Ω, km =0.0662 Nm/A . By selecting the sliding 
surface based on Equations (5) and (6), the decoupled 
sliding mode controller is defined as Equation (52):
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(52)

For implementation of FBL method, the first state is 
chosen as ζ1=∅(x)=rx1(t)–cx3(t) [5], then other states 
would be obtained as follows:
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(53)
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(54)
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(55)
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

15 
 

�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(56)

16 
 

Fig.13. The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC, and SDSAF for the ball-wheel 
system

Fig. 14. Time responses of the ball angle corresponding to the optimum design points A, B, and C shown in the Pareto front and 
[5]

Table 5. Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 13
SDSAF (point A)DSMC (point B)FBL (point C)

343𝐦𝐦𝐦𝐦𝐮𝐮𝐮𝐮

121𝐬𝐬𝐬𝐬𝐮𝐮𝐮𝐮
4.6586.99916.4𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈(𝛉𝛉𝛉𝛉𝟏𝟏𝟏𝟏) × 𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎−𝟑𝟑𝟑𝟑

29.3858.22139.5𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈(𝛉𝛉𝛉𝛉𝟐𝟐𝟐𝟐) × 𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎−𝟑𝟑𝟑𝟑

0.006 0.008 0.01 0.012 0.014 0.016
0.05

0.1

0.15

0.2

0.25

ITAE(θ1)

IT
A

E(
θ 2 )

FBL
DSMC
SDSAF

C
B

A

0 1 2 3 4 5
-0.09

-0.04

0

0.04

0.09

θ 1 (r
ad

)

Time(sec)

SDSAF
DSMC
FBL
Ref.[14] 

[5] 

Figure 13 
The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC, and SDSAF for the ball-wheel system
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.
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�̇�𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) (49)

�̇�𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) = 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (50)

�̇�𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) = 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑞𝑞𝑞𝑞 sin𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡), (51)

where [𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡), 𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)] = [𝜃𝜃𝜃𝜃1(𝑡𝑡𝑡𝑡), θ̇1(𝑡𝑡𝑡𝑡), 𝜃𝜃𝜃𝜃2(𝑡𝑡𝑡𝑡), θ̇2(𝑡𝑡𝑡𝑡)] and:

𝑠𝑠𝑠𝑠 = −
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)
𝑏𝑏𝑏𝑏 =

8(5𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑐𝑐𝑐𝑐 =
2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)(𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏+𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤)

𝑝𝑝𝑝𝑝 =
−7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚2

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑞𝑞𝑞𝑞 =

2𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

(7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 + 2𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟 = 7𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎�7𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤+2𝑢𝑢𝑢𝑢𝑤𝑤𝑤𝑤2𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏�
.

It is noted that 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝. Initial values are 𝜃𝜃𝜃𝜃1(0) = −0.08, θ̇1(0) = 0, 𝜃𝜃𝜃𝜃2(0) = 0.08, θ̇2(0) = 0.
𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 ,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 , 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 ,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎, and 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 are inertia moment of the wheel, radius of the wheel, mass of the ball, radius of 
the ball, motor armature resistance, and motor constant, respectively. The used specifications are as 
follows: 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤 = 1.71 × 10−3 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚2, 𝑟𝑟𝑟𝑟𝑤𝑤𝑤𝑤 = 0.075 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏 = 0.042 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑏𝑏𝑏𝑏 = 0.011 𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 0.6558 𝛺𝛺𝛺𝛺,𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 =

0.0662𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴

. By selecting the sliding surface based on Equations (5) and (6), the decoupled sliding mode
controller is defined as Equation (52):
𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 1

𝑐𝑐𝑐𝑐
�𝑐𝑐𝑐𝑐1��̇�𝑧𝑧𝑧 − 𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)� − (𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))� − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡(𝑠𝑠𝑠𝑠1𝐺𝐺𝐺𝐺). (52)

For implementation of FBL method, the first state is chosen as 𝜁𝜁𝜁𝜁1 = ∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥3(𝑡𝑡𝑡𝑡) [5], then 
other states would be obtained as follows:

𝜁𝜁𝜁𝜁1̇ = 𝜁𝜁𝜁𝜁2 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓∅(𝐱𝐱𝐱𝐱) = 𝑟𝑟𝑟𝑟𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) − 𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) (53)

𝜁𝜁𝜁𝜁2̇ = 𝜁𝜁𝜁𝜁3 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓2∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (54)

𝜁𝜁𝜁𝜁3̇ = 𝜁𝜁𝜁𝜁4 = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱) = (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) (55)

𝜁𝜁𝜁𝜁4̇ = 𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓4∅(𝐱𝐱𝐱𝐱) + 𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓3∅(𝐱𝐱𝐱𝐱)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = − (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 (𝑡𝑡𝑡𝑡) + (𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞)(𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡) + 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡) +
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)                                                                                                                      (56)

𝑢𝑢𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣−(− (𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)𝑥𝑥𝑥𝑥22(𝑡𝑡𝑡𝑡)𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)+(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒)(𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥4(𝑡𝑡𝑡𝑡)+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡))
𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1(𝑡𝑡𝑡𝑡)

. (57)   

The Pareto front, which is achieved by applying the multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown in Tables 5 and 6, respectively. These results 
considerably show that the SDSAF method generates less value of the objective functions. The time 
responses of these optimum design points and obtained results in [5] are compared in Figs. 14 and 15. 
Furthermore, their control inputs are illustrated in Fig. 16. As a result, Figs. 4, 5, and 6 conspicuously 
show that the SDSAF method exhibits a faster response than the other methods, and the maximum 
overshoot is lower, too.

(57)

The Pareto front, which is achieved by applying the 
multi-objective optimization, is shown in Fig.13, and 
specifications of designated optimum points are shown 

Figure 14 
Time responses of the ball angle corresponding to the optimum design points A, B, and C shown in the Pareto front and [5]

Table 5 
Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 13

in Tables 5 and 6, respectively. These results consider-
ably show that the SDSAF method generates less value 
of the objective functions. The time responses of these 
optimum design points and obtained results in [5] are 
compared in Figs. 14 and 15. Furthermore, their con-
trol inputs are illustrated in Fig. 16. As a result, Figs. 4, 
5, and 6 conspicuously show that the SDSAF method 
exhibits a faster response than the other methods, and 
the maximum overshoot is lower, too.
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Fig.13. The obtained Pareto fronts by using MATLAB’s Toolbox MOGA for FBL, DSMC, and SDSAF for the ball-wheel 
system

Fig. 14. Time responses of the ball angle corresponding to the optimum design points A, B, and C shown in the Pareto front and 
[5]

Table 5. Values of optimization constraints and objective functions for the optimum points A, B, and C of Fig. 13
SDSAF (point A)DSMC (point B)FBL (point C)

343𝐦𝐦𝐦𝐦𝐮𝐮𝐮𝐮

121𝐬𝐬𝐬𝐬𝐮𝐮𝐮𝐮
4.6586.99916.4𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈(𝛉𝛉𝛉𝛉𝟏𝟏𝟏𝟏) × 𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎−𝟑𝟑𝟑𝟑

29.3858.22139.5𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈(𝛉𝛉𝛉𝛉𝟐𝟐𝟐𝟐) × 𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎−𝟑𝟑𝟑𝟑
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[5] 

SDSAF (point A)DSMC (point B)FBL (point C)

343mu

121su

4.6586.99916.4ITAE(θ1) × 10-3

29.3858.22139.5ITAE(θ2) × 10-3

Table 6 
Design variables for the optimum points A, B, and C of Fig. 13

SDSAF (point A)DSMC (point B)FBL (point C)

83.96_c1

3.733.23_c2

21.696.94_∅z

0.530.4_Zupper

0.74_2148γ1, k1

0.888_915γ2, k2

0.116_220γ3, k3

0.033_8.79γ4, k4

SDSAF (point A)DSMC (point B)FBL (point C)

2.922.32_Ps

0.474.48_G
0.42__Cs

1.7__Cf

0.78__k1(0)
50.65__k2(0)
0.82__k3(0)

0.696__k4(0)
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5. Conclusions
A hybrid optimal controller based on a combination of 
robust decoupled sliding mode and adaptive feedback 
linearization, briefly, called SDSAF, was proposed for 
a class of fourth order systems. First, the decupled 
sliding mode control and feedback linearization was 
implemented simultaneously. Then, summation of 
the weighting control law was used as a new control 
effort. Finally, the effective parameters were opti-
mized by the multi-objective genetic algorithm. The 

Figure 15 
Time responses of the wheel angle corresponding to the optimum design points A, B, and C shown in the Pareto front and [5]

Figure 16 
Control input of the ball-wheel system corresponding to the optimum design points A, B, and C shown in the Pareto fronts and [5] 
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Table 6. Design variables for the optimum points A, B, and C of Fig. 13
SDSAF (point A)DSMC (point B)FBL (point C)

83.96_𝐜𝐜𝐜𝐜𝟏𝟏𝟏𝟏
3.733.23_𝐜𝐜𝐜𝐜𝟐𝟐𝟐𝟐

21.696.94_∅𝐳𝐳𝐳𝐳
0.530.4_𝐙𝐙𝐙𝐙𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮
0.74_2148𝛄𝛄𝛄𝛄𝟏𝟏𝟏𝟏,𝐤𝐤𝐤𝐤𝟏𝟏𝟏𝟏

0.888_915𝛄𝛄𝛄𝛄𝟐𝟐𝟐𝟐,𝐤𝐤𝐤𝐤𝟐𝟐𝟐𝟐
0.116_220𝛄𝛄𝛄𝛄𝟑𝟑𝟑𝟑,𝐤𝐤𝐤𝐤𝟑𝟑𝟑𝟑
0.033_8.79𝛄𝛄𝛄𝛄𝟒𝟒𝟒𝟒,𝐤𝐤𝐤𝐤𝟒𝟒𝟒𝟒
2.922.32_𝑷𝑷𝑷𝑷𝐬𝐬𝐬𝐬
0.474.48_𝑮𝑮𝑮𝑮
0.42__𝐂𝐂𝐂𝐂𝐬𝐬𝐬𝐬
1.7__𝐂𝐂𝐂𝐂𝐟𝐟𝐟𝐟

0.78__𝐤𝐤𝐤𝐤𝟏𝟏𝟏𝟏(𝟎𝟎𝟎𝟎)
50.65__𝐤𝐤𝐤𝐤𝟐𝟐𝟐𝟐(𝟎𝟎𝟎𝟎)
0.82__𝐤𝐤𝐤𝐤𝟑𝟑𝟑𝟑(𝟎𝟎𝟎𝟎)

0.696__𝐤𝐤𝐤𝐤𝟒𝟒𝟒𝟒(𝟎𝟎𝟎𝟎)

Fig. 15. Time responses of the wheel angle corresponding to the optimum design points A, B, and C shown in the Pareto front 
and [5]
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Fig. 16. Control input of the ball-wheel system corresponding to the optimum design points A, B, and C shown in the Pareto 
fronts and [5]

5. Conclusions

A hybrid optimal controller based on a combination of robust decoupled sliding mode and adaptive 
feedback linearization, briefly, called SDSAF, was proposed for a class of fourth order systems. First, the 
decupled sliding mode control and feedback linearization was implemented simultaneously. Then, 
summation of the weighting control law was used as a new control effort. Finally, the effective 
parameters were optimized by the multi-objective genetic algorithm. The simulation results for the cart-
pole, ball-beam and ball-wheel systems were provided to show the robustness and effectiveness of the 
SDSAF method. Simulation results demonstrated that the dynamic responses obtained from the proposed 
controller are much faster than those obtained from the FBL, DSMC and other approaches considered in 
literature. In addition, the SDSAF method exhibited lower ITAE values compared with the DSMC and 
FBL methods.
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