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Due to the characteristics of large lag and high nonlinearity, the optimizing operation of wastewater treatment 
process (WWTP) is difficult to be designed. To solve this problem, a control optimization system based on hybrid 
intelligent technology is proposed in this paper. This system includes a feed-forward compensator, a feedback 
supervision module, a pre-setting module and a soft-sensor module. To obtain the minimum energy consump-
tion (EC) under effluent standards, the set-points of the dissolved oxygen concentration and nitrate nitrogen 
concentration are adjusted through feed-forward compensation, feedback correction and online estimation. 
Finally, the proposed approach is applied on the WWTP simulation model. Compared to the proportional-inte-
gral- derivative (PID) and data-driven adaptive optimal controller (DDAOC) methods, simulation results of the 
method proposed in this paper show better performance.
KEYWORDS: nonlinear, wastewater treatment, hybrid intelligent, optimization system.

1. Introduction
Because of the widespread water shortages in the 
world, the reuse of wastewater treatment is a com-
mon problem. Due to the characteristics of large lag 
and high nonlinearity, it is very difficult to control 

[12, 13, 14, 26]. The optimization target of WWTP is 
to obtain the minimum energy consumption that is 
the main part of the electric power consumption of 
WWTP under effluent standards. Moreover, the efflu-
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ent should be under standard, so the effluent quality 
(EQ) is another important index. EQ contends several 
factors that describe the wastewater treatment quali-
ty and process efficiency, such as total nitrogen (Ntot), 
chemical oxygen demand (COD), biochemical oxygen 
demand (BOD), total suspended solids (TSS) and am-
monia nitrogen (SNH).
In a practical wastewater plant, many treatment pro-
cesses are controlled by on-off control [24], close-
loop proportional-integral (PI) [25] or by PID-based 
methods [27]. These conventional control methods 
are used to control the Underlying Running Module 
(URM) of the wastewater treatment process based 
on the feed-forward control loop and feedback con-
trol loop [28]. Then, the upper optimization module 
can ensure the overall performance requirements by 
optimizing the set-points [17]. In these conventional 
control schemes, the proportional, integral, differen-
tial parameters were always defied by human experi-
ence, or trial and error method. Therefore, the design 
of conventional controller may consume a lot of time. 
Moreover, in an actual situation, the set-point values 
were always decided by expert experience or by set-
ting a high value, which has an appropriate amount 
of redundancy. For example, since the influent of pol-
lutants concentration, water quantity and some other 
external factors may change frequently, and expert 
experience cannot always decide the set-point values 
online precisely when all the influential factors vary 
with time. Another problem is that if the set-point 
values were set as high values, some unnecessary op-
erating costs would be increased.
In recent years, some optimization techniques, such 
as Adaptive dynamic programming [17], model pre-
dictive control [23], and so on, have been proposed 
for WWTP control. In these optimization techniques, 
the model of WWTP is very important. However, 
due to the characteristics of large time-varying and 
highly nonlinear, the precise mathematical model 
of WWTP is hard to achieve. The data-driven model 
based neural network can be used in these methods 
instead of the mathematical model. To achieve high 
learning efficiency and to reduce model complexity, 
the domain knowledge in complex system is adopted 
during the model design process [21]. To satisfy the 
requirements of nonlinear process model and the 
personified characteristics of intelligent technolo-
gies, some intelligent methods, such as fuzzy logic [9], 
artificial neural networks [18], intelligent evolution-

ary algorithm [2] and case-based reasoning (CBR) [4], 
are used to achieve domain knowledge when solving 
the optimization problem in complex industrial pro-
cess. For example, in [18], a neural network identifier 
was modeled to provide state information of WWTP 
for the neural network controller learning. In [4], a 
presetting model based reasoning technology was 
proposed to adjust the set-points of control loops for 
optimal operation of the shaft furnace in response to 
changes. These methods can adjust the parameters 
online in industry to optimize the complex control 
process. However, due to the characteristic of large 
lag, these intelligent control methods cannot be ap-
plied in WWTP directly.
In this paper, an intelligence hybrid control approach 
is proposed to optimize the WWTP. The proposed 
method will replace the expert experience by self-ad-
justing the proper set-points of dissolved oxygen and 
nitrate nitrogen with external environment changes. 
The system includes a pre-setting module (PSM), a 
supervision module (SVM), a feed-forward compen-
sator (FFC) and an EQ soft-sensor module (ESM). 
FFC is used to compensate the set-points for PSM, 
ESM is employed to predict EQ values online. In ad-
dition, SVM is utilized to fix case solutions.
The rest part of this paper is as follows. The WWTP 
is described in Section 2. The intelligent optimal-
setting control method is introduced in Section 3. 
The experimental results and analyses are described 
in Section 4. Finally, the concluding remarks are pre-
sented in Section 5.

2. Problem Description

2.1 Process Description
The wastewater treatment process, using activated 
sludge process to clear pollutants in sewage, is a typi-
cal nonlinear and time-varying complex dynamic sys-
tem [15]. Because of these complex characteristics, 
the WWTP is hard to be controlled. The illustration of 
a WWTP is shown in Figure 1, and the corresponding 
parameters of Figure 1 are described in Table 1. Ac-
cording to Figure 1, the WWTP consists of two parts. 
The first part, called biological reactor, consists of five 
units, and the second part, called settler, consists of a 
ten layers sedimentation tank.
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Figure 1 
Schematic diagram of wastewater treatment system

Table 1 
Description of variables in Figure 1

Symbol Description

SO_set set-point of dissolved oxygen

SNO_set set-point of nitrate nitrogen

kLa oxygen transfer coefficient

CT controller

MI measurement instrument

Z0 influent component

Za internal flow component

Zr external flow component

Zw sludge flow component

Ze effluent component

Q0 influent flow

Qa internal flow

Qr external flow

Qw sludge flow

Qe effluent flow

 

 

Settler

Internal recycle

Anoxic reactors Aerobic reactors

Qa , Z a

Qr , Z r Qw, Zw

Qe, Ze

SNO_set

Q0 , Z0

CT

CT

SO_set 

MI

MI

Part 1 Part 2

 

The denitrification biological nitrogen (AO) removal 
method is a commonly used technology in WWTP. 
In this process, the influent water from urban water 
supply network flow into biological reactor, which is 
the main stage to eliminate organic pollutants by bio-
chemical reactions. Then, the water flow into settler 
in which the wastewater is clarified by physical set-

tlement. Finally, wastewater is discharged into the 
receiving water body and part of the sludge returns to 
biochemical reaction tank to save costs.
The removal of nitrogen element is the main part of 
the activated sludge system. The biological removal 
of nitrogen transformation generally includes assimi-
lation, ammoniation, nitrification, denitrification and 
other biochemical reactions in WWTP, in which the 
nitrification and denitrification biochemical reac-
tions process can be controlled.

2.2 Analysis of the Control Problem
In the WWTP system which as shown in Figure 1, 
there are two important indices, namely the EC and 
the EQ [17]. The EC, including aeration energy con-
sumption and pumping energy consumption, is the 
commonly used energy consumption of WWTP. The 
EQ, whose expression includes SNH, Ntot, COD, BOD 
and TSS, is another important index which shows the 
performance of WWTP directly.
For a given WWTP which as shown in Figure 1, there 
exist some inherent complex characteristics. First-
ly, since the biochemical reactions exist in WWTP 
and the main disturbed conditions, such as influent 
flow and influent component, change sharply with 
time, the control process of wastewater treatment is 
extremely difficult. Secondly, the EQ is disadvanta-
geous for the wastewater treatment, when its value 
is oversize or undersize compared with the effluent 
standard. Therefore, in contrast to the fixed set-point 
value control, the set-point value needs to change 
with the state of the WWTP. In addition, when the 
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pollutant concentration of influent is at a high degree, 
the set-point value of relative control loop is always 
set as a large value. Otherwise, the set-point value of 
relative control loop is set as a low value.

3. The HIOC System for Wastewater 
Treatment
If the influent conditions are stable and the fixed 
set-point value is decided through the extensive op-
erational experience, the set-point value needs not 
change with time. Unfortunately, the influent condi-
tions often vary with time, and the expert cannot pay 
more attention to overall process all the time. This 
phenomenon leads to that the fixed operating point 
method cannot obtain good performance for the final 
indices.
Based on the above issues, a hybrid intelligent optimal 
control (HIOC) system is designed in this paper to 
control WWTP. This system is formed by the hybrid 
intelligent techniques, including artificial neural net-
work (ANN), rule-based reasoning (CBR) and rule 
inference. The framework of HIOC system is shown 
in Figure 2. This system is established by an underly-
ing control module (ULCM), a CBR-based pre-setting 

module (CBR-PSM) and a feed-forward compensator 
module (FFCM).
The variables in Figure 2 are described in Table 2. 
The human experience method can be replaced by the 
HIOC system to auto-adjust the set-point values of 
DO and SNO under the variations of influent flow and 
influent component. The major role of each part is de-
scribed as follows:
1 The CBR-PSM is utilized to decide the preset 

points of DO and SNO by the CBR technique with the 
variations of influent flow and influent component.

2 The SVM is used to fix case solutions based on the 
rule inference method when the effluent value can-
not fulfill the inference index.

3 The ESM is utilized to predict the effluent value by 
the ANN technique.

4 The FFCM is used to compensate the deviation of 
set-point values that are caused by the variation in 
boundary conditions.

In the optimization process of WWTP, the similar-
ity between the influent conditions and the problem 
description of the case will be calculated by the CBR-
PSM. The closest cases can be treated as the preset 
points for the lower level controllers. Then, the FFC 
is used to advance compensate the bias between the 
predict values and the expected values of effluent in-

Figure 2 
 The HIOC system of wastewater treatment process
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dex. Finally, the SVM is utilized to evaluate the case 
solutions before a delay period (Td) which is caused 
by biochemical reaction in WWTP. 
In this paper, our main work is described as follows. 
Firstly, the HIOC system is designed to achieve 
knowledge automatically from the wastewater treat-
ment condition by the technology of case revision. 
Secondly, an embedded hybrid model is used to cal-
culate the preset points for the lower level control 
layer.  The model is composed of CBR module and 
rule-based reasoning (RBR) module.  Finally, the de-
lay information from WWTP to the decision-making 
process of the preset points is considered.

4. Realization of the HIOC System

4.1 CBR-Based Pre-Setting Module
Case-Based reasoning [4] is generally suitable for the 
cases where precise physical models and knowledge 
on the concerned process are not available. Its basic 
principle is that the similar problem scenario has 
similar solutions. The CBR technology includes case 

Table 2 
Description of variables in Figure 2

Symbol Description

y the measured values of DO and SNO

yr the preset points of DO and SNO

y* the set-points of DO and SNO

yF the feed-forward compensate values of DO and SNO

yB the case solutions’ correction values of DO and SNO

r the measured values of effluent index

r’ the predict values of effluent index

r* the expected values of effluent index

rF the feed-forward bias of effluent index

rB the feedback bias of effluent index

u manipulated variables

e the error between measured values and set-
points of DO and SNO

∆ the symbol of bias

representation, case retrieval, case matching, case 
reuse, case revision as well as case retention. The 
reasoning flowchart is shown in Figure 3.

Figure 3  
Reasoning flow of case reasoning
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which is important for large-lag systems, such as 
WWTP system. 

 

4.1.1 Case Representation 
The general methods of case representation include 
the property characteristic value description method 
[16], the frame representation method [6] and the ob-
ject-oriented method [3]. In this paper, the property 
characteristic value description method [16] was cho-
sen as the form of case representation due to its simple 
and clear characteristic. It can be shown as follows:
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where C denotes case; k and n represent the kth case 
and the total number of cases, respectively; X and Y 
are the problem situation of case and the case solu-
tions, respectively. 

4.1.2 Case Retrieval and Case Matching
Due to the simplicity and practicability [5], the near-
est neighbor method is designed to search for a sim-
ilar case. In this paper, the similarity equation in the 
current WWTP and the kth case of the case base could 
be expressed as follows:
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where sim(xi ,xi,k) represents the similarity between X 
and Xk. wi denotes case feature weight of the i-th ex-
pression attribute attained by expert experience. The 
constraint condition is defined by
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If the following condition [31] 
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is satisfied, the k-th case can be treated as the 
matching case, where wth is a threshold to analyse the 
degree of similar case.

4.1.3 Case Reuse
If the number of cases that satisfy the inequality (4) 
is m, the case solution of current wastewater treat-
ment can be calculated by combining the solutions of 
the corresponding cases. The formula of case reuse is 
shown as follows:
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4.1.4 Case Revision and Case Retention
Case revision and case retention are used to ensure 
the quality of case base. If the effluent quality be-
yond the expected field after the wastewater system 
runs with the preset points, the previous Y needs to 
be revised. Otherwise, there is no operation. Here, it 
needs to emphasize that the revise time of case revi-

sion should be set as a delay time td. The parameter 
td is the time of the wastewater flows from influents 
inlet to effluent outlet. Moreover, the evaluation pro-
cess of the effluent quality can only be used to revise 
the previous application cases rather than real-time 
compensation which is important for large-lag sys-
tems, such as WWTP system.

4.2 EQ Soft-Sensor Module

In the optimal control of wastewater treatment, ef-
fluent quality cannot be measured online with con-
ventional tools due to the biochemical reactions [19]. 
Recently, to overcome the measurement problems of 
critical variables in complex system, some soft-sensor 
method, based on neural network technology, was used 
[10, 20, 29]. Especially, the feed-forward neural net-
work (FNN) is widely used for soft-sensor modeling in 
complex nonlinear dynamic system because its effec-
tiveness and simplicity [8, 11, 30]. In [18], the identifi-
er and controller based FNN was designed to control 
WWTP. This proposed method had good performance. 
In [19], an improved fuzzy neural network (TSFNN) 
was introduced to predict biochemical oxygen demand 
values by the soft computing method. The algorithm 
presents a better approximation performance than 
some other methods. In [8],  a self-organizing radial 
basis function neural network (SORBF) based 
predictive control method was proposed for controlling 
the DO concentration in a WWTP. The proposed 
SORBF can vary its structure dynamically to maintain 
prediction accuracy. Due to the successful application 
of FNN described above, the FNN-based soft-sensor 
method is utilized in this paper to measure the value of 
EQ online.

4.2.1 Structure of FNN
The structure schematic representation of FNN is 
shown in Figure 4. X = [x1, x2, …,xm]T represent the in-
fluent component and set-points of DO and SNO. The 
variables Y = [y1, y2, …,yn]T denote the estimated value 
of EQ. H is the number of hidden nodes. The symbol 
θ stands for the nonlinear activation function that 
is selected as the sigmoid function. The parameters 
wij

1and wij
2 represent the jth weight of the ith input 

node and the jth weight of the ith hidden node, re-
spectively.
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4.2.2 FNN Learning Algorithm
The back-propagation algorithm is employed as the 
learning algorithm of FNN. The training objective 
function is shown as follows:

12 
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According to the back-propagation algorithm, the on-
line update formulas of the weights wij

1and wij
2 can be 

expressed as follows:
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where e(k)=y(k)-y’(k), η and Δw represent the learning 
rate and the increment of the weight w, respectively.

4.3 Feedback Supervision Module
Due to the time-varying characteristic of WWTP, the 
case solution stored in case base cannot solve all pos-
sible problem conditions in WWTP. Moreover, the 

Figure 4  
Structure schematic representation of FNN
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which is important for large-lag systems, such as 
WWTP system. 

 

case solutions may not be the optimal settings since 
the treatment environment is time-varying. Given 
the above analysis, the feedback supervision module 
should be adopted to evaluate and adjust the case solu-
tions that cannot satisfy the indicators of wastewater 
treatment control system. The rule-based reasoning 
technology is an effective and practical method in the 
field of artificial intelligence [1, 7]. Because such a rea-
soning technology can provide comprehensible rules, 
rule-based reasoning technology can be validated by 
manual inspection. In this paper, the rule-based rea-
soning is treated as the feedback supervision module 
to evaluate and adjust the case solutions. The produc-
tion rule is used to the processing mode of rule-based 
reasoning, which is shown as follows:

 
IF/WHEN

THEN
Conditions

Actions








 

 
The reasoning rules are decided by the experimental 
study, which is shown as Figure 3 in [17]. According 
to the experimental study, the operational rules can 
be shown in Table  3.  In this table, td is the time of 
the wastewater flows from influents inlet to effluent 
outlet. ΔrB1 and ΔrB2 are the error between the setting 
indicators and the actual value of ammonia and to-
tal nitrogen, respectively. ΔyB1 and ΔyB2 represent the 
adjustment amount of the DO set-point and SNO set-
point, respectively. Parameters km1=0.1 and km2 =0.1 
are determined by experience. It should be noted that 
the inference rules would only work for a lag period 
in the previous case correction, and not act on the set 
value of real-time correction.

4.4 Feed-Forward Compensator

The feed-forward compensator is used to compensate 
the set-points of the DO and SNO. The measure process 
of effluent quality is time consuming, which makes 
the control system unable to control the wastewater 
treatment process on time. On the other hand, the er-
ror can be predicted in advance by the ESM while the 
FFC can compensate the error in advance. The design 
structure of FFC is similar to the rule reasoning of 
feedback supervision module.
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5. Experiment Studies

5.1 Evaluation Indexes

The proposed HIOC system is used to optimize the 
set-points in WWTP. The data come from the bench-
mark simulation model 1 (BSM1) which is used to 
drive the test verification environment. The BSM1 
has defined the performance evaluating criteria [22], 
which are shown in the following formulas:
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where AE and PE are aeration energy consumption 
and pumping energy consumption, respectively. EQ is 
the fines to be paid due to the discharge of pollution in 
the receiving water bodies. Thus, the total cost can be 
defined as follows:

Table 3 
Operation rules of feedback supervision module

Rules If Then

Rule 1 ΔrB1(k)>0 and ΔrB2(k)>0 ΔyB1(k-td)=-|ΔrB1(k)|km1 ΔyB2(k-td)=-|ΔrB2(k)|km2-0.1|ΔrB1(k)|km1

Rule 2 ΔrB1(k)>0 and ΔrB2(k)=0 ΔyB1(k-td)=-|ΔrB1(k)|km1 ΔyB2(k-td)=-0.1|ΔrB1(k)|km1

Rule 3 ΔrB1(k)>0 and ΔrB2(k)<0 ΔyB1(k-td)=-|ΔrB1(k)|km1 ΔyB2(k-td)=|ΔrB2(k)|km2-0.1|ΔrB1(k)|km1

Rule 4 ΔrB1(k)=0 and ΔrB2(k)>0 ΔyB1(k-td)=0 ΔyB2(k-td)=-|ΔrB2(k)|km2

Rule 5 ΔrB1(k)=0 and ΔrB2(k)=0 ΔyB1(k-td)=0 ΔyB2(k-td)=0

Rule 6 ΔrB1(k)=0 and ΔrB2(k)<0 ΔyB1(k-td)=0 ΔyB2(k-td)=|ΔrB2(k)|km2

Rule 7 ΔrB1(k)<0 and ΔrB2(k)>0 ΔyB1(k-td)=|ΔrB1(k)|km1 ΔyB2(k-td)=-|ΔrB2(k)|km2+0.1|ΔrB1(k)|km1

Rule 8 ΔrB1(k)<0 and ΔrB2(k)=0 ΔyB1(k-td)=|ΔrB1(k)|km1 ΔyB2(k-td)=0.1|ΔrB1(k)|km1

Rule 9 ΔrB1(k)<0 and ΔrB2(k)<0 ΔyB1(k-td)=|ΔrB1(k)|km1 ΔyB2(k-td)=|ΔrB2(k)|km2+0.1|ΔrB1(k)|km1
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where a1, a2 and a3 are the turning factors, respectively. 
Normally, the ratio of these coefficients is 1: 1: 1 [17]. 
However, the ratio can also be adjusted according to 
the importance of energy consumption and fines.

5.2 Parameter Initialization

The number of the initial cases in case library is set 
to 15. Two independent proportional-integral-deriv-
ative (PID) controllers are used to control the actu-
al output values to track the set-points generated by 
CBR-PSM. The proportional, integral and differential 
coefficients of PID controller for dissolved oxygen 
control are 200, 15 and 2, respectively. The propor-
tional, integral and differential coefficients of PID 
controller for nitrate nitrogen control are 20000, 
5000 and 400, respectively. These parameters of PID 
were obtained by trial and error method. The struc-
ture of FNN was chosen as 6-12-2. 

5.3 Results and Analysis

The HIOC system was tested in dry weather conditions 
(the dry weather file includes 14 days data, in which the 
data of the first seven days are for training, the data of 
the latter seven days are for testing). The case gener-
ating curve is shown in Figure 5. It shows that the case 
number reached forty-one on the sixth day.
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Figure 5
The case numbers

Figure 6 
Comparison of effluent quality indices between HIOC and PID
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Figure 6. Comparison of effluent quality indices between HIOC and PID 

(a)

(c) (d)

(b)

The comparison of the effluent quality indices be-
tween the HIOC scheme and the traditional PID con-
trol scheme is shown in Figure 6. Referring to this 
figure, we can make a few conclusions. Firstly, when 

the effluent ammonia nitrogen (SNH) could reach the 
standard of discharge, the actual output value of HIOC 
scheme was closer to the standard line than that of the 
PID control scheme, which means the HIOC needs 
less energy than the PID control scheme. Secondly, 
compared to the PID control scheme, a better quality 
of effluent Ntot can be achieved by the HIOC scheme, 
which means the HIOC scheme needs less fines due to 
the discharge of pollution than the PID control scheme. 
Finally, the quality of effluent chemical oxygen demand 
and biochemical oxygen demand has little difference 
under the HIOC scheme and the traditional PID con-
trol scheme. The optimization results of set-points are 
shown in Figure 6, which shows that the set-points 
could be adjusted with the change of the influent flow 
rate and the pollutions concentration.
Table 4 shows the numerical comparison between the 
HIOC and the PID control schemes. In the PID con-
trol scheme, the set-points of the DO and SNO were 
set as 2mg/L and 1mg/L. Compared with the PID con-
trol scheme, the average value of the set-point of the 
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DO decreased by 30% based on the HIOC scheme, the 
average value of the set-point of the SNO increased 
by 29.4% based on the HIOC scheme, the aeration en-
ergy decreased by 17.0% based on the HIOC scheme, 
the pumping energy increased by 19.1% based on 
the HIOC scheme, the total energy consumption de-

Figure 6 
Optimization results of the set point values

Table 4 
Performance comparison between HIOC and PID

*The results are listed in the original papers.

SO,5 SNo,2 AE PE Energy Fines

PID[17] 2* 1* 841.1* 86.2* 927.3* 5129.5

DDAOC[17] 1.5799* 1.087* 758.2* 89.8* 848.0* 5185.6

HIOC 1.3999 1.294 698.4 102.7 801.1 5092.4

Up/Down ↓30% ↑29.4% ↓17.0% ↑19.1% ↓13.6% ↓0.7%

creased by 13.6% based on the HIOC scheme, and the 
fines decreased by 0.7% based on the HIOC scheme.
From the numerical analysis, compared to the re-
sults in [17], the results in this paper display a better 
performance. Due to the time lag information for op-
timization module in the HIOC system, the total en-

(a)

(b)
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ergy consumption and the fines are reduced simulta-
neously. Thus, the total cost always reduces whatever 
the coefficient ai is chosen in Equation (14).

6. Conclusion
In this paper, a control optimization system based on 
hybrid intelligent technology is proposed to optimize 
the WWTP. The system includes a feed-forward com-
pensator, a feedback supervision module, a pre-setting 
module and a soft-sensor module. The set-points of 
the dissolved oxygen concentration and nitrate nitro-
gen concentration are adjusted through feed-forward 
compensation, feedback correction and online esti-
mation. Moreover, the delay problem in wastewater 
treatment process was considered to design the HIOC 
system. Therefore, the total energy consumption and 

the fines can be reduced simultaneously by applying 
the proposed method. The simulations illustrate that 
the cogitation of this control strategy provides an ef-
fective optimal means for the large delay systems.
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Summary / Santrauka

Due to the characteristics of large lag and high nonlinearity, the optimizing operation of wastewater treatment 
process (WWTP) is difficult to be designed. To solve this problem, a control optimization system based on 
hybrid intelligent technology is proposed in this paper. This system includes a feed-forward compensator, a 
feedback supervision module, a pre-setting module and a soft-sensor module. To obtain the minimum energy 
consumption (EC) under effluent standards, the set-points of the dissolved oxygen concentration and nitrate 
nitrogen concentration are adjusted through feed-forward compensation, feedback correction and online es-
timation. Finally, the proposed approach is applied on the WWTP simulation model. Compared to the propor-
tional-integral- derivative (PID) and data-driven adaptive optimal controller (DDAOC) methods, simulation 
results of the method proposed in this paper show better performance.

Dėl didelių inertiškumo ir aukšto netiesiškumo charakteristikų yra sudėtinga suplanuoti optimalų nuotekų 
valymo procesą. Siekiant išspręsti šią problemą, straipsnyje siūloma valdymo optimizavimo sistema, pagrįsta 
hibridine išmaniąja technologija. Ši sistema turi postūmio kompensatorių, grįžtamojo ryšio stebėjimo modu-
lį, išankstinio nustatymo modulį ir programinės įrangos jutiklio modulį. Norint pasiekti mažiausią energijos 
suvartojimą pagal nuotekų standartus, ištirpusio deguonies ir nitratų azoto koncentracijos nustatymo taškai 
koreguojami taikant postūmio kompensavimą, grįžtamojo ryšio korekciją ir tiesioginį įvertinimą. Siūlomas 
metodas yra pritaikomas vandens nuotekų valymo proceso simuliacijos modeliui. Palyginus su PID valdiklio 
ir DDAOC valdiklio metodais, straipsnyje pasiūlyto metodo simuliacijos rezultatai rodo geresnius rezultatus.




