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Abstract. In this paper, we investigate some modified local search (LS) heuristics for the solution of symmetric 
traveling salesman problem (TSP). These modifications are mainly due to the use of extended neighborhood structures. 
In addition, we are concerned with several new sets of the moves (transitions of solutions) based on the extended 
configurations of edge exchanges. We are also examining the performance of these extensions being used in an iterated 
local search (ILS) paradigm. The results from the experiments with the benchmark TSP instances from the TSP library 
(TSPLIB) demonstrate that the introduced improvements enable to seek solutions of higher quality without 
substantially increasing computational complexity. 
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1. Introduction 
The traveling salesman problem (TSP) is stated as 

follows. Given the distance matrix D = (dij)n×n and the 
set Πn of all possible permutations of the integers from 
1 to n, find a permutation p ∈ Πn that minimizes the 
following objective function: 
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Each permutation can be viewed as a tour through 
n cities such that each city is visited exactly once. The 
element of the permutation, ci = p(i), denotes city ci to 
visit at step i, where i = 1, 2, …, n. The pairs 
(p(1), p(2)), ..., (p(i), p(i + 1)), ..., (p(n), p(1)) are 
called edges. The distances between cities are stored 
in the matrix D with elements 𝑑𝑖𝑗 0F

1; then the entry 

1mod  
,

+nii ccd (i = 1, 2, ..., n) denotes the length of the ith 

edge and z(p) is the total length of the tour p. Thus, 
solving the TSP means searching for the tour of 
minimal total length so that every city is visited only 
once and the salesman returns back to the starting city 
at the end of the trip. 

The traveling salesman problem has been 
intensively studied during more than past 50 years and 
is one of the central problems in combinatorial 
                                                           
1 Only symmetric problems are considered in this paper, i.e. dij = dji, 
i = 1, 2, …, n. 

optimization [2, 7, 10]. The TSP and its variants have 
important practical applications in various areas (like 
vehicle routing, clustering, job-shop scheduling) [13]. 
On the other hand, the TSP is a suitable platform for 
both theoretical and experimental investigations of 
intelligent computer-based methods, including exact 
and heuristic/metaheuristic algorithms [11, 12]. 

Among heuristic algorithms, local search (LS)-
based (also known as neighborhood search) 
algorithms have been shown to be quite effective. 
Many of them are based on edge or chain exchange 
mechanisms (like 2-opt, 3-opt or generalized r-opt 
procedures [14]) and remain popular due to their ease 
of implementation. The most efficient local search 
approaches originate from the widely approved Lin-
Kernighan (LK) algorithm [15], which may be viewed 
as a dynamic r-opt procedure. However, the Lin-
Kernighan algorithm and its enhanced variants 
[3, 8, 9, 24] require a quite considerable amount of 
sophistication regarding the data structures and 
programming techniques, which makes them hard to 
implement and replicate. To address these issues, the 
researchers have considered the simpler versions of 
LK-heuristic [17] or modified edge/chain exchange 
algorithms (such as guided local search [29] or so-
called Or-opt heuristics [4]). Also, other LS-based 
methodological modifications have been proposed, for 
example, local search with search space smoothing 
[6], iterated/combined local search [19, 28], ejection 
chain/stem-and-cycle methods [5, 25]. 
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In this paper, we are concerned with how the 
improved results can be achieved by incorporating 
some more new modifications into the traditional local 
search frame. The paper is structured as follows. In 
Section 1, we are giving preliminary definitions and 
outlining the general local search paradigm in the 
context of symmetric traveling salesman problems 
(STSPs). The new modified local search approaches 
for the STSP are detailed in Section 2. In Section 3, 
we present the results of the computational 
experiments with the proposed heuristics on the 
benchmark problems taken from the traveling 
salesman problem library — TSPLIB. The paper is 
completed with concluding remarks.  

2. Preliminaries 
The Hamming distance between two TSP tours p 

and p′ can be defined as 
ρ(p, p′) = | Ω |; (2) 

where Ω is the set that consists of all possible pairs of 
cities (edges) (p(i), p(i mod n + 1)) (i = 1, 2, ..., n) 
such that ¬ ∃ j: 
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Roughly speaking, the Hamming distance is the 
number of edges that are contained in one tour, but not 
in the other. 

A neighborhood function Θ: Πn → nΠ2  assigns for 
every p from Πn a set Θ(p) ⊆ Πn — the set of 
neighboring solutions of p. An example of the 
neighborhood function is the 2-(edge-)exchange 
neighborhood Θ2, which is frequently used for the 
TSP. The neighborhood Θ2 can be formally described 
in the following way: 

{ }2),(  , | )(2 =′Π∈′′= pppppΘ n ρ , where ρ denotes 
the Hamming distance as defined by formulas (2), (3). 
Each tour, p′, of Θ2(p) may be obtained from p by an 
operation that is referred to as a 2-(edge-)exchange 
move (solution transition). The 2-edge-exchange 
move can mathematically be formulated as a mapping 
Φ: nn Π→Ν×Ν×Π , which gives for every tour 
p ∈ Πn a neighboring tour p′ ∈ Θ2(p) ⊆ Πn such that 
p′(i) = p(i), p′(i + 1) = p(j), p′(j) = p(i + 1), 
p′(j mod n + 1) = p(j mod n + 1), where 
1 ≤ i, j ≤ n ∧ 1 < j − i < n − 1; in addition, if 
j − i − 2 ≥ 1 then p′(i + k + 1) = p(j − k) for 
k = 1, ..., j − i − 2. Briefly speaking, the pair of 
existing edges (p(i), p(i + 1)), (p(j), p(j + 1)) are 
removed from the tour and two new different edges 
(p(i), p(j)), (p(i + 1), p(j + 1)) are added (see Figure 1). 
A more compact form of notation, for example, 
p + move(i, j) (or (p, i, j)), may be applicable for 

this type of moves. Note that the 2-exchange move is 
symmetric as p′ = p + move(i, j) → p = p′ + move(i, j). 

 
Figure 1. Illustrative example of the 2-edge-exchange move 

The solution (tour) p• is locally optimal with 
respect to the neighborhood Θ2 (also referred to as a 2-
opt(imal) solution) if z(p•) ≤ z(p) for any p ∈ Θ2(p•), 
i.e. z(p•) ≤ z(p• + move(i, j)) for i = 1, ..., n − 2, 
j = i + 2, ..., n − 1 + sign(i − 1). A 2-opt solution may 
be found by starting from an arbitrary initial solution 
and trying to iteratively apply 2-exchange moves (2-
opt moves) until no possible move yields a better 
value of the objective function (z) (i.e., negative value 
of z(p + move(i, j)) − z(p), where p denotes the 
currently processed solution). This iterative process is 
generally known as a 2-opt algorithm (procedure) (i.e. 
local search algorithm using the neighborhood Θ2 and 
descending 2-exchange moves). There are two 
strategies: a) a greedy-first-accept (GFA) strategy 
selects the first neighbor p′ ∈ Θ2(p) for which 
z(p′) < z(p); b) a greedy-best-accept (GBA) strategy 
selects a neighbor p′ ∈ Θ2(p) such that 

)(minarg
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pzp
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∈

=′ . The detailed formalized pseudo-

code of the GBA-based 2-opt algorithm is shown in 
Figure 2 (see also [22]). 

The run time of the 2-opt algorithm can be reduced 
by introducing the following modifications (see also 
[22]): 

• using the restricted exploration of the 
2−exchange neighborhood; 

• applying the limited number of the descending 
2-exchange moves. 

In the first case, the neighborhood exploration is 
confined to the nearest cities of the current city. The 
nearest-neighbor list of the cities, i.e. the candidate 
list, CL, takes O(Kn) memory (where K = | CL |) and 
its construction takes O(n2log2n) time (the 
construction takes place only once before initializing 
the algorithm). The size of the candidate list is 
arbitrarily chosen by the algorithm's user/analyst. (We 
used K = 8.) 

In the second case, the number of descending 2-
exchange moves, λ, is also controlled by the user. (We 
used λ = 30.) 
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The resulting user-controlled procedure can be 
called a "fast λ-descent" or a "fast local search" (FLS). 
The pseudo-code of the GBA-based fast local search 
algorithm is given in Figure 3. 

function local_search_in_Θ2(p); 
// input: p − initial (starting) solution (tour); output: 
p − resulting solution (locally optimal solution with 
respect to Θ2) 
begin 
  repeat 
    ∆min := 0; // ∆min denotes the minimum 
difference in the objective function values 
    for i := 1 to n − 2 do 
      for j := i + 2 to n − 1 + sign(i − 1) do 
begin 
        ∆ := z(p + move(i, j)) − z(p); if 
∆ < ∆min then begin ∆min := ∆; k := i; l := j 
end 
      end; // for 
    if ∆min < 0 then p := p + move(k, l) // 
move from the current solution to a new one 
  until ∆min = 0; 
  return p 
end. 

Figure 2. Pseudo-code of the greedy-best-accept-based local 
search algorithm using the neighborhood Θ2 

 

function fast_local_search_in_Θ2(p, λ); 
// input: p − starting solution (tour), λ − (maximum) 
number of descents (λ ≥ 1); output: p − resulting 
solution 
// auxiliary variables: CL − candidate list (nearest-
neighbor list of the cities) 
begin 
  number_of_moves := 0; for i := 1 to n 
do index[p[i]] := i; 
  repeat 
    ∆min := 0; 
    for u := 1 to n do 
      for v := 1 to | CL | do begin 
        i := min(u,index[CL[p[u],v]]); 
j := max(u,index[CL[p[u],v]]); 
        if (i + 2 ≤ j) and 
(j ≤ n − 1 + sign(i − 1) then begin 
           ∆ := z(p + move(i, j)) − z(p); if 
∆ < ∆min then begin ∆min := ∆; k := i; l := j 
end 
        end // if 
      end; // for 
    if ∆min < 0 then begin 
p := p + move(k, l); update index; 
number_of_moves := number_of_moves + 1 end // 
if 
  until (number_of_moves = λ) or (∆min = 0); 
  return p 
end. 

Figure 3. Pseudo-code of the greedy-best-accept-based fast 
local search algorithm using the neighborhood Θ2 

3. Modifications of the local search heuristics 
for the symmetric TSP 

3.1. Extended neighborhoods 

Our idea is to allow a composition of the simpler 
neighborhoods (like Θ2) and construction of more 
complex neighborhood topologies with the 
compounded neighborhoods consisting of several sub-
neighborhoods. 

So, let p be a feasible tour (permutation) from Πn; 
also, let z(p) and Θ2(p) denote, respectively, the 
objective function value and the 2-edge-exchange 
neighborhood for the tour p as defined above in the 
previous sections. Then, the extended (compounded) 
2-edge-exchange neighborhood (denoted as 22⊕Θ ) is 
formally described as follows: 
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where ρ denotes the Hamming distance and 
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The graphical view of the neighborhood 22⊕Θ  is 
depicted in Figure 4. 

Further, the extended neighborhood 222 ⊕⊕Θ  can be 
introduced (see also Figure 5): 
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neighborhood 2222 ⊕⊕⊕Θ  (see Figure 6) and higher 
order neighborhoods may be defined. 

Note that searching in such kind of neighborhoods 
conceptually resembles the "breadth-first search" 
policies used, for example, for searching in graph 
structures. The other type of extended neighborhoods 
may be introduced so that "walking" in these 
neighborhoods would have looked like the "depth-first 
search" (an alternative to the breadth-first search). An 
example of such a neighborhood is the neighborhood 

222 ⊗⊗Θ  which can mathematically be described in the 
following way (see also Figure 7): 
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(The neighborhood 22⊗Θ  is, in fact, the same as the 



A. Misevičius, A. Blažinskas, A. Lenkevičius 

220 

neighborhood 22⊕Θ  ( )(22 p⊗Θ ≡ )(22 p⊕Θ  ∀ p ∈ Πn).) 
Similarly to formula (6), the neighborhood 2222 ⊗⊗⊗Θ  
(see Figure 8) and the other higher order 
neighborhoods may be derived. In addition, many 
different combined variants are possible: 222 ⊗⊕Θ , 

222 ⊕⊗Θ , 2222 ⊗⊕⊕Θ , 2222 ⊕⊗⊗Θ , and so on. As long as 

the number of the sub-neighborhoods covered remains 
constant, the time complexity of the neighborhood 
exploration is proportional to O(n2), where n is the 
problem size. In the case of the fast local search, the 
complexity reduces to O(Kn), where K is the 
candidate list size. 

 

 

Figure 4. Graphical representation of the neighborhoods Θ2 and 22⊕Θ  

 
Figure 5. Graphical representation of the neighborhood 222 ⊕⊕Θ  

 
Figure 6. Graphical representation of the neighborhood 2222 ⊕⊕⊕Θ  

 
Figure 7. Graphical representation of the neighborhood 222 ⊗⊗Θ  

 
Figure 8. Graphical representation of the neighborhood 2222 ⊗⊗⊗Θ  
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In Figure 9, we present the pseudo-code of the 2-
opt local search algorithm using the neighborhood 

22⊕Θ  ( 22⊗Θ ). Similarly, the algorithm for the fast local 
search in the neighborhood 22⊕Θ  ( 22⊗Θ ), as well as 
the algorithms for searching in the neighborhoods 

222 ⊕⊕Θ , 2222 ⊕⊕⊕Θ , 222 ⊗⊗Θ , 2222 ⊗⊗⊗Θ , etc. can be 
described. 

function local_search_in_Θ2⊕2(p); 
// input: p − initial (starting) solution (tour); output: 
p − resulting solution (locally optimal solution with 
respect to Θ2⊕2 (Θ2⊗2)) 
begin 
  repeat 
    ∆min

(1) := ∞; ∆min
(2) := ∞; k(1) := 0; 

l(1) := 0; 
    for i := 1 to n − 2 do 
      for j := i + 2 to n − 1 + sign(i − 1) do 
begin 
        ∆ := z(p + move(i, j)) − z(p); 
        if ∆ < ∆min

(1) then begin 
∆min

(2) := ∆min
(1); k(2) := k(1); l(2) := l(1); 

∆min
(1) := ∆; k(1) := i; l(1) := j end 

        else if ∆ < ∆min
(2) then begin 

∆min
(2) := ∆; k(2) := i; l(2) := j end 

    end; // for 
    
p′ := argmin(z(p + move(k(1), l(1))), z(local_search_i
n_Θ2(p + move(k(2), l(2))))); 
    if z(p′) < z(p) then p := p′ // replace the 
current solution by a new one 
  until z(p′) ≥ z(p); 
  return p 
end. 

Figure 9. Pseudo-code of the greedy-best-accept-based local 
search algorithm using the neighborhood 22⊕Θ  ( 22⊗Θ ) 

3.2. Extended moves 

The set of the extended (modified) moves consists 
of the following subsets: 

• subset of the 3-(edge-)exchange moves, 
• subset of the 4-(edge-)exchange moves, 
• subset of the 5-(edge-)exchange moves, 
• subset of the 6-(edge-)exchange moves. 
Each of the above subsets is rather a restricted set 

of moves built in a specific way than the set 
containing all possible move configurations. The 
subsets are created as described below. 

The subset of the 3-exchange moves (or 3-
exchange subset), denoted by Ξ \//, is constructed in 
such a way that each move is formed by removing 
three existing ("old") edges and adding three different 
("new") edges. In particular, the separate edge 
(p(i), p(i + 1)) and two adjoining (neighboring) edges 
(p(j − 1), p(j)), (p(j), p(j + 1)) are removed and the 
three new edges (p(i), p(j)), (p(j), p(i + 1)), 
(p(j − 1), p(j + 1)) are added so that the feasibility of 
the tour is preserved (here, j > i + 1) (see Figure 10). 

 
Figure 10. Illustrative example of the 3-edge-exchange 

move 

The 4-exchange subset contains two other subsets 
denoted as Ξ \/// and Ξ \\//. In both cases, the moves are 
constructed by removing four old edges and adding 
four new edges2. In the first case, the separate edge 
(p(i), p(i + 1)) and three adjoining edges 
(p(j − 2), p(j − 1)), (p(j − 1), p(j)), (p(j), p(j + 1)) are 
deleted and the four new edges are added (here, 
j > i + 2). There are 5 different variants for adding new 
edges (also see Figure 11(a)): 1) (p(i), p(j)), 
(p(j), p(j − 1)), (p(j − 1), p(i + 1)), (p(j − 2), p(j + 1)); 
2) (p(i), p(j)), (p(j), p(j − 2)), (p(i + 1), p(j − 1)), 
(p(j − 1), p(j + 1)); 3) (p(i), p(j − 1)), (p(j − 1), p(j)), 
(p(j), p(j − 2)), (p(i + 1), p(j + 1)); 4) (p(i), p(j − 1)), 
(p(j − 1), p(j)), (p(j), p(i + 1)), (p(j − 2)), p(j + 1)); 
5) (p(i), p(j − 2)), (p(i + 1), p(j)), (p(j), p(j − 1)), 
(p(j − 1)), p(j + 1)). 

In the second case, the two pairs of neighboring 
edges (p(i − 1), p(i)), (p(i), p(i + 1)) and 
(p(j − 1), p(j)), (p(j), p(j + 1)) are removed and the 
four new edges are added (here, j > i + 1). There are 3 
different variants for inserting new edges in this 
particular situation (also see Figure 11(b)): 
1) (p(i − 1), p(j)), (p(j), p(i + 1)), (p(j − 1), p(i)), 
(p(i), p(j + 1)); 2) (p(i − 1), p(j)), (p(j), p(i)), 
(p(i), p(j − 1)), (p(i + 1), p(j + 1)); 
3) (p(i − 1), p(j − 1)), (p(i + 1), p(j)), (p(j), p(i)), 
(p(i), p(j + 1)). 

Regarding the 5-exchange subset (Ξ \\///), the moves 
are formed by firstly deleting and then reconnecting 
five edges. In particular, the two adjoining edges 
(p(i − 1), p(i)), (p(i), p(i + 1)) and then three other 
adjoining edges (p(j − 2), p(j − 1)), (p(j − 1), p(j)), 
(p(j), p(j + 1)) are removed; after that, five edges are 
inserted (here, j > i + 2). We have 17 different ways to 
reconnect the newly inserted edges (see Figure 12). 

Finally, the two pairs of adjoining edges 
(p(i − 2), p(i − 1)), (p(i − 1), p(i)), (p(i), p(i + 1)) and 
(p(j − 2), p(j − 1)), (p(j − 1), p(j)), (p(j), p(j + 1)) are 
removed and the six new edges are added (here, 
j > i + 2). This results in the 6-exchange subset, Ξ \\\///. 
In this case, the total number of the different 
configurations of edges increases to 106 (see 
Appendix, Figure A1). 
                                                           
2 Some of edges may be simply "refreshed" (instead of inserting 
entirely new edges). 
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Figure 11. Illustrative examples of the different possible variants of 4-edge-exchange moves 

 

 
Figure 12. Illustrative examples of the different possible variants of 5-edge-exchange moves 
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Of course, we can take the union of all the subsets 
of moves (Ξ \// ∪ Ξ \/// ∪ Ξ \\// ∪ Ξ \\/// ∪ Ξ \\\///), 
including the 2-exchange moves; then the resulting 
search strategy would have resembled a very modified 
6-opt like procedure. 

There is a slight increase in the run time due to the 
testing of all possible configurations of the extended 
(modified) moves. The algorithm's framework itself 
remains, however, almost unchanged, except that the 
"p + move(i, j)"-type operations are turning to the 
operations of the type "p + move(i, j, config∗)". Here, 
config∗ is denoting the move configuration such that 
the move causes a tour of shortest length among all 
move configurations; that is, 

{ pzconfig
TNFconfig

(minarg
,...2,1=

∗ = + })),,( configjimove , where 

config denotes the current move configuration and 
TNF is the total number of configurations, which is 
actually equal to 133 (1 + 1 + 8 + 17 + 106), including 
the 2-exchange move. 

The neighborhood exploration complexity is still 
O(n2) for the 2-opt local search and O(Kn) for the fast 
local search. 

3.3. Incorporating stochastic perturbations 

Yet another way of enhancing the local search 
framework is to integrate (combine) the rigorous 
(greedy descent-based) and stochastic search 
processes. The resulting approach (known as an 
iterated local search (ILS) [16]) is not deterministic 
any more; however, it can lead to higher quality 
solutions. The example of the ILS algorithm is 
presented in a high-level pseudo-code form in 
Figure 13. Many variations of ILS are possible  
 

function iterated_local_search(p, µ); 
// input: p − initial (starting) solution (tour), µ − 
number of iterations (µ ≥ 1); output: p• − resulting 
solution 
begin 
  p′ := local_search_in_Θ2(p); // perform local 
search in a given neighborhood (starting from the 
initial solution p) 
  p• := p′; 
  current_number_of_iterations := 0; 
  repeat 
    
current_number_of_iterations := current_number_o
f_iterations + 1; 
    p~ := random_perturbation(p•); // perform 
random perturbation procedure (starting from p•) 
    p′ := local_search_in_Θ2(p~); // perform 
local search in a given neighborhood (starting from 
p~) 
    if z(p′) < z(p•) then p• := p′ 
  until current_number_of_iterations = µ; 
  return p• 
end. 

Figure 13. Pseudo-code of the iterated local search 
algorithm 

depending on the deterministic (descent) local search 
algorithm and stochastic perturbation technique at 
hand. In this work, we tried the greedy descent-based 
fast local search heuristics in the role of the 
descending algorithm; while, for the role of the 
perturbation mechanism, we used a special type of 
procedure — the so-called nearest-neighbor 
reconnection (NNR) procedure (see [22]). The NNR 
procedure is quite identical to the well-known nearest-
neighbor (NN) algorithm [27], except that only a 
relatively small fraction (usually about 20-30%) of 
cities is involved in this procedure and the remaining 
larger part of the tour is not affected (a fraction is 
selected randomly from the tour). 

The limit of the run time of our ILS algorithms is 
predetermined by the number of iterations (µ) (see 
Figure 13), which can be flexibly tuned by the user. 

The NNR-based perturbations take less than O(n2) 
time, so these perturbations do not significantly 
increase the overall computational complexity. 

4. Results of computational experiments 
We have examined our local search heuristic 

algorithms on the benchmark problem instances taken 
from the traveling salesman problem library — 
TSPLIB [26]. In the computational experiments 
conducted, the size of the instances varies between 96 
and 1000 cities. The experiments were performed on a 
personal computer with an Intel Pentium IV 3 GHz 
single-core processor. 

We used the following LS heuristics in our 
experimentation: 1) standard (2-opt) local search using 
the neighborhood Θ2 (denoted as LS〈〈Θ2〉〉 ); 2) fast 
local search using the neighborhood Θ2 (FLS〈〈Θ2〉〉 ); 
3) iterated fast local search using the neighborhood Θ2 
(IFLS〈〈Θ2〉〉 ); 4) iterated fast local search using the 
neighborhood 2222 ⊕⊕⊕Θ  (IFLS〈〈 2222 ⊕⊕⊕Θ 〉〉 ); 5) iterated 
fast local search using the neighborhood 2222 ⊗⊗⊗Θ  
(IFLS〈〈 2222 ⊗⊗⊗Θ 〉〉 ); 6) iterated extended fast local 
search using the neighborhood 2222 ⊕⊕⊕Θ  and the set of 
extended moves Ξ \// ∪ Ξ \/// ∪ Ξ \\// ∪ Ξ \\/// ∪ Ξ \\\/// 
(IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉 ); 7) iterated extended fast local 
search using the neighborhood 2222 ⊗⊗⊗Θ  and the same 
set of extended moves (IEFLS〈〈 2222 ⊗⊗⊗Θ 〉〉 ). 

The first part of the experimentation was designed 
as follows. Let R be the pre-defined number of 
restarts, i.e. single applications of the algorithm to a 
given instance. At every restart, the algorithm starts 
from a new random initial solution. The current restart 
is interrupted as soon as the local optimum is found 
(or the maximum number of iterations is performed — 
which is the case of the iterated local search). The next 
restart is then started, and so on. The process stops 
when R restarts have been carried out. The best 
solution obtained during these restarts serves as a 
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resulting solution of the algorithm. This is repeated for 
each examined instance. 

So, we used 10000 restarts of LS〈〈Θ2〉〉 and 100000 
restarts of FLS〈〈Θ2〉〉. The computation time of the 
iterated local search algorithms (IFLS, IEFLS) is 
controlled by the number of iterations (µ). We used 
µ = 20000 for IFLS〈〈Θ2〉〉, µ = 5000 for IFLS 〈〈 2222 ⊕⊕⊕Θ
〉〉 and IFLS〈〈 2222 ⊗⊗⊗Θ 〉〉, and µ = 500 for IEFLS〈〈

2222 ⊕⊕⊕Θ 〉〉 and IEFLS〈〈 2222 ⊗⊗⊗Θ 〉〉. In this way, all the 
algorithms consume more or less the same amount of 
computation (CPU) time. 

The results of the experiments are presented in 
Table 1. Note that, in Table 1, ""δ  is to denote the 
relative deviation of the obtained solutions from the 
provably optimal solution; δ  is calculated by the 
formula: %][ ) (100 ◊◊−= zzzδ , where z  is the 
obtained value of the objective function (tour length) 
and ◊z  denotes the provably optimal objective 
function value (these values can be found in TSPLIB). 

In addition, we have compared our best variant 
(IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉) with other heuristic algorithms. In 
the experiments, the following seven heuristic 
algorithms (including IEFLS) have been tried: 1) 3-
opt (LS〈〈Θ3〉〉 ); 2) simulated annealing (SA) [20]; 
3) tabu search (TS) [23]; 4) genetic algorithm (GA) 
[21]; 5) Helsgaun's implementation of the Lin-
Kernighan algorithm (HLK) [8]; 6) greedy 
randomized adaptive search procedure (GRASP) [18]; 
7) IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉. The run time for IEFLS〈〈

2222 ⊕⊕⊕Θ 〉〉 remained the same as given in Table 1. The 
execution time for other algorithms was adjusted so 
that all the algorithms used approximately similar 

CPU time. The results of the comparison are presented 
in Table 2. 

We may also be interested in the investigation of 
run time performance (run time distributions) instead 
of the solution quality. In this case, the so-called "time 
to target" methodology [1] can be applicable. For a 
given value of the objective function (target value), 
the algorithm is repeated multiple times and the run 
times of the algorithm to achieve this value are 
recorded and sorted. With the ith sorted time, a 
probability 𝑃𝑖 = 𝑖−0.5

𝑊
 is associated, where 

𝑖 ( 𝑖 =  1,  2,  … ,  𝑊 ) denotes the current run (trial) 
number and W is the total number of runs. The 
probabilities Pi are visualized by so-called time-to-
target plots which show the probability that the target 
value will be achieved. 

In Figure 14, we present the time-to-target plots 
for the algorithms LS〈〈Θ2〉〉, FLS〈〈Θ2〉〉, IFLS〈〈Θ2〉〉, and 
IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉. The instance examined is gr96 and 
the target value is equal to 55485, which is 0.5% 
above the provably optimal solution value (55209). 
(We used 30 runs (W = 30), where each run consists of 
10000 restarts of LS, 100000 restarts of FLS, 20000 
iterations of IFLS, and 500 iterations of IEFLS.) 

The performance improvement factor, PIF, of one 
algorithm (say, ℑ1) to another one (say, ℑ2) may be 

introduced by using the formula: 
)(
)(

15.0

25.0

ℑ
ℑ

t
tPIF = ; 

here, t0.5 denotes the time needed to obtain the given 
target value with the probability 0.5. In Table 3, we 
present the approximate values of the performance 
improvement factors for the algorithms LS〈〈Θ2〉〉, 
FLS〈〈Θ2〉〉, IFLS〈〈Θ2〉〉, and IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉. In 
particular, the performance improvement factors PIF1, 

 

Figure 14. Time-to-target plots for the TSPLIB instance gr96 
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Table 1. Results of the experiments with the local search heuristics on TSPLIB instances 

Instance  
name‡ 

◊z  

δ  
Averaged 
CPU time 

(s) LS 
〈〈Θ2〉〉 

FLS 
〈〈Θ2〉〉 

IFLS 
〈〈Θ2〉〉 

IFLS 
〈〈Θ2⊗2⊗2⊗2〉

〉 

IFLS 
〈〈Θ2⊕2⊕2⊕2〉

〉 

IEFLS 
〈〈Θ2⊗2⊗2⊗2〉

〉 

IEFLS 
〈〈Θ2⊕2⊕2⊕2〉

〉 

bier127 118282 0.849 0.517 0.163 0.077 0.058 0.026 0.000 2.6 

ch130 6110 0.999 0.699 0.552 0.251 0.170 0.063 0.010 2.7 

d657 48912 5.732 2.650 1.335 0.629 0.256 0.230 0.158 110 

dsj1000a 1865968
8 9.937 7.069 3.739 1.994 0.571 0.410 0.334 500 

eil101 629 1.655 0.802 0.285 0.072 0.034 0.019 0.004 2.1 

fl417 11861 2.597 1.403 0.656 0.251 0.088 0.055 0.045 39 

gil262 2378 1.099 0.795 0.332 0.117 0.056 0.020 0.012 8.8 

gr96 55209 0.997 0.724 0.301 0.056 0.000 0.000 0.000 1.9 

gr120 6942 1.968 0.998 0.321 0.121 0.091 0.022 0.023 2.4 

gr137 69853 0.824 0.768 0.057 0.042 0.046 0.054 0.011 3.0 

gr229 134602 0.911 0.714 0.071 0.057 0.007 0.004 0.002 8.5 

gr431 171414 3.045 1.789 0.660 0.359 0.202 0.067 0.056 42 

kroa100 21282 0.073 0.060 0.053 0.050 0.000 0.000 0.000 2.0 

krob100 22141 0.379 0.287 0.059 0.047 0.019 0.005 0.000 2.0 

kroc100 20749 0.546 0.455 0.368 0.061 0.066 0.008 0.000 2.0 

krod100 21294 1.538 1.202 0.575 0.274 0.199 0.093 0.000 2.0 

kroe100 22068 0.983 1.302 0.493 0.283 0.253 0.142 0.000 2.0 

lin105 14379 0.642 0.439 0.048 0.021 0.001 0.000 0.000 2.1 

lin318 42029 1.202 0.801 0.390 0.121 0.064 0.049 0.036 18 

pcb442 50778 5.185 3.004 0.738 0.409 0.123 0.134 0.128 46 

pr107 44303 0.093 0.097 0.265 0.043 0.025 0.019 0.006 2.2 

pr124 59030 0.953 0.650 0.244 0.135 0.098 0.047 0.000 2.4 

pr264 49135 0.785 0.578 0.239 0.077 0.048 0.010 0.011 9.0 

pr439 107217 4.462 2.922 0.668 0.411 0.260 0.067 0.074 44 

rat99 1211 0.614 0.465 0.067 0.044 0.029 0.007 0.000 2.0 

rat783 8806 7.472 3.159 1.634 0.702 0.404 0.236 0.239 160 

rd100 7910 0.961 0.873 0.600 0.110 0.076 0.044 0.001 2.0 

rd400 15281 1.543 1.322 0.734 0.156 0.089 0.042 0.044 34 

si535 48450 6.489 3.030 1.134 0.655 0.174 0.157 0.139 69 

tsp225 3916 0.505 0.413 0.100 0.010 0.003 0.002 0.000 8.3 

Average: 2.168 1.333 0.563 0.255 0.117 0.068 0.044  

‡ the numeral in the instance name indicates the size of the problem, i.e. the number of cities. 
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Table 2. Results of the comparison of different heuristic algorithms on TSPLIB instances 

Instance  
name 

◊z  
δ  Averaged 

CPU 
time (s) LS 

〈〈Θ3〉〉 
SA 

 
TS 

 
GA 

 
HLK 

 
GRASP 

 
IEFLS 

〈〈Θ2⊕2⊕2⊕2〉〉 

bier127 118282 0.752 0.133 0.029 0.034 0.000 0.000 0.000 2.6 

ch130 6110 0.809 0.312 0.048 0.149 0.000 0.000 0.010 2.7 

d657 48912 5.031 2.025 1.685 0.793 0.000 0.000 0.158 110 

dsj1000a 18659688 9.565 3.002 4.013 2.032 0.030 0.008 0.334 500 

eil101 629 0.850 0.127 0.016 0.023 0.000 0.000 0.004 2.1 

fl417 11861 2.433 0.458 0.264 0.342 0.048 0.000 0.045 39 

gil262 2378 1.003 0.158 0.340 0.172 0.000 0.000 0.012 8.8 

gr96 55209 0.574 0.001 0.000 0.000 0.000 n/a 0.000 1.9 

gr120 6942 1.443 0.181 0.089 0.110 0.000 n/a 0.023 2.4 

gr137 69853 0.768 0.038 0.000 0.123 0.000 n/a 0.011 3.0 

gr229 134602 0.751 0.148 0.096 0.132 0.006 n/a 0.002 8.5 

gr431 171414 2.959 0.294 0.576 0.247 0.043 n/a 0.056 42 

kroa100 21282 0.070 0.000 0.000 0.000 0.000 0.000 0.000 2.0 

krob100 22141 0.362 0.097 0.000 0.000 0.000 0.000 0.000 2.0 

kroc100 20749 0.535 0.169 0.012 0.073 0.000 0.000 0.000 2.0 

krod100 21294 1.288 0.207 0.013 0.280 0.000 0.000 0.000 2.0 

kroe100 22068 0.853 0.301 0.024 0.135 0.002 0.000 0.000 2.0 

lin105 14379 0.526 0.083 0.032 0.019 0.000 0.000 0.000 2.1 

lin318 42029 1.198 0.285 0.620 0.216 0.071 n/a 0.036 18 

pcb442 50778 5.001 1.043 0.756 1.799 0.001 0.000 0.128 46 

pr107 44303 0.087 0.071 0.005 0.035 0.000 0.000 0.006 2.2 

pr124 59030 0.842 0.217 0.004 0.121 0.000 0.000 0.000 2.4 

pr264 49135 0.771 0.145 0.053 0.125 0.000 0.000 0.011 9.0 

pr439 107217 4.300 0.862 0.443 0.254 0.001 0.000 0.074 44 

rat99 1211 0.511 0.090 0.056 0.004 0.000 0.000 0.000 2.0 

rat783 8806 7.180 1.192 2.682 0.877 0.000 0.000 0.239 160 

rd100 7910 0.846 0.255 0.407 0.303 0.000 0.000 0.001 2.0 

rd400 15281 1.522 0.422 0.839 0.248 0.000 0.000 0.044 34 

si535 48450 6.353 1.813 1.959 0.343 0.005 n/a 0.139 69 

tsp225 3916 0.489 0.282 0.256 0.147 0.000 0.000 0.000 8.3 

Average: 1.989 0.480 0.511 0.305 0.007 0.000 0.044  

 

PIF2, PIF3 are given, where 
)IEFLS(

)LS(

5.0

5.0
1 t

tPIF = , 

)IEFLS(
)FLS(

5.0

5.0
2 t

tPIF = , 
)IEFLS(

)IFLS(

5.0

5.0
3 t

tPIF =  (here, the 

target values are 0.5% and 1.0% above the 

corresponding optimal solution values for n < 300 and 
n > 300, respectively). From Table 3, it could be seen 
that the performance improvement factors of IEFLS to 
LS, IEFLS to FLS, and IEFLS to IFLS, averaged over 
30 instances, are roughly equal to 6.6, 4.9, and 2.7, 
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respectively. For example, for the instance gr96, we 
obtained the following factors:  

9
7.0
3.6

)IEFLS(
)LS(

5.0

5.0
1 =≈=

t
tPIF ,  

6.7
7.0
3.5

)IEFLS(
)FLS(

5.0

5.0
2 ≈≈=

t
tPIF ,  

3.4
7.0

3
)IEFLS(

)IFLS(

5.0

5.0
3 ≈≈=

t
tPIF   

(this is seen also in Figure 14). 

 

Table 3. Performance improvement factors for the local search heuristics on TSPLIB instances 

Instance 
name PIF1 PIF2 PIF3 

Instance 
name PIF1 PIF2 PIF3 

bier127 6.5 4.1 1.9 krod100 7.2 4.6 3.3 

ch130 8.2 6.3 2.9 kroe100 6.3 4.4 3.0 

d657 5.0 3.7 1.7 lin105 9.4 6.9 3.1 

dsj1000a 3.9 2.8 1.5 lin318 6.1 4.6 2.4 

eil101 8.6 5.9 4.8 pcb442 5.1 3.8 1.7 

fl417 4.5 3.8 2.1 pr107 7.7 5.8 3.2 

gil262 4.8 3.9 2.6 pr124 7.5 5.9 2.8 

gr96 9.0 7.6 4.3 pr264 5.8 4.9 2.5 

gr120 8.4 6.1 5.0 pr439 5.5 4.3 2.0 

gr137 7.8 3.9 2.2 rat99 6.3 5.9 2.9 

gr229 5.6 4.5 2.5 rat783 5.2 3.9 1.8 

gr431 4.9 3.8 1.9 rd100 9.5 7.1 3.5 

kroa100 6.9 5.0 2.7 rd400 5.6 4.5 2.2 

krob100 7.3 4.9 2.9 si535 5.5 4.3 2.1 

kroc100 7.1 4.5 3.2 tsp225 6.3 5.8 2.9 

Average: ----------------------------------------------------------------------------- 6.6 4.9 2.7 

 

5. Concluding remarks 
In this paper, we have proposed several modified 

local search heuristic algorithms for solving the well-
known combinatorial optimization problem, the 
traveling salesman problem. In particular, we were 
concerned with the extended neighborhood structures 
and some new rules for the move (edge exchange) 
generation. We have also examined the performance 
of these extensions being integrated in the iterated 
local search paradigm, which is based on the 
combination of deterministic and stochastic search 
processes. 

Our new heuristics are computationally tested on 
the benchmark TSP instances taken from the publicly 
available library of the TSP instances (TSPLIB). The 
results from the experiments show that applying the 
new developed neighborhood structures as well as the 
extended (modified) move generation mechanisms 
appears to be apparently superior to the traditional 2-
opt-based heuristics from both solution quality and 

run time performance point of view. It has also been 
learned that, by integrating these modifications into 
the iterated local search framework, the performance 
is increased even more significantly. One more 
interesting observation is that the "breadth-first" like 
search appears to be preferable to the "depth-first" 
strategy at least for the TSP instances examined. 

The results of the comparison of our new modified 
local search algorithm and other heuristic algorithms 
demonstrate that our approach is inferior to the best 
state-of-the-art heuristics for larger-sized symmetric 
TSP instances. However, our algorithm compares 
favourably with the elaborated modern heuristic 
procedures for smaller-sized problems. 

Regarding the future work, it is worth to increase 
the performance of the proposed LS modifications 
using advanced data structures. It might also be 
worthy to try our LS heuristics on even larger-sized 
TSPLIB instances, or possibly other types of the TSP 
(like the asymmetric TSP). The introduced strategies 
for extending the neighborhoods and integrating the 
descending local search and stochastic perturbations 
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seem to be of rather general character, so they may be 
applicable for a wider class of combinatorial 
optimization problems. In addition, our heuristics 
could be used as effective sub-procedures within other 
artificial intelligence methods (like genetic/evolu-
tionary algorithms or swarm optimization techniques). 
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Appendix 

 
Figure A1. Illustrative examples of the different possible variants of 6-edge-exchange moves 

 

 


