
217

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.3

Modified Local Search Heuristics for the Symmetric
Traveling Salesman Problem

Alfonsas Misevičius1, Andrius Blažinskas2, Antanas Lenkevičius3

Kaunas University of Technology, Department of Multimedia Engineering,
Studentų st. 50-400a/416a, LT-51368 Kaunas, Lithuania

e-mail: 1alfonsas.misevicius@ktu.lt, 2andrius.blazinskas@ktu.lt, 3antanas.lenkevicius@ktu.lt

 http://dx.doi.org/10.5755/j01.itc.42.3.1301

Abstract. In this paper, we investigate some modified local search (LS) heuristics for the solution of symmetric
traveling salesman problem (TSP). These modifications are mainly due to the use of extended neighborhood structures.
In addition, we are concerned with several new sets of the moves (transitions of solutions) based on the extended
configurations of edge exchanges. We are also examining the performance of these extensions being used in an iterated
local search (ILS) paradigm. The results from the experiments with the benchmark TSP instances from the TSP library
(TSPLIB) demonstrate that the introduced improvements enable to seek solutions of higher quality without
substantially increasing computational complexity.

Keywords: artificial intelligence; heuristics; local search; combinatorial optimization; traveling salesman problem.

1. Introduction
The traveling salesman problem (TSP) is stated as

follows. Given the distance matrix D = (dij)n×n and the
set Πn of all possible permutations of the integers from
1 to n, find a permutation p ∈ Πn that minimizes the
following objective function:

)1()(

1

1
)1()()(pnp

n

i
ipip ddpz +=∑

−

=
+ . (1)

Each permutation can be viewed as a tour through
n cities such that each city is visited exactly once. The
element of the permutation, ci = p(i), denotes city ci to
visit at step i, where i = 1, 2, …, n. The pairs
(p(1), p(2)), ..., (p(i), p(i + 1)), ..., (p(n), p(1)) are
called edges. The distances between cities are stored
in the matrix D with elements 𝑑𝑖𝑗 0F

1; then the entry

1mod
,

+nii ccd (i = 1, 2, ..., n) denotes the length of the ith

edge and z(p) is the total length of the tour p. Thus,
solving the TSP means searching for the tour of
minimal total length so that every city is visited only
once and the salesman returns back to the starting city
at the end of the trip.

The traveling salesman problem has been
intensively studied during more than past 50 years and
is one of the central problems in combinatorial

1 Only symmetric problems are considered in this paper, i.e. dij = dji,
i = 1, 2, …, n.

optimization [2, 7, 10]. The TSP and its variants have
important practical applications in various areas (like
vehicle routing, clustering, job-shop scheduling) [13].
On the other hand, the TSP is a suitable platform for
both theoretical and experimental investigations of
intelligent computer-based methods, including exact
and heuristic/metaheuristic algorithms [11, 12].

Among heuristic algorithms, local search (LS)-
based (also known as neighborhood search)
algorithms have been shown to be quite effective.
Many of them are based on edge or chain exchange
mechanisms (like 2-opt, 3-opt or generalized r-opt
procedures [14]) and remain popular due to their ease
of implementation. The most efficient local search
approaches originate from the widely approved Lin-
Kernighan (LK) algorithm [15], which may be viewed
as a dynamic r-opt procedure. However, the Lin-
Kernighan algorithm and its enhanced variants
[3, 8, 9, 24] require a quite considerable amount of
sophistication regarding the data structures and
programming techniques, which makes them hard to
implement and replicate. To address these issues, the
researchers have considered the simpler versions of
LK-heuristic [17] or modified edge/chain exchange
algorithms (such as guided local search [29] or so-
called Or-opt heuristics [4]). Also, other LS-based
methodological modifications have been proposed, for
example, local search with search space smoothing
[6], iterated/combined local search [19, 28], ejection
chain/stem-and-cycle methods [5, 25].

A. Misevičius, A. Blažinskas, A. Lenkevičius

218

In this paper, we are concerned with how the
improved results can be achieved by incorporating
some more new modifications into the traditional local
search frame. The paper is structured as follows. In
Section 1, we are giving preliminary definitions and
outlining the general local search paradigm in the
context of symmetric traveling salesman problems
(STSPs). The new modified local search approaches
for the STSP are detailed in Section 2. In Section 3,
we present the results of the computational
experiments with the proposed heuristics on the
benchmark problems taken from the traveling
salesman problem library — TSPLIB. The paper is
completed with concluding remarks.

2. Preliminaries
The Hamming distance between two TSP tours p

and p′ can be defined as
ρ(p, p′) = | Ω |; (2)

where Ω is the set that consists of all possible pairs of
cities (edges) (p(i), p(i mod n + 1)) (i = 1, 2, ..., n)
such that ¬ ∃ j:

=′′
<≤+′′

=+
njpjp

njjpjp
nipip

 ,))1(),((
1 ,))1(),((

))1 mod (),((or

=′′
≤<−′′

=+
1 ,))(),((

1 ,))1(),((
))1 mod (),((

jnpjp
njjpjp

nipip .(3)

Roughly speaking, the Hamming distance is the
number of edges that are contained in one tour, but not
in the other.

A neighborhood function Θ: Πn → nΠ2 assigns for
every p from Πn a set Θ(p) ⊆ Πn — the set of
neighboring solutions of p. An example of the
neighborhood function is the 2-(edge-)exchange
neighborhood Θ2, which is frequently used for the
TSP. The neighborhood Θ2 can be formally described
in the following way:

{ }2),(, |)(2 =′Π∈′′= pppppΘ n ρ , where ρ denotes
the Hamming distance as defined by formulas (2), (3).
Each tour, p′, of Θ2(p) may be obtained from p by an
operation that is referred to as a 2-(edge-)exchange
move (solution transition). The 2-edge-exchange
move can mathematically be formulated as a mapping
Φ: nn Π→Ν×Ν×Π , which gives for every tour
p ∈ Πn a neighboring tour p′ ∈ Θ2(p) ⊆ Πn such that
p′(i) = p(i), p′(i + 1) = p(j), p′(j) = p(i + 1),
p′(j mod n + 1) = p(j mod n + 1), where
1 ≤ i, j ≤ n ∧ 1 < j − i < n − 1; in addition, if
j − i − 2 ≥ 1 then p′(i + k + 1) = p(j − k) for
k = 1, ..., j − i − 2. Briefly speaking, the pair of
existing edges (p(i), p(i + 1)), (p(j), p(j + 1)) are
removed from the tour and two new different edges
(p(i), p(j)), (p(i + 1), p(j + 1)) are added (see Figure 1).
A more compact form of notation, for example,
p + move(i, j) (or (p, i, j)), may be applicable for

this type of moves. Note that the 2-exchange move is
symmetric as p′ = p + move(i, j) → p = p′ + move(i, j).

Figure 1. Illustrative example of the 2-edge-exchange move

The solution (tour) p• is locally optimal with
respect to the neighborhood Θ2 (also referred to as a 2-
opt(imal) solution) if z(p•) ≤ z(p) for any p ∈ Θ2(p•),
i.e. z(p•) ≤ z(p• + move(i, j)) for i = 1, ..., n − 2,
j = i + 2, ..., n − 1 + sign(i − 1). A 2-opt solution may
be found by starting from an arbitrary initial solution
and trying to iteratively apply 2-exchange moves (2-
opt moves) until no possible move yields a better
value of the objective function (z) (i.e., negative value
of z(p + move(i, j)) − z(p), where p denotes the
currently processed solution). This iterative process is
generally known as a 2-opt algorithm (procedure) (i.e.
local search algorithm using the neighborhood Θ2 and
descending 2-exchange moves). There are two
strategies: a) a greedy-first-accept (GFA) strategy
selects the first neighbor p′ ∈ Θ2(p) for which
z(p′) < z(p); b) a greedy-best-accept (GBA) strategy
selects a neighbor p′ ∈ Θ2(p) such that

)(minarg
)(2

pzp
pΘp

∈

=′ . The detailed formalized pseudo-

code of the GBA-based 2-opt algorithm is shown in
Figure 2 (see also [22]).

The run time of the 2-opt algorithm can be reduced
by introducing the following modifications (see also
[22]):

• using the restricted exploration of the
2−exchange neighborhood;

• applying the limited number of the descending
2-exchange moves.

In the first case, the neighborhood exploration is
confined to the nearest cities of the current city. The
nearest-neighbor list of the cities, i.e. the candidate
list, CL, takes O(Kn) memory (where K = | CL |) and
its construction takes O(n2log2n) time (the
construction takes place only once before initializing
the algorithm). The size of the candidate list is
arbitrarily chosen by the algorithm's user/analyst. (We
used K = 8.)

In the second case, the number of descending 2-
exchange moves, λ, is also controlled by the user. (We
used λ = 30.)

edge to be
deleted
edge to be
added

p(i)
p(i + 1)

p(j)
p(j + 1)

Modified Local Search Heuristics for the Symmetric Traveling Salesman Problem

219

The resulting user-controlled procedure can be
called a "fast λ-descent" or a "fast local search" (FLS).
The pseudo-code of the GBA-based fast local search
algorithm is given in Figure 3.

function local_search_in_Θ2(p);
// input: p − initial (starting) solution (tour); output:
p − resulting solution (locally optimal solution with
respect to Θ2)
begin
 repeat
 ∆min := 0; // ∆min denotes the minimum
difference in the objective function values
 for i := 1 to n − 2 do
 for j := i + 2 to n − 1 + sign(i − 1) do
begin
 ∆ := z(p + move(i, j)) − z(p); if
∆ < ∆min then begin ∆min := ∆; k := i; l := j
end
 end; // for
 if ∆min < 0 then p := p + move(k, l) //
move from the current solution to a new one
 until ∆min = 0;
 return p
end.

Figure 2. Pseudo-code of the greedy-best-accept-based local
search algorithm using the neighborhood Θ2

function fast_local_search_in_Θ2(p, λ);
// input: p − starting solution (tour), λ − (maximum)
number of descents (λ ≥ 1); output: p − resulting
solution
// auxiliary variables: CL − candidate list (nearest-
neighbor list of the cities)
begin
 number_of_moves := 0; for i := 1 to n
do index[p[i]] := i;
 repeat
 ∆min := 0;
 for u := 1 to n do
 for v := 1 to | CL | do begin
 i := min(u,index[CL[p[u],v]]);
j := max(u,index[CL[p[u],v]]);
 if (i + 2 ≤ j) and
(j ≤ n − 1 + sign(i − 1) then begin
 ∆ := z(p + move(i, j)) − z(p); if
∆ < ∆min then begin ∆min := ∆; k := i; l := j
end
 end // if
 end; // for
 if ∆min < 0 then begin
p := p + move(k, l); update index;
number_of_moves := number_of_moves + 1 end //
if
 until (number_of_moves = λ) or (∆min = 0);
 return p
end.

Figure 3. Pseudo-code of the greedy-best-accept-based fast
local search algorithm using the neighborhood Θ2

3. Modifications of the local search heuristics
for the symmetric TSP

3.1. Extended neighborhoods

Our idea is to allow a composition of the simpler
neighborhoods (like Θ2) and construction of more
complex neighborhood topologies with the
compounded neighborhoods consisting of several sub-
neighborhoods.

So, let p be a feasible tour (permutation) from Πn;
also, let z(p) and Θ2(p) denote, respectively, the
objective function value and the 2-edge-exchange
neighborhood for the tour p as defined above in the
previous sections. Then, the extended (compounded)
2-edge-exchange neighborhood (denoted as 22⊕Θ) is
formally described as follows:

, | {)()(222 npppΘpΘ Π∈∪= ∧∧
⊕

}2),(, ▓ =≠ ∧∧ ppρpp , (4)

where ρ denotes the Hamming distance and
)(minarg

)(2

▓ −

∈ −−
= pzp

pΘp
,)}(minarg{\)()(

)(
22

2

pzpΘpΘ
pΘp

∈

− = .

The graphical view of the neighborhood 22⊕Θ is
depicted in Figure 4.

Further, the extended neighborhood 222 ⊕⊕Θ can be
introduced (see also Figure 5):

, | {)()(22222 npppΘpΘ Π∈∪= ∧∧∧∧
⊕⊕⊕

}2),(, ▓ ▓ =≠ ∧∧∧∧ ppρpp , (5)

where)(minarg
)(2

▓ ▓ −−

∈ −−−−
=

pzp
pΘp

,

)}(minarg{\)()(
)(

22
2

pzpΘpΘ
pΘp −∈

−−− = . Very similarly, the

neighborhood 2222 ⊕⊕⊕Θ (see Figure 6) and higher
order neighborhoods may be defined.

Note that searching in such kind of neighborhoods
conceptually resembles the "breadth-first search"
policies used, for example, for searching in graph
structures. The other type of extended neighborhoods
may be introduced so that "walking" in these
neighborhoods would have looked like the "depth-first
search" (an alternative to the breadth-first search). An
example of such a neighborhood is the neighborhood

222 ⊗⊗Θ which can mathematically be described in the
following way (see also Figure 7):

, | {)()(22222 npppΘpΘ Π∈∪= ∧∧∧∧
⊗⊗⊗

}2),(, ▓ ▓ =≠ ∧∧∧∧ ppρpp , (6)

where)(minarg
)(▓

2

▓ ▓ −−

∈ −−−
=

pzp
pΘp

,

)}(minarg{\)()(
)(

22
▓

2

▓▓

pzpΘpΘ
pΘp ∈

− = ,

)(minarg
)(2

▓ −

∈ −−
= pzp

pΘp
,)}(minarg{\)()(

)(
22

2

pzpΘpΘ
pΘp

∈

− = .

(The neighborhood 22⊗Θ is, in fact, the same as the

A. Misevičius, A. Blažinskas, A. Lenkevičius

220

neighborhood 22⊕Θ ()(22 p⊗Θ ≡)(22 p⊕Θ ∀ p ∈ Πn).)
Similarly to formula (6), the neighborhood 2222 ⊗⊗⊗Θ
(see Figure 8) and the other higher order
neighborhoods may be derived. In addition, many
different combined variants are possible: 222 ⊗⊕Θ ,

222 ⊕⊗Θ , 2222 ⊗⊕⊕Θ , 2222 ⊕⊗⊗Θ , and so on. As long as

the number of the sub-neighborhoods covered remains
constant, the time complexity of the neighborhood
exploration is proportional to O(n2), where n is the
problem size. In the case of the fast local search, the
complexity reduces to O(Kn), where K is the
candidate list size.

Figure 4. Graphical representation of the neighborhoods Θ2 and 22⊕Θ

Figure 5. Graphical representation of the neighborhood 222 ⊕⊕Θ

Figure 6. Graphical representation of the neighborhood 2222 ⊕⊕⊕Θ

Figure 7. Graphical representation of the neighborhood 222 ⊗⊗Θ

Figure 8. Graphical representation of the neighborhood 2222 ⊗⊗⊗Θ

Modified Local Search Heuristics for the Symmetric Traveling Salesman Problem

221

In Figure 9, we present the pseudo-code of the 2-
opt local search algorithm using the neighborhood

22⊕Θ (22⊗Θ). Similarly, the algorithm for the fast local
search in the neighborhood 22⊕Θ (22⊗Θ), as well as
the algorithms for searching in the neighborhoods

222 ⊕⊕Θ , 2222 ⊕⊕⊕Θ , 222 ⊗⊗Θ , 2222 ⊗⊗⊗Θ , etc. can be
described.

function local_search_in_Θ2⊕2(p);
// input: p − initial (starting) solution (tour); output:
p − resulting solution (locally optimal solution with
respect to Θ2⊕2 (Θ2⊗2))
begin
 repeat
 ∆min

(1) := ∞; ∆min
(2) := ∞; k(1) := 0;

l(1) := 0;
 for i := 1 to n − 2 do
 for j := i + 2 to n − 1 + sign(i − 1) do
begin
 ∆ := z(p + move(i, j)) − z(p);
 if ∆ < ∆min

(1) then begin
∆min

(2) := ∆min
(1); k(2) := k(1); l(2) := l(1);

∆min
(1) := ∆; k(1) := i; l(1) := j end

 else if ∆ < ∆min
(2) then begin

∆min
(2) := ∆; k(2) := i; l(2) := j end

 end; // for

p′ := argmin(z(p + move(k(1), l(1))), z(local_search_i
n_Θ2(p + move(k(2), l(2)))));
 if z(p′) < z(p) then p := p′ // replace the
current solution by a new one
 until z(p′) ≥ z(p);
 return p
end.

Figure 9. Pseudo-code of the greedy-best-accept-based local
search algorithm using the neighborhood 22⊕Θ (22⊗Θ)

3.2. Extended moves

The set of the extended (modified) moves consists
of the following subsets:

• subset of the 3-(edge-)exchange moves,
• subset of the 4-(edge-)exchange moves,
• subset of the 5-(edge-)exchange moves,
• subset of the 6-(edge-)exchange moves.
Each of the above subsets is rather a restricted set

of moves built in a specific way than the set
containing all possible move configurations. The
subsets are created as described below.

The subset of the 3-exchange moves (or 3-
exchange subset), denoted by Ξ \//, is constructed in
such a way that each move is formed by removing
three existing ("old") edges and adding three different
("new") edges. In particular, the separate edge
(p(i), p(i + 1)) and two adjoining (neighboring) edges
(p(j − 1), p(j)), (p(j), p(j + 1)) are removed and the
three new edges (p(i), p(j)), (p(j), p(i + 1)),
(p(j − 1), p(j + 1)) are added so that the feasibility of
the tour is preserved (here, j > i + 1) (see Figure 10).

Figure 10. Illustrative example of the 3-edge-exchange

move

The 4-exchange subset contains two other subsets
denoted as Ξ \/// and Ξ \\//. In both cases, the moves are
constructed by removing four old edges and adding
four new edges2. In the first case, the separate edge
(p(i), p(i + 1)) and three adjoining edges
(p(j − 2), p(j − 1)), (p(j − 1), p(j)), (p(j), p(j + 1)) are
deleted and the four new edges are added (here,
j > i + 2). There are 5 different variants for adding new
edges (also see Figure 11(a)): 1) (p(i), p(j)),
(p(j), p(j − 1)), (p(j − 1), p(i + 1)), (p(j − 2), p(j + 1));
2) (p(i), p(j)), (p(j), p(j − 2)), (p(i + 1), p(j − 1)),
(p(j − 1), p(j + 1)); 3) (p(i), p(j − 1)), (p(j − 1), p(j)),
(p(j), p(j − 2)), (p(i + 1), p(j + 1)); 4) (p(i), p(j − 1)),
(p(j − 1), p(j)), (p(j), p(i + 1)), (p(j − 2)), p(j + 1));
5) (p(i), p(j − 2)), (p(i + 1), p(j)), (p(j), p(j − 1)),
(p(j − 1)), p(j + 1)).

In the second case, the two pairs of neighboring
edges (p(i − 1), p(i)), (p(i), p(i + 1)) and
(p(j − 1), p(j)), (p(j), p(j + 1)) are removed and the
four new edges are added (here, j > i + 1). There are 3
different variants for inserting new edges in this
particular situation (also see Figure 11(b)):
1) (p(i − 1), p(j)), (p(j), p(i + 1)), (p(j − 1), p(i)),
(p(i), p(j + 1)); 2) (p(i − 1), p(j)), (p(j), p(i)),
(p(i), p(j − 1)), (p(i + 1), p(j + 1));
3) (p(i − 1), p(j − 1)), (p(i + 1), p(j)), (p(j), p(i)),
(p(i), p(j + 1)).

Regarding the 5-exchange subset (Ξ \\///), the moves
are formed by firstly deleting and then reconnecting
five edges. In particular, the two adjoining edges
(p(i − 1), p(i)), (p(i), p(i + 1)) and then three other
adjoining edges (p(j − 2), p(j − 1)), (p(j − 1), p(j)),
(p(j), p(j + 1)) are removed; after that, five edges are
inserted (here, j > i + 2). We have 17 different ways to
reconnect the newly inserted edges (see Figure 12).

Finally, the two pairs of adjoining edges
(p(i − 2), p(i − 1)), (p(i − 1), p(i)), (p(i), p(i + 1)) and
(p(j − 2), p(j − 1)), (p(j − 1), p(j)), (p(j), p(j + 1)) are
removed and the six new edges are added (here,
j > i + 2). This results in the 6-exchange subset, Ξ \\\///.
In this case, the total number of the different
configurations of edges increases to 106 (see
Appendix, Figure A1).

2 Some of edges may be simply "refreshed" (instead of inserting
entirely new edges).

edge to be
deleted
edge to be
added

p(i)
p(i + 1)

p(j − 1)
p(j) p(j + 1)

A. Misevičius, A. Blažinskas, A. Lenkevičius

222

Figure 11. Illustrative examples of the different possible variants of 4-edge-exchange moves

Figure 12. Illustrative examples of the different possible variants of 5-edge-exchange moves

p(i)
p(i + 1)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i)
p(i + 1)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i)
p(i + 1)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i)
p(i + 1)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i)
p(i + 1)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i − 1)
p(i)

p(j − 1)
p(j) p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 1)
p(j) p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 1)
p(j) p(j + 1)

p(i + 1)

(a)

(b)

p(i − 1)
p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)

p(i − 1)
p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)

p(i − 1)
p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)

p(i − 1)
p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)
p(i − 1)

p(i)

p(j − 2)
p(j − 1) p(j)

p(j + 1)

p(i + 1)

Modified Local Search Heuristics for the Symmetric Traveling Salesman Problem

223

Of course, we can take the union of all the subsets
of moves (Ξ \// ∪ Ξ \/// ∪ Ξ \\// ∪ Ξ \\/// ∪ Ξ \\\///),
including the 2-exchange moves; then the resulting
search strategy would have resembled a very modified
6-opt like procedure.

There is a slight increase in the run time due to the
testing of all possible configurations of the extended
(modified) moves. The algorithm's framework itself
remains, however, almost unchanged, except that the
"p + move(i, j)"-type operations are turning to the
operations of the type "p + move(i, j, config∗)". Here,
config∗ is denoting the move configuration such that
the move causes a tour of shortest length among all
move configurations; that is,

{ pzconfig
TNFconfig

(minarg
,...2,1=

∗ = + })),,(configjimove , where

config denotes the current move configuration and
TNF is the total number of configurations, which is
actually equal to 133 (1 + 1 + 8 + 17 + 106), including
the 2-exchange move.

The neighborhood exploration complexity is still
O(n2) for the 2-opt local search and O(Kn) for the fast
local search.

3.3. Incorporating stochastic perturbations

Yet another way of enhancing the local search
framework is to integrate (combine) the rigorous
(greedy descent-based) and stochastic search
processes. The resulting approach (known as an
iterated local search (ILS) [16]) is not deterministic
any more; however, it can lead to higher quality
solutions. The example of the ILS algorithm is
presented in a high-level pseudo-code form in
Figure 13. Many variations of ILS are possible

function iterated_local_search(p, µ);
// input: p − initial (starting) solution (tour), µ −
number of iterations (µ ≥ 1); output: p• − resulting
solution
begin
 p′ := local_search_in_Θ2(p); // perform local
search in a given neighborhood (starting from the
initial solution p)
 p• := p′;
 current_number_of_iterations := 0;
 repeat

current_number_of_iterations := current_number_o
f_iterations + 1;
 p~ := random_perturbation(p•); // perform
random perturbation procedure (starting from p•)
 p′ := local_search_in_Θ2(p~); // perform
local search in a given neighborhood (starting from
p~)
 if z(p′) < z(p•) then p• := p′
 until current_number_of_iterations = µ;
 return p•
end.

Figure 13. Pseudo-code of the iterated local search
algorithm

depending on the deterministic (descent) local search
algorithm and stochastic perturbation technique at
hand. In this work, we tried the greedy descent-based
fast local search heuristics in the role of the
descending algorithm; while, for the role of the
perturbation mechanism, we used a special type of
procedure — the so-called nearest-neighbor
reconnection (NNR) procedure (see [22]). The NNR
procedure is quite identical to the well-known nearest-
neighbor (NN) algorithm [27], except that only a
relatively small fraction (usually about 20-30%) of
cities is involved in this procedure and the remaining
larger part of the tour is not affected (a fraction is
selected randomly from the tour).

The limit of the run time of our ILS algorithms is
predetermined by the number of iterations (µ) (see
Figure 13), which can be flexibly tuned by the user.

The NNR-based perturbations take less than O(n2)
time, so these perturbations do not significantly
increase the overall computational complexity.

4. Results of computational experiments
We have examined our local search heuristic

algorithms on the benchmark problem instances taken
from the traveling salesman problem library —
TSPLIB [26]. In the computational experiments
conducted, the size of the instances varies between 96
and 1000 cities. The experiments were performed on a
personal computer with an Intel Pentium IV 3 GHz
single-core processor.

We used the following LS heuristics in our
experimentation: 1) standard (2-opt) local search using
the neighborhood Θ2 (denoted as LS〈〈Θ2〉〉); 2) fast
local search using the neighborhood Θ2 (FLS〈〈Θ2〉〉);
3) iterated fast local search using the neighborhood Θ2
(IFLS〈〈Θ2〉〉); 4) iterated fast local search using the
neighborhood 2222 ⊕⊕⊕Θ (IFLS〈〈 2222 ⊕⊕⊕Θ 〉〉); 5) iterated
fast local search using the neighborhood 2222 ⊗⊗⊗Θ
(IFLS〈〈 2222 ⊗⊗⊗Θ 〉〉); 6) iterated extended fast local
search using the neighborhood 2222 ⊕⊕⊕Θ and the set of
extended moves Ξ \// ∪ Ξ \/// ∪ Ξ \\// ∪ Ξ \\/// ∪ Ξ \\\///
(IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉); 7) iterated extended fast local
search using the neighborhood 2222 ⊗⊗⊗Θ and the same
set of extended moves (IEFLS〈〈 2222 ⊗⊗⊗Θ 〉〉).

The first part of the experimentation was designed
as follows. Let R be the pre-defined number of
restarts, i.e. single applications of the algorithm to a
given instance. At every restart, the algorithm starts
from a new random initial solution. The current restart
is interrupted as soon as the local optimum is found
(or the maximum number of iterations is performed —
which is the case of the iterated local search). The next
restart is then started, and so on. The process stops
when R restarts have been carried out. The best
solution obtained during these restarts serves as a

A. Misevičius, A. Blažinskas, A. Lenkevičius

224

resulting solution of the algorithm. This is repeated for
each examined instance.

So, we used 10000 restarts of LS〈〈Θ2〉〉 and 100000
restarts of FLS〈〈Θ2〉〉. The computation time of the
iterated local search algorithms (IFLS, IEFLS) is
controlled by the number of iterations (µ). We used
µ = 20000 for IFLS〈〈Θ2〉〉, µ = 5000 for IFLS 〈〈 2222 ⊕⊕⊕Θ
〉〉 and IFLS〈〈 2222 ⊗⊗⊗Θ 〉〉, and µ = 500 for IEFLS〈〈

2222 ⊕⊕⊕Θ 〉〉 and IEFLS〈〈 2222 ⊗⊗⊗Θ 〉〉. In this way, all the
algorithms consume more or less the same amount of
computation (CPU) time.

The results of the experiments are presented in
Table 1. Note that, in Table 1, ""δ is to denote the
relative deviation of the obtained solutions from the
provably optimal solution; δ is calculated by the
formula: %][) (100 ◊◊−= zzzδ , where z is the
obtained value of the objective function (tour length)
and ◊z denotes the provably optimal objective
function value (these values can be found in TSPLIB).

In addition, we have compared our best variant
(IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉) with other heuristic algorithms. In
the experiments, the following seven heuristic
algorithms (including IEFLS) have been tried: 1) 3-
opt (LS〈〈Θ3〉〉); 2) simulated annealing (SA) [20];
3) tabu search (TS) [23]; 4) genetic algorithm (GA)
[21]; 5) Helsgaun's implementation of the Lin-
Kernighan algorithm (HLK) [8]; 6) greedy
randomized adaptive search procedure (GRASP) [18];
7) IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉. The run time for IEFLS〈〈

2222 ⊕⊕⊕Θ 〉〉 remained the same as given in Table 1. The
execution time for other algorithms was adjusted so
that all the algorithms used approximately similar

CPU time. The results of the comparison are presented
in Table 2.

We may also be interested in the investigation of
run time performance (run time distributions) instead
of the solution quality. In this case, the so-called "time
to target" methodology [1] can be applicable. For a
given value of the objective function (target value),
the algorithm is repeated multiple times and the run
times of the algorithm to achieve this value are
recorded and sorted. With the ith sorted time, a
probability 𝑃𝑖 = 𝑖−0.5

𝑊
 is associated, where

𝑖 (𝑖 = 1, 2, … , 𝑊) denotes the current run (trial)
number and W is the total number of runs. The
probabilities Pi are visualized by so-called time-to-
target plots which show the probability that the target
value will be achieved.

In Figure 14, we present the time-to-target plots
for the algorithms LS〈〈Θ2〉〉, FLS〈〈Θ2〉〉, IFLS〈〈Θ2〉〉, and
IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉. The instance examined is gr96 and
the target value is equal to 55485, which is 0.5%
above the provably optimal solution value (55209).
(We used 30 runs (W = 30), where each run consists of
10000 restarts of LS, 100000 restarts of FLS, 20000
iterations of IFLS, and 500 iterations of IEFLS.)

The performance improvement factor, PIF, of one
algorithm (say, ℑ1) to another one (say, ℑ2) may be

introduced by using the formula:
)(
)(

15.0

25.0

ℑ
ℑ

t
tPIF = ;

here, t0.5 denotes the time needed to obtain the given
target value with the probability 0.5. In Table 3, we
present the approximate values of the performance
improvement factors for the algorithms LS〈〈Θ2〉〉,
FLS〈〈Θ2〉〉, IFLS〈〈Θ2〉〉, and IEFLS〈〈 2222 ⊕⊕⊕Θ 〉〉. In
particular, the performance improvement factors PIF1,

Figure 14. Time-to-target plots for the TSPLIB instance gr96

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.2 0.3 0.6 0.7 1.3 1.8 2.0 2.4 3.0 3.2 3.4 3.5
time (s)

pr
ob

ab
ili

ty

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.2 0.3 0.6 0.7 1.3 1.9 3.0 4.0 5.0 5.3 6.0 6.5
time (s)

pr
ob

ab
ili

ty

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.2 0.3 0.6 0.7 1.4 1.9 3.0 3.4 5.9 6.3 8.0 11.5
time (s)

pr
ob

ab
ili

ty LS〈〈 〉〉 IEFLS〈〈 〉〉 IEFLS〈〈 〉〉

IEFLS〈〈 〉〉

FLS〈〈 〉〉

IFLS〈〈 〉〉

Modified Local Search Heuristics for the Symmetric Traveling Salesman Problem

225

Table 1. Results of the experiments with the local search heuristics on TSPLIB instances

Instance
name‡

◊z

δ
Averaged
CPU time

(s) LS
〈〈Θ2〉〉

FLS
〈〈Θ2〉〉

IFLS
〈〈Θ2〉〉

IFLS
〈〈Θ2⊗2⊗2⊗2〉

〉

IFLS
〈〈Θ2⊕2⊕2⊕2〉

〉

IEFLS
〈〈Θ2⊗2⊗2⊗2〉

〉

IEFLS
〈〈Θ2⊕2⊕2⊕2〉

〉

bier127 118282 0.849 0.517 0.163 0.077 0.058 0.026 0.000 2.6

ch130 6110 0.999 0.699 0.552 0.251 0.170 0.063 0.010 2.7

d657 48912 5.732 2.650 1.335 0.629 0.256 0.230 0.158 110

dsj1000a 1865968
8 9.937 7.069 3.739 1.994 0.571 0.410 0.334 500

eil101 629 1.655 0.802 0.285 0.072 0.034 0.019 0.004 2.1

fl417 11861 2.597 1.403 0.656 0.251 0.088 0.055 0.045 39

gil262 2378 1.099 0.795 0.332 0.117 0.056 0.020 0.012 8.8

gr96 55209 0.997 0.724 0.301 0.056 0.000 0.000 0.000 1.9

gr120 6942 1.968 0.998 0.321 0.121 0.091 0.022 0.023 2.4

gr137 69853 0.824 0.768 0.057 0.042 0.046 0.054 0.011 3.0

gr229 134602 0.911 0.714 0.071 0.057 0.007 0.004 0.002 8.5

gr431 171414 3.045 1.789 0.660 0.359 0.202 0.067 0.056 42

kroa100 21282 0.073 0.060 0.053 0.050 0.000 0.000 0.000 2.0

krob100 22141 0.379 0.287 0.059 0.047 0.019 0.005 0.000 2.0

kroc100 20749 0.546 0.455 0.368 0.061 0.066 0.008 0.000 2.0

krod100 21294 1.538 1.202 0.575 0.274 0.199 0.093 0.000 2.0

kroe100 22068 0.983 1.302 0.493 0.283 0.253 0.142 0.000 2.0

lin105 14379 0.642 0.439 0.048 0.021 0.001 0.000 0.000 2.1

lin318 42029 1.202 0.801 0.390 0.121 0.064 0.049 0.036 18

pcb442 50778 5.185 3.004 0.738 0.409 0.123 0.134 0.128 46

pr107 44303 0.093 0.097 0.265 0.043 0.025 0.019 0.006 2.2

pr124 59030 0.953 0.650 0.244 0.135 0.098 0.047 0.000 2.4

pr264 49135 0.785 0.578 0.239 0.077 0.048 0.010 0.011 9.0

pr439 107217 4.462 2.922 0.668 0.411 0.260 0.067 0.074 44

rat99 1211 0.614 0.465 0.067 0.044 0.029 0.007 0.000 2.0

rat783 8806 7.472 3.159 1.634 0.702 0.404 0.236 0.239 160

rd100 7910 0.961 0.873 0.600 0.110 0.076 0.044 0.001 2.0

rd400 15281 1.543 1.322 0.734 0.156 0.089 0.042 0.044 34

si535 48450 6.489 3.030 1.134 0.655 0.174 0.157 0.139 69

tsp225 3916 0.505 0.413 0.100 0.010 0.003 0.002 0.000 8.3

Average: 2.168 1.333 0.563 0.255 0.117 0.068 0.044

‡ the numeral in the instance name indicates the size of the problem, i.e. the number of cities.

A. Misevičius, A. Blažinskas, A. Lenkevičius

226

Table 2. Results of the comparison of different heuristic algorithms on TSPLIB instances

Instance
name

◊z
δ Averaged

CPU
time (s) LS

〈〈Θ3〉〉
SA

TS

GA

HLK

GRASP

IEFLS

〈〈Θ2⊕2⊕2⊕2〉〉

bier127 118282 0.752 0.133 0.029 0.034 0.000 0.000 0.000 2.6

ch130 6110 0.809 0.312 0.048 0.149 0.000 0.000 0.010 2.7

d657 48912 5.031 2.025 1.685 0.793 0.000 0.000 0.158 110

dsj1000a 18659688 9.565 3.002 4.013 2.032 0.030 0.008 0.334 500

eil101 629 0.850 0.127 0.016 0.023 0.000 0.000 0.004 2.1

fl417 11861 2.433 0.458 0.264 0.342 0.048 0.000 0.045 39

gil262 2378 1.003 0.158 0.340 0.172 0.000 0.000 0.012 8.8

gr96 55209 0.574 0.001 0.000 0.000 0.000 n/a 0.000 1.9

gr120 6942 1.443 0.181 0.089 0.110 0.000 n/a 0.023 2.4

gr137 69853 0.768 0.038 0.000 0.123 0.000 n/a 0.011 3.0

gr229 134602 0.751 0.148 0.096 0.132 0.006 n/a 0.002 8.5

gr431 171414 2.959 0.294 0.576 0.247 0.043 n/a 0.056 42

kroa100 21282 0.070 0.000 0.000 0.000 0.000 0.000 0.000 2.0

krob100 22141 0.362 0.097 0.000 0.000 0.000 0.000 0.000 2.0

kroc100 20749 0.535 0.169 0.012 0.073 0.000 0.000 0.000 2.0

krod100 21294 1.288 0.207 0.013 0.280 0.000 0.000 0.000 2.0

kroe100 22068 0.853 0.301 0.024 0.135 0.002 0.000 0.000 2.0

lin105 14379 0.526 0.083 0.032 0.019 0.000 0.000 0.000 2.1

lin318 42029 1.198 0.285 0.620 0.216 0.071 n/a 0.036 18

pcb442 50778 5.001 1.043 0.756 1.799 0.001 0.000 0.128 46

pr107 44303 0.087 0.071 0.005 0.035 0.000 0.000 0.006 2.2

pr124 59030 0.842 0.217 0.004 0.121 0.000 0.000 0.000 2.4

pr264 49135 0.771 0.145 0.053 0.125 0.000 0.000 0.011 9.0

pr439 107217 4.300 0.862 0.443 0.254 0.001 0.000 0.074 44

rat99 1211 0.511 0.090 0.056 0.004 0.000 0.000 0.000 2.0

rat783 8806 7.180 1.192 2.682 0.877 0.000 0.000 0.239 160

rd100 7910 0.846 0.255 0.407 0.303 0.000 0.000 0.001 2.0

rd400 15281 1.522 0.422 0.839 0.248 0.000 0.000 0.044 34

si535 48450 6.353 1.813 1.959 0.343 0.005 n/a 0.139 69

tsp225 3916 0.489 0.282 0.256 0.147 0.000 0.000 0.000 8.3

Average: 1.989 0.480 0.511 0.305 0.007 0.000 0.044

PIF2, PIF3 are given, where
)IEFLS(

)LS(

5.0

5.0
1 t

tPIF = ,

)IEFLS(
)FLS(

5.0

5.0
2 t

tPIF = ,
)IEFLS(

)IFLS(

5.0

5.0
3 t

tPIF = (here, the

target values are 0.5% and 1.0% above the

corresponding optimal solution values for n < 300 and
n > 300, respectively). From Table 3, it could be seen
that the performance improvement factors of IEFLS to
LS, IEFLS to FLS, and IEFLS to IFLS, averaged over
30 instances, are roughly equal to 6.6, 4.9, and 2.7,

Modified Local Search Heuristics for the Symmetric Traveling Salesman Problem

227

respectively. For example, for the instance gr96, we
obtained the following factors:

9
7.0
3.6

)IEFLS(
)LS(

5.0

5.0
1 =≈=

t
tPIF ,

6.7
7.0
3.5

)IEFLS(
)FLS(

5.0

5.0
2 ≈≈=

t
tPIF ,

3.4
7.0

3
)IEFLS(

)IFLS(

5.0

5.0
3 ≈≈=

t
tPIF

(this is seen also in Figure 14).

Table 3. Performance improvement factors for the local search heuristics on TSPLIB instances

Instance
name PIF1 PIF2 PIF3

Instance
name PIF1 PIF2 PIF3

bier127 6.5 4.1 1.9 krod100 7.2 4.6 3.3

ch130 8.2 6.3 2.9 kroe100 6.3 4.4 3.0

d657 5.0 3.7 1.7 lin105 9.4 6.9 3.1

dsj1000a 3.9 2.8 1.5 lin318 6.1 4.6 2.4

eil101 8.6 5.9 4.8 pcb442 5.1 3.8 1.7

fl417 4.5 3.8 2.1 pr107 7.7 5.8 3.2

gil262 4.8 3.9 2.6 pr124 7.5 5.9 2.8

gr96 9.0 7.6 4.3 pr264 5.8 4.9 2.5

gr120 8.4 6.1 5.0 pr439 5.5 4.3 2.0

gr137 7.8 3.9 2.2 rat99 6.3 5.9 2.9

gr229 5.6 4.5 2.5 rat783 5.2 3.9 1.8

gr431 4.9 3.8 1.9 rd100 9.5 7.1 3.5

kroa100 6.9 5.0 2.7 rd400 5.6 4.5 2.2

krob100 7.3 4.9 2.9 si535 5.5 4.3 2.1

kroc100 7.1 4.5 3.2 tsp225 6.3 5.8 2.9

Average: --- 6.6 4.9 2.7

5. Concluding remarks
In this paper, we have proposed several modified

local search heuristic algorithms for solving the well-
known combinatorial optimization problem, the
traveling salesman problem. In particular, we were
concerned with the extended neighborhood structures
and some new rules for the move (edge exchange)
generation. We have also examined the performance
of these extensions being integrated in the iterated
local search paradigm, which is based on the
combination of deterministic and stochastic search
processes.

Our new heuristics are computationally tested on
the benchmark TSP instances taken from the publicly
available library of the TSP instances (TSPLIB). The
results from the experiments show that applying the
new developed neighborhood structures as well as the
extended (modified) move generation mechanisms
appears to be apparently superior to the traditional 2-
opt-based heuristics from both solution quality and

run time performance point of view. It has also been
learned that, by integrating these modifications into
the iterated local search framework, the performance
is increased even more significantly. One more
interesting observation is that the "breadth-first" like
search appears to be preferable to the "depth-first"
strategy at least for the TSP instances examined.

The results of the comparison of our new modified
local search algorithm and other heuristic algorithms
demonstrate that our approach is inferior to the best
state-of-the-art heuristics for larger-sized symmetric
TSP instances. However, our algorithm compares
favourably with the elaborated modern heuristic
procedures for smaller-sized problems.

Regarding the future work, it is worth to increase
the performance of the proposed LS modifications
using advanced data structures. It might also be
worthy to try our LS heuristics on even larger-sized
TSPLIB instances, or possibly other types of the TSP
(like the asymmetric TSP). The introduced strategies
for extending the neighborhoods and integrating the
descending local search and stochastic perturbations

A. Misevičius, A. Blažinskas, A. Lenkevičius

228

seem to be of rather general character, so they may be
applicable for a wider class of combinatorial
optimization problems. In addition, our heuristics
could be used as effective sub-procedures within other
artificial intelligence methods (like genetic/evolu-
tionary algorithms or swarm optimization techniques).

References
[1] R. M. Aiex, M. G. C. Resende, C. C. Ribeiro.

Probability distribution of solution time in GRASP: An
experimental investigation. Journal of Heuristics,
2002, Vol. 8, 343−373.

[2] D. L. Applegate, R. E. Bixby, V. Chvátal,
W. J. Cook. The traveling salesman problem: A
computational study. Princeton University Press:
Princeton, 2007.

[3] D. L. Applegate, W. J. Cook, A. Rohe. Chained Lin-
Kernighan for large traveling salesman problems.
INFORMS Journal on Computing, 2003, Vol. 15,
82−92.

[4] G. Babin, S. Deneault, G. Laporte. Improvements to
the Or-opt heuristic for the symmetric travelling
salesman problem. Journal of the Operational
Research Society, 2007, Vol. 58, 402−407.

[5] D. Gamboa, C. Rego, F. Glover. Implementation
analysis of efficient heuristic algorithms for the
traveling salesman problem. Computers & Operations
Research, 2006, Vol. 33, 1154−1172.

[6] J. Gu, X. Huang. Efficient local search with search
space smoothing: A case study of the traveling
salesman problem (TSP). IEEE Transactions on
Systems, Man, and Cybernetics, 1994, Vol. 24,
728−735.

[7] G. Gutin, A. P. Punnen (eds.). The Traveling
Salesman Problem and Its Variations. Kluwer:
Dordrecht, 2002.

[8] K. Helsgaun. An effective implementation of the Lin–
Kernighan traveling salesman heuristic. European
Journal of Operational Research, 2000, Vol. 126,
106−130.

[9] D. S. Johnson. Local optimization and the traveling
salesman problem. In M.Paterson (ed.). In: Automata,
Languages and Programming, 17th International
Colloquium, ICALP90, Proceedings. Lecture Notes in
Computer Science, Vol. 443, Springer, Heidelberg,
1990, pp. 446−461.

[10] D. S. Johnson, L. A. McGeoch. The traveling
salesman problem: a case study. In: E.Aarts,
J.K.Lenstra (eds.), Local Search in Combinatorial
Optimization, Wiley, Chichester, 1997, pp. 215−310.

[11] G. Laporte. The traveling salesman problem: an
overview of exact and approximate algorithms.
European Journal of Operational Research, 1992,
Vol. 59, 231−247.

[12] G. Laporte. A concise guide to the traveling salesman
problem. Journal of the Operational Research Society,
2010, Vol. 61, 35−40.

[13] J. K. Lenstra, A. H. G. Rinnooy Kan. Some simple
applications of the travelling salesman problem.
Operational Research Quarterly, 1975, Vol. 26,
717−733.

[14] S. Lin. Computer solutions of the traveling salesman
problem. Bell System Technical Journal, 1965,
Vol. 44, 2245−2269.

[15] S. Lin, B. W. Kernighan. An effective heuristic
algorithm for the traveling-salesman problem.
Operations Research, 1973, Vol. 21, 498−516.

[16] H. R. Lourenco, O. Martin, T. Stützle. Iterated local
search. In F.Glover, G.Kochenberger (eds.). In:
Handbook of Metaheuristics, Kluwer, Norwell, 2002,
pp. 321−353.

[17] K. Mak, A. Morton. A modified Lin-Kernighan
traveling salesman heuristic. ORSA Journal on
Computing, 1992, Vol. 13, 127−132.

[18] Y. Marinakis, A. Migdalas, P. M. Pardalos. Multiple
phase neighborhood Search−GRASP based on
Lagrangean relaxation, random backtracking Lin-
Kernighan and path relinking for the TSP. Journal of
Combinatorial Optimization, 2009, Vol. 17, 134−156.

[19] P. Merz, J. Huhse. An iterated local search approach
for finding provably good solutions for very large TSP
instances. In G.Rudolph et al. (eds.). In: Parallel
Problem Solving from Nature — PPSN X, 10th
International Conference Dortmund, Germany,
Proceedings. Lecture Notes in Computer Science,
Vol. 5199, Springer, Berlin-Heidelberg, 2008,
pp. 929−939.

[20] A. Misevicius. Simulated annealing algorithm for the
solution of the traveling salesman problem. In:
A. Targamadzė, R. Butleris, R. Butkienė (eds.),
Proceedings of the 14th International Conference on
Information and Software Technologies, IT-2008,
Technologija, Kaunas, 2008, pp. 19−24.

[21] A. Misevicius, A. Blazinskas, J. Blonskis,
V. Buksnaitis. Genetic algorithms for the traveling
salesman problem: negative and positive aspects (in
Lithuanian). Informacijos mokslai (Information
Sciences), 2009, Vol. 50, 173−180.

[22] A. Misevicius, A. Ostreika, A. Simaitis,
V. Zilevicius. Improving local search for the traveling
salesman problem. Information Technology and
Control, 2007, Vol. 36, 187−195.

[23] A. Misevicius, J. Smolinskas, A. Tomkevicius.
Iterated tabu search for the traveling salesman
problem: new results. Information Technology and
Control, 2005, Vol. 34, 327−337.

[24] H. D. Nguyen, I. Yoshihara, K. Yamamori,
M. Yasunaga. A new three-level tree data structure for
representing TSP tours in the Lin-Kernighan heuristic.
IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 2007,
Vol. E90-A, 2187−2193.

[25] C. Rego, D. Gamboa, F. Glover, C. Osterman.
Traveling salesman problem heuristics: leading
methods, implementations and latest advances.
European Journal of Operational Research, 2011,
Vol. 211, 427−441.

[26] G. Reinelt. TSPLIB − A traveling salesman problem
library. ORSA Journal on Computing, 1991, Vol. 3-4,
376−385. [See also http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95.]

[27] D. E. Rosenkrantz, R. E. Stearns, P. M. Lewis. An

Modified Local Search Heuristics for the Symmetric Traveling Salesman Problem

229

 analysis of several heuristics for the traveling
salesman problem. SIAM Journal on Computing, 1977,
Vol. 6, 563−581.

[28] H.-K. Tsai, J.-M. Yang, C.-Y. Kao. Solving traveling
salesman problems by combining global and local
search mechanisms. In D.B.Fogel (ed.), Proceedings of
the 2002 Congress on Evolutionary Computation

(CEC'02), IEEE Press, New York, 2002,
pp. 1290−1295.

[29] C. Voudouris, E. Tsang. Guided local search and its
application to the traveling salesman problem.
European Journal of Operational Research, 1999,
Vol. 113, 469−499.

Received February 2012.

A. Misevičius, A. Blažinskas, A. Lenkevičius

230

Appendix

Figure A1. Illustrative examples of the different possible variants of 6-edge-exchange moves

