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Abstract. In this paper, we present a scheduler for distributing workflows in Utility Management System (UMS). 
The system executes a large number of workflows, which have very high resource requirements. The workflows have 
different computational requirements and thus the optimization of resource utilization must be performed in a way that 
is different from the standard approach of scheduling workflows. We developed a strategy for allocating workflows, 
which is based on a genetic algorithm. The proposed architecture executes a scheduling algorithm by using a feedback 
from the execution monitor. We also report on an experimental study, which shows that a significant improvement of 
overall execution time can be achieved by using the genetic algorithm. The algorithm is used for designing effective 
Grid schedulers that optimize makespan. The study further shows that the overall system (UMS) performance is 
significantly improved; this finding indicates that there can be reduction in hardware investment. 

 
 

1. Introduction 

Utility Management Systems (UMS) is a term used 
to refer to various systems, such as power / gas or wa-
ter distribution systems. The UMS are becoming in-
creasingly resource demanding because their scopes 
are becoming increasingly wider. The systems have 
some exceptional requirements such as: communica-
tion with end devices (sensors and actuators) and 
storage of huge time-series data volumes about vari-
able values.  

A workflow is loosely defined as an automation of 
a coordination process: coordinating people, data and 
tasks. A lot of research on business wokflows as well 
as their use have been done over the past few decades 
[7].  

Foster and Kesselman described the Grid as an 
infrastructure that connects computers, databases, in-
struments, and people into a seamless web of advan-
ced capabilities [1]. With the development of large-
scale high-speed networks, the Grid has become an 
attractive computational platform for high-perfor-
mance parallel and distributed applications, such as 
UMS.  

Workflow scheduling is a decision process that as-
signs application components to available resources in 
order to optimize various performance metrics [20]. 
The Grid workload management and scheduling sub-
systems enable the efficient distribution of tasks and 

allow their transparent execution by hiding the comp-
lexity of the Grid infrastructure.  

At present, in many modern Grid infrastructures, 
scheduling relies only on static properties and pre-
determined states of resources. We argue that resource 
utilization can be enhanced by adding the run time 
information. Also, it can be enhanced by predicting 
the system performance based on the current system 
information. For this reason, we propose an architec-
ture for the Workflow Scheduler system that primarily 
uses the data of the current state of the Grid.  

We achieve the enhancement of resource utiliza-
tion performance in the Workflow Scheduler by 
carrying out workflow manipulation. The Workflow 
Scheduler can adopt various optimization criteria 
which it uses in order to choose the optimal workflow. 
Some possible criteria include the ones that rely on 
static information knowledge (e.g., type of workflow 
and pre-defined order of execution, etc.) and the ones 
that rely on dynamic information (e.g., database per-
formance, processor statuses, communication with end 
device, etc.). 

Criteria can pursue different goals: the minimiza-
tion of a single task’s execution time, the minimiza-
tion of workflow execution time, the fairness of load 
distribution, maximum time of execution per work-
flow type, etc. Optimization rules are based on quanti-
fiable metrics, such as: workflow reliability and 
distribution fairness, workflow average execution 
time, etc [3].  
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Artificial intelligence represents a modern concept 
of solving problems in engineering practice [19]. We 
chose a set of UMS workflows to analyze the feasi-
bility and usability of applying genetic algorithm to 
this field. We used the accommodation of the genetic 
algorithm to solve the workflow scheduling. The ex-
perimetal study that we ran confirmed the usefulness 
of the genetic algorithm based scheduler when the 
makespan is optimized. The implementation of the 
genetic algorithm is extensively tested and the compa-
rison with the previously provided solutions of similar 
problems shows that this scheduling system allocates 
workflows efficiently and more effectively; conse-
quently, the performance improves. 

2. Related Work 

Grid computing is a new approach in scientific 
applications. Recent advances in grid infrastructure 
and middleware development have enabled various 
types of applications in science and engineering to be 
deployed on the Grid. The applications include those 
for climate modeling, computational chemistry, bioin-
formatics and computational genomics, remote control 
of instruments, and distributed databases [8]. 

The Grid infrastructure is used both to share ex-
pensive and centralized resources among many scien-
tists, as well as to integrate experimental data sources 
with the simulation codes necessary to analyze them 
[9]. 

The Grid connects computers, databases and inst-
ruments in a seamless web, supporting rich computa-
tion application concepts such as distributed super-
computing, smart instruments, data-mining and com-
plicated algorithm calculations [18]. However, its use 
has been limited to specialists, primarily because of 
the lack of usability [10]. 

Supervisory Control and Data Acquisition 
(SCADA) systems are becoming more and more re-
source demanding because their scope has become 
wider. This trend is especially visible in distribution 
systems for utilities – UMS, the systems that are an 
extension of the SCADA systems. SCADA systems 
went a long way from simple visualization of pro-
cesses observed. Distributed SCADA systems are 
thoroughly described in a scientific paper [4]. The 
process industry data found their way to the Internet 
[5] and even cell phones [6].  

An upcoming need for the Grid approach could be 
envisioned by observing the volumes of data that need 
to be stored and processed. This is especially apparent 
in the UMS; for instance, the number of process vari-
ables exceeds tens of thousands in Distribution Mana-
gement Systems (DMS) [11].  

Artificial intelligence slowly finds its purpose in 
distribution systems for utilities. It will surely be the 
key feature for the resources manipulation in the Grid 
enviroment.  

The genetic algorithm, as an evolutionary tech-
nique for large space search, proved to be a powerful 
tool for solving various problems [21,22]. Faced with 
a variety of situations, an intelligent Grid environment 
requires complex algorithms which will help manage 
the execution of different kinds of workflows. Several 
works [15] [16] [17] address the problems of Grid 
scheduling that adopt the genetic algorithm method 
for workflow manipulation in order to improve per-
formance. The hybridization of the genetic algorithm 
with other heuristics (TS, SA) for dynamic workflow 
scheduling is presented in [14]. 

3. UMS Workflows 

We found four types of grid nodes by analyzing 
the architecture and requirements for large scale distri-
buted UMS systems. These are: 

Processing node (PRN): its task is business cal-
culation and data pre-processing, mainly for provi-
ding reports and an offline analysis of the system. 
Objects database node (ODN): it is used for 
storing the static data gained from the distributed 
UMS system. It usually hosts a relational database 
for better search performances. 
Time-series node (TSN): this node hosts data 
about fast changing values of process variables.  
Communication node (CON): this node is res-
ponsible for communication with end devices.  
The workflows used for testing, which are reported 

in this paper, are chosen from the real UMS use cases. 
The following conditions are implied: 
1. All workflows are independent of each other. 
2. All workflows have the same priority. 
3. Every node processes only one workflow at a time. 
4. Every workflow is processed at one node at a time. 
5. A workflow of the same type has the same 

execution time at each specified node. 
We implemented five workflows that use different 

types of Grid nodes: 
1.  Direct Command: it sends commands to actua-

tors. When executing, it will send commands to ac-
tuators through CON, and write command results 
to time series database in TSN. 

2. Command with pre-processing: this type of com-
mand needs pre-processing of data prior to sending 
commands. The commands could be used when 
business logic has to be applied before actuator 
could be used. In this workflow, PRN first prepa-
res the data, and after that, CON sends commands 
to actuators. 

3. Read Variable values: in this scenario Variables 
are read from cache (previously read from de-
vices). Workflows execution of this type starts in 
ODN in order to filter end devices that should be 
read. After that, the execution is transferred to 
TSN to read values of the selected Variables.  
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4. Read Variable values From Device: workflows 
of this type, contrary to the type 3 workflow, have 
to read values from sensors on demand. When exe-
cuting, this workflow is transferred to ODN in 
order to filter end devices that should be read. 
After that, CON sends an on demand reading 
command to sensors. 

5. Reporting Inquiry: this workflow covers various 
types of data processing. During the execution, this 
workflow is transferred to ODN in order to re-
trieve data needed for calculation. After that, it is 
transferred to PRN, which is responsible for calcu-
lation. 
Figure 1 presents the execution plan of workflow 

migration for a set of previously defined UMS work-
flows. Optimization goal in this paper is to rearrange 
incoming workflows in order to get maximum usage 
of all nodes. 

Processing node

Objects database node

Time-series node

Communication node

Reporting Inquiry

Direct Command

Command with preprocessing 

Read Variable values 

Collecting status information

Time

Executing 
workflow

 Figure 1. Workflow execution migration between nodes 

3. Proposed Architecture 

The proposed architecture takes into account the 
dynamic nature of a real-world UMS and uses the 
Grid environment approach for detecting and 
responding to the environmental change in the UMS. 
The developed framework is presented in Figure 2. It 
provides required support for the feedback from the 
scheduling process. 

Proposed workflow management architecture

The
Grid

Time-series 
node

Application 
Manager

Grid 
Manager

Worflow 
Scheduler

Processing node

Objects 
database node

Incoming 
workflows

Communication 
node

Grid status 
parameters

Schedule 
results

Node status 
parameter

Workflow to 
schedule

Assign node to 
workflow

 
Figure 2. Proposed architecture of the system 

The framework consists of three components: the 
Grid Manager, the Workflow Scheduler, and the Ap-
plication Manager. The function of the Grid Manager 

is to monitor the status of the control variables and to 
send workflows to the nodes for execution. The 
Workflow Scheduler is responsible for resource se-
lection and for mapping the workflows to the re-
sources. This component is of the most interest for our 
research, since decision-making takes place in it. The 
Application Manager receives workflows in run 
time, queues them and works with Workflow Sche-
duler to determine the right time to send a workflow to 
execution in the Grid. 

4. Model representation in Genethic Algorithm 

Genetic algorithms (GA) are stochastic, evolution-
based, search and optimization algorithms. A potential 
solution of the optimization problem is encoded in an 
artificial creation, which is called chromosome (indi-
vidual). The population of chromosomes evolves into 
a better solution in each iteration of the algorithm. The 
fittest individuals survive and are able to exchange 
their genetic material. Thus in every new generation, a 
set of chromosomes is created by exploiting the infor-
mation from the past generation. 

A. Chromosome encoding 
A chromosome consists of a series of genes. The 

solution proposed in this paper presents an optimized 
workflow sequence, which is sent to the Grid for the 
execution. Each gene thus represents a workflow type. 
All of the workflow types are described in section 3 (1 
– Direct Command, 2 – Command with pre-proces-
sing, 3 – Read Variable values, 4 – Read Variable va-
lues From Device, 5 – Reporting Inquiry). A gene is 
an integer value in the interval from 1 to 5. 

B. The fitness fuction 

The essence of the GA is the following: it searches 
for and eventually finds an optimal solution to a prob-
lem by creating new generations and evaluating the 
individuals. It is necessary to define the principle of 
the individual assessment. The fitness function [2] 
provides the mechanism to evaluate each individual in 
the problem domain. 

The problem that we offer a solution for in this pa-
per is to maximize the throughput of the Grid by ba-
lancing the load among the nodes in an intelligent 
way. The fundamental optimization criterion in solv-
ing this kind of the problem is the minimization of the 
makespan, i.e. the time when the latest workflow is 
finished. This criteria, for an individual with n work-
flows, is represented in the following way: 

}max{ iWftmakespan = , (1) 

}min{
Sequnecess

smakespannmakespanMi
∈

= . (2) 

iWft  represents time when the thi  workflow in the 
workflow sequence is finished, and the Sequences 
represent all possible sequences (schedules) of n 
workflows. 
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A conclusion is then, that the time when the last 
workflow ends corresponds to the time of the comple-
tion of the last node. So, the time when the last node 
finishes its work is the makespan. 

If we define knodeStartTime as a time point when a 
node , {1.. }k k numberOfNodes∈  is ready to start exe-
cuting assigned work, and knodeWorkTime  as requi-
red time to get the work done, then the predicted 
completion time of a node is: 

.
k k

k

nodeEndTime nodeStartTime
nodeWorkTime

= +
+

 (3) 

The workflows described in this paper consist of 
two tasks, and each of these tasks executes at an ap-
propriate node. In order to formulate the predicted 
time for a node to complete its work (nodeWorkTime), 
we need to estimate the execution time of the tasks. A 
computational load of tasks and computing capacity of 
nodes are required. The estimation is easily determi-
ned in practice; it is easy to know a computing capa-
city of a resource (node) by knowing its characteristics 
and, the workload of each task can be evaluated from 
the history data. The task execution time is calculated 
by dividing the workload of the task (in millions of 
instructions – mips) with the computing capacity of 
the node (in mips). Calculation of the workload of 
tasks is presented in the Cornell Theory Center [12]. 

A workflow can be defined as a set of two tasks 
(primary and secondary). The execution time for each 
task is: 

,Tpi k  – execution time for the primary task of a 

workflow i which is executed on the node k, 

,Tsi k  – execution time for the secondary task of a 

workflow i which is executed on the node k. 
Predicted time for a node to complete its work is 
defined as: 

, ,
, ,

.
k k

i j i j
i j k i j k

nodeEndTime nodeStartTime
Tp Ts

= =

= +

+ +∑ ∑  (4) 

The makespan is determined as: 

max{ },kmakspan nodeEndTime=  (5) 

{1.. }k numberOfNodes∈ . 
In the proposed implementation of the genetic al-

gorithm, the fittest individuals have the highest 
numerical values for the fitness function, defined as: 

makespan
ff 1
=  (6) 

C. Algorithm  
The approach used in this paper generates a set of 

initial individuals (sequences, schedules of work-
flows), estimates the fitness gain, selects the most 
appropriate individuals and combines them using the 

operators (crossover and mutation) in order to form 
new solutions. 

A selection mechanism guarantees the survival of 
the fittest individuals. A part of the existing population 
is selected to breed; it is highly likely that fitter in-
dividuals survive and receive a higher number of des-
cendents. A roulette wheel mechanism [2] is used to 
construct a proportional selection. This mechanism 
selects a small part of the less fit individuals and thus 
keeps the diversity of the population; this prevents a 
premature convergence towards a poor solution. 

A crossover operator is the most important ingre-
dient of the genetic algorithm. It produces new indivi-
duals by interchanging parents’ genetic material. Its 
aim is to obtain better quality descendents and to ex-
plore new parts of the solutions space that have not 
been considered so far. 

Many types of the crossover operators are demon-
strated in literature: one-point, k-point, uniform cross-
over [2], etc. We decided to use the k-point crossover. 
This operator provides a thorough study of the solu-
tions space; however, it increases the possibility of de-
stroying the parents’ structure. In order to preserve the 
genetic material of the parents, we decided that the 
two fittest individuals among parents and descendants 
join the next generation after the crossover is per-
formed.  

Since the crossover operator is dominant in the ge-
netic algorithm, the crossover rate (a probability that 
the two chosen parent individuals will be crossed) 
needs to be set to a high value. An experimental study 
showed that best results are obtained with the 
crossover rate of 0.85. 

Mutation, an operator that changes the individual's 
gene to another allowed value, is randomly applied 
with a low probability. It is used to ensure genetic 
diversity of the population and to recover good genetic 
material that may be lost during the crossover and the 
selection. 

The mutation operator is used in the following 
manner: after the crossover is performed and the two 
individuals are chosen to join the next generation, the 
mutation operator is applied with the probability of 
0.05 (mutation rate). The operator is implemented to a 
randomly selected individual's gene. The value of the 
gene is replaced with a random value taken from the 
set of the possible gene values. 

The strategy of creating the next generation that 
allows the entry of the fittest individuals from the 
previous generation is known as elitism. This variant 
of the genetic algorithm can be very successful. At the 
same time, the elitism should be carefully used since 
there is a possibility that the algorithm gets stuck in a 
local extreme. We reduced the elitism in our research 
to 5%. 

The pseudo code for the genetic algorithm imple-
mentation is shown below (Listing 1): 
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begin 
 initialization: 
 Generate initial population of s individuals 

 while(count of generation is less then specified) 
 { 
 Evaluate fitness function for individuals 
 Create empty next generation 

 elitism: specified percents of fittest individuals 
  Choose m fittest individuals →  ind1, ind2,..., indm 
  Add to next generation (ind1, ind2,..., indm) 

 for ( 1 .. s - m)  
 { 
  selection: roulette wheel mechanism 
  Choose two parents from current generation →  
  →  parent1, parent2    

  crossover: crossover rate 
  Crossover(parent1, parent2) →  child1, child2 
   Choose the fittest two from 
  (parent1, parent2 ,child1, child2) → res1, res2 

  mutation: mutation rate 
  Mutation(res1) 
  Mutation(res2) 

  Add to next generation (res1, res2) 
 }    

 current generation →  next generation  
 } 

 return Best individuals from current generation 

end 

Listing 1. Genetic algorithm implementation pseudo code 

6.  GA accommodation for Workflow 
Schedular 

Since the workflows arrive continuously and the 
set of those to be executed on the Grid is not known in 
advance, all pieces of information regarding the Grid 
tasks are not entirely known before the execution 
time. Therefore, scheduling decisions must be made 
on the fly, and a dynamic scheduling algorithm is 
necessary. 

One of the main disadvantages of the genetic algo-
rithms is that they need a significantly longer period 
of time to generate a solution; whereas some other 
concepts of artificial intelligence (e.g. neural net-
works) do it in a much shorter period. This time period 
is a consequence of the iterative process of creating 
individual generations. It is impractical and unviable 
for the dynamic scheduler to calculate the fittest 
individual for any decision on a future workflow. We 
propose the following: 
 

A. Dinamic schedular algorithm  
At startup, the dynamic workflow scheduler uses 

the genetic algorithm (described in Section 5) to 
generate an optimal sequence of n workflows (an 
individual with n genes). After the first workflow is 
sent to the Grid, the sequence contains n–1 workflows. 
The dynamic workflow scheduler uses the following 
steps to add a new workflow at the end of the se-
quence so that a sequence remains optimal (Figure 3): 

1. reads the remaining types of workflows from 
the workflows queue, 

2. creates an n-dimensional sequence by adding a 
workflow at the end of the sequence for each 
type of the remaining workflows, 

3. calculates a fitness function for every resulting 
sequence, 

4. keeps the sequence with the highest fitness 
function as a new optimal sequence. 

 
Figure 3. n – sequence optimization 

B. Calculation of fitnes fuction during dinamic 
schedular algorithm  
The dynamic workflow scheduler obtains informa-

tion related to the current Grid load after the first 
workflow from the optimal sequence is sent to execu-
tion. The time periods predicted for the nodes to 
complete their work are collected and they are used as 
nodeStartTime for fitness function calculation of the 
processed sequence; it signals when the nodes are 
ready to start executing assigned work (Section 5). 
The workflows in the processed sequence are defined 
and the execution times of their primary and secon-
dary tasks are calculated. All information regarding 
the fitness function for the processed sequence is 
available and the fitness function can be calculated. 

7. Results and discussion 

We developed a distributed testing environment 
based on the proposed architecture. Each type of the 
nodes specific for the UMS systems is attributed a 
computer node (described in Section 2). The schedu-
ling application controls the execution of the work-
flows queue. Figure 4 shows the deployment strategy. 
Each of the four types of nodes inside the Grid is hos-
ted in a separate computer. All the software compo-
nents that we argue for in the paper are hosted in a 
separate computer. 
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Figure 4. Deployment diagram for test environment 

In this experiment we used a benchmark of queues 
of the five UMS workflows types defined in Section 3. 
We did this in order to study the performance of the 
dynamic GA workflow scheduler presented. We com-
pared the quality of the results produced by the sche-
duler with the results reported in the literature [13]. 
The research presented in the literature [13] describes 
the following scheduling logic: No optimization – 
workflows are scheduled in the order in which they 
arrive in the input queue; Simple ANN optimization – 
the output of the simple ANN presents the workflow 
that is sent to the Grid; Hierarchical ANN optimization 
– the output of the hierarchical ANN network selects 
the workflow that is scheduled in the next step. 

We tested the dynamic workflow scheduler based 
on GA with parameters given in Table 1. 

Table 1. Values of parameters used in GA scheduler 

population size 100 
number of evolution steps 3000 
chromosome size  6  
selection roulette wheel mechanism 
crossover operator k-point crossover 
crossover rate 0.85 
mutation rate 0.05 
elitism 5 % 

Table 2 summarizes the results of scheduling com-
parison. We used between ten and a thousand work-
flows in the tests. 
Table 2. Speed of workflows execution 

Numb
er of 

work-
flows 

Time of 
execution 
– no opti-
mization 

[s] 

Time of 
execution – 
simple ANN 
optimization 

[s] 

Time of 
execution – 
Hierarchical 

ANN 
optimization 

[s] 

Time of 
execution – 
GA accom-
modation 

optimization 
[s] 

10 17 14 13 16 
50 99 77 72 67 
100 199 163 156 128 
250 501 412 391 324 
500 1007 827 809 618 
1000 2018 1671 1625 1297 

The experimental study shows that the GA based 
scheduler outperforms the existing solutions based on 

the neural networks (Figure 5). The performance (spe-
cifically, the speed) of the system improves with the 
increasing number of the scheduled workflows. The 
scheduling brings more benefits if there are more 
workflows to rearrange.  

101 102 103
101

102

103

104
Speed of workflow execution 

Number of workflows

 

 

No optimization
Simple ANN optimization
Hierarchical ANN optimization
GA accommodation optimization

 
Figure 5. Speed of workflow execution 

By introducing the dynamic GA scheduler in a 
workflow scheduling process for large scale UMS 
system, we provide the substantial improvement of the 
computational resources exploitation. The result is 
better performance of the entire system. 

8. Conclusion 

The specific features of the large scale UMS make 
the proposed architecture different from the standard 
Grid scheduling systems. The architecture based on 
feedback provides optimal scheduling (execution time 
optimization) of the workflows. 

We demonstrated the usefulness of the genetic al-
gorithm in forming the efficient workflow Grid sche-
duler. The aim of the experimental study was to reveal 
the effectiveness of the GA based scheduling when the 
makespan is optimized. 

The GA scheduler works fast because of the GA 
Accommodation algorithm; hence the scheduler dyna-
mically chooses the optimal scheduling strategy for 
the workflows that arrive at the Grid. 

We also presented an experimental study. The per-
formance analysis shows that this approach signifi-
cantly boosts the performance of the whole system 
and reduces the total execution time. Since the same 
results can be achieved by using less Grid nodes, the 
hardware investments can be substantially decreased. 
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