
108

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.2

EFFICIENT VISUALIZATION BY USING PARAVIEW SOFTWARE
ON BALTICGRID

Arnas Kačeniauskas, Ruslan Pacevič, Andrej Bugajev
Laboratory of Parallel Computing, Vilnius Gediminas Technical University

Saulėtekio Str. 11, Vilnius, LT-10223, Lithuania
e-mail: arnas.kaceniauskas@vgtu.lt

Tomas Katkevičius
Computing Centre, Vilnius Gediminas Technical University

Saulėtekio Str. 11, Vilnius, LT-10223, Lithuania

Abstract. The paper describes efficient visualization performed by using ParaView software on BalticGrid. Deve-
lopment efforts, software implementation details and grid deployment issues are presented. The benchmark based on
visualization of poly-dispersed particle systems validates efficiency of the deployed software. Efficiency tests are
performed on multi-core architecture. Data reading, glyph generation, CPU and GPU rendering is investigated and
discussed.

1. Introduction

Visualization is a powerful tool for analysing data
and presenting results, across a wide range of discip-
lines [6]. Computers are used to create visual images
from the data while the human mind is used to make
inferences from this imagery in order to better under-
stand the data. Scientific visualization is becoming
increasingly important in analyzing and interpreting
numerical and experimental datasets. However, large
data sets and the complex visualization process require
large development efforts and impressive computing
resources. Distributed visualization allocates different
parts of the machine processing to different computers
in order to improve performance. Grid computing [17]
represents one of the most promising advancements
for modern computational science and visualization.

In the dawn of the visualization era, creating visua-
lizations meant programming using a low-level gra-
phics library. A new approach was brought forward by
the Application Visualization System (AVS) [26]. AVS
(later called AVS Express) is a modular visualization
environment (MVE) providing an application deve-
lopment environment for visualization using a visual
network editor. OpenDX [19] is another MVE based
on the flexible and universal dataflow model.

A lot of visualization systems and environments
are developed by using object-oriented approach of
Visualization Toolkit (VTK) [22]. VTK is an open
source, object-oriented software system providing a
toolkit for 3D computer graphics, image processing

and visualization. It consists of a C++ class library,
together with several interface layers including Tcl/Tk,
Java and Python which can be used to access the
classes and build applications. More than 850 separate
classes, including several hundred data processing fil-
ters, are available in the toolkit. VTK is based on the
dataflow model supporting reference counting, which
allows data to be shared instead of duplicated. VTK
supports portable multithreading for shared-memory
implementation and portable distributed parallel
processing based on MPI [18].

An open-source, turnkey application ParaView
[23], designed for large data visualization using distri-
buted parallel processing, is built on the top of VTK.
ParaView Meshless was applied to efficient visualiza-
tion of SPH (Smooth Particle Hydrodynamics) data
[3]. The first ParaView deployment on grid was per-
formed in TeraGrid [24] built by Globus middleware
[5].

Visualization systems have become an essential
part of the emerging fabric of grid services. However,
this leads to very complicated environments handling
complex simulation and visualization on remote hete-
rogeneous architectures [17]. The goal of the ICENI
[9] project was the provision of high-level abstractions
for scientific computing which will allow users to con-
struct and define their own applications through a
graphical composition tool. ICENI was being imple-
mented in Java and JINI. The visualization server
process the data and provides the output to a renderer
(current demos are based on VTK [22]), which can

Efficient Visualization by Using ParaView Software on BalticGrid

109

then send the graphical output back to the visualiza-
tion client. This can either be done using standard
OpenGL remote rendering, or using Chromium [8].

RealityGrid [21] was a project which aims to
examine how scientists in the condensed matter, mate-
rials and biological sciences communities can make
more effective use of the distributed computing and
visualization resources provided by the grid. Reali-
tyGrid is making use of visualization as part of distri-
buted applications in which the simulation in one
place communicates with the visualization in another
and a steering client in a third. Because of difficulties
experienced in integrating existing MVEs into larger
distributed applications, RealityGrid has selected VTK
[22] as a lower-level environment, along with enab-
ling technologies such as Chromium [8].

Most of grid environments for visualization [1, 16]
are based on the Globus middleware [5] and its toolkit
for service development. Visualization software can be
highly integrated with working environment. Baltic-
Grid [2] is built on gLite middleware [4]. Only part of
Globus functionality can be accessed in the considered
grid environment, therefore, most of available visuali-
zation software cannot be applied.

The paper presents the first ParaView implemen-
tation on grid built by gLite middleware. ParaView
software has been adapted for the nature of pilot
BalticGrid applications developing special purpose
parallel reader for partitioned unstructured datasets
stored in HDF5 format. GPU rendering on multi-core
architectures has been employed and investigated in
real grid environment. The performance analysis
reveals how efficiently visualization can be performed
on gLite based grid.

2. ParaView architecture

ParaView [23] is an open-source application
designed to visualize large datasets. ParaView sup-
ports hardware-accelerated parallel rendering and
achieves interactive rendering performance via level-
of-detail (LOD) techniques. ParaView runs on distri-
buted and shared memory parallel machines as well as
single processor PC and has been successfully tested
on Windows, Mac OS X, Linux and various Unix
workstations, clusters and supercomputers. Under the
hood, ParaView uses the VTK [22] as the data pro-
cessing and rendering engine and has a user interface
written using Qt [20].

ParaView is designed as layered architecture. The
foundation is VTK, which provides data representa-
tions, visualization algorithms, and a mechanism to
connect these representations and algorithms together
to form a working program. The second layer is the
parallel extensions to the VTK. This layer extended
VTK to support data streaming and parallel compu-
ting. These extensions are currently part of the toolkit.
The third layer is ParaView itself.

ParaView is designed as a three-tier client-server
architecture. Data Server is the unit responsible for
data reading, filtering, and writing. All of the pipeline
objects seen in the pipeline browser are contained in
the data server. Render Server is the unit responsible
for rendering. Client is the unit responsible for establi-
shing visualization. Employing GUI the client controls
the object creation, execution, and destruction. These
logical units need not be physically separated. In the
most common client-server mode, the pvserver prog-
ram is executed on a parallel machine. ParaView client
application connects to the server. The pvserver prog-
ram has both the data server and render server embed-
ded in it. The client and server are connected via a
socket, which is assumed to be a relatively slow mode
of communication, so data transfer over this socket is
minimized.

ParaView provides highly configurable GUI based
on Qt for the interactive exploration of large datasets
(Figure 1). GUI layout is highly configurable, so that
it is easy to change the look of the window. The tool-
bars can be moved around and even hidden from view.
Any VTK or user developed filter can be added to
ParaView if the user provides a simple XML descrip-
tion for its user interface for its property sheet. Para-
View’s user interface can be modified and extended
both statically, with XML configuration files and
dynamically at a run time. One of the most convenient
ways to automate ParaView is to use the Python scrip-
ting that is built into ParaView. Sometimes it is conve-
nient to automate post-processing and visualization
with a Python script that completely bypasses the GUI
and any need for user intervention. ParaView comes
with a program called pvbatch. It can run in parallel
without having to establish a slow client/server con-
nection.

ParaView supports large data visualization via
techniques that include data streaming, LOD rendering
and parallel computing. ParaView supports parallelism
using either shared memory processes via threads or
distributed memory via MPI. ParaView uses a parallel
rendering library called IceT. It uses a sort-last algo-
rithm for parallel rendering. This parallel algorithm
allows each process to independently render its parti-
tion of the geometry and then composes the partial
images together to form the final image. The wonder-
ful thing about sort-last parallel rendering is that its
efficiency is completely insensitive to the amount of
data being rendered. This makes it a very scalable
algorithm and well suited to large data.

3. Software implementation in grid

By default, the ParaView client connects to the
server, but sometimes security policies require the
ParaView server to be behind a firewall or some other
network limiting technology. Configuration like gLite
Computing Element denies incoming connection re-
quests and adds challenges to configuring the server to
connect with a client.

A. Kačeniauskas, R. Pacevič, A. Bugajev, T. Katkevičius

110

Figure 1. ParaView GUI containing interactive visualization of the industrial oil filter 6HP26

ParaView was implemented in gLite grid by using
special client-server communication mode named re-
verse connection (Figure 2). If the server is behind the
firewall, you can reverse the connection direction: the
server will connect back to the client. The server is
instructed to perform a reverse connection by simply
adding the -rc flag to its command line:

> mpirun -np 4 pvserver -rc --client-host=host.lt
--use-offscreen-rendering

Figure 2. Reverse connection mode of client-server
communication employed in grid

Provided command runs ParaView server employ-
ing offscreen CPU rendering on 4 nodes and establi-
shes a reverse socket connection between the first
node of the server and the client running on host.lt.
This socket by default is on port 11111.

Two modes of user interaction have been imple-
mented in BalticGrid:
• Interactive mode based on GUI,
• Batch mode employing Python scripting.

User can start interactive visualization session
employing full power of GUI and highly interactive
widgets. Interactive GUI can run on grid by using
client-server communication mode named reverse
connection. ParaView program pvserver, containing
data server and render server, runs on Working Nodes
and establishes a reverse socket connection between

the first node of the server (rank=0 MPI process) and
the client running on a local PC. Alternative batch
mode is very attractive for experienced grid users that
generate long animations. GUI is disabled and the
slow socket communication is replaced by usual grid
protocols and utilities for file transfer.

4. ParaView deployment on grid

ParaView 3.6.1 has been deployed in BalticGrid-II
[2] in order to provide for numerous users enhanced
application services aimed for visualization of large
datasets produced in grid. Deployment has been per-
formed by using BalticGrid-II SGM (Software Grid
Manager) system. All software packages are installed
in the predefined location, which is specified by con-
tent of special variable. After successful installation,
the SGM marks the site in global grid information sys-
tem as capable of running this particular application.
By use of this flag, called "a tag" the ordinary users
may indicate which sites they want to use.

ParaView has been deployed and tested on several
sites that are marked by ParaView tags: VO-balticgrid-
A-GRAPHICAL-PARAVIEW-3.6.1-OSMESA (CPU
rendering) and VO-balticgrid-A-GRAPHICAL-
PARAVIEW-3.6.1-DRI (GPU rendering). Required
environment can be read from the source file env.sh.
Installed software as well as the file env.sh resides in
the predefined directory. ParaView dependencies like
Mesa and OpenMPI have been installed by using
separate SGM scripts.

The most of grid sites are targeted for CPU rende-
ring, because of GPU installation issues and of the
absence of professional high performance graphics
hardware. Moreover, it is quite difficult to use GPU
rendering and to gain satisfactory performance on
heterogeneous multi-core architectures. gLite JDL abi-

Efficient Visualization by Using ParaView Software on BalticGrid

111

lities are not enough flexible for running parallel MPI
jobs on multi-core nodes. In general, GPUs can be
implicitly shared by pointing multiple processes to the
same display on the same host. One problem is that
many GPUs will not render correctly two windows on
top of each other. The two windows share memory
space and clobber each others memory. The pvserver
assumes that each process has equal access to local
rendering. This means that there is no special mecha-
nism to coordinate the rendering between pairs of pro-
cesses. Thus, GPU rendering can not be directly
applied on multi-core architectures of grid clusters.

In order to avoid the described problem, the --use-
offscreen-rendering flag can be employed. This will
create each rendering context in its own offscreen buf-
fer and guarantees that the memory will not overrun
that of another rendering context:

> mpiexec pvserver -rc --client-host=host.lt -display :0.0
--use-offscreen-rendering

Provided command executes pvserver on the num-
ber of cores, which is defined in JDL file. One node
has several cores, but only one GPU is available per
node. Thus, user launches one process per CPU and
lets multiple processes send rendering requests to the
same GPU. This option will maximize the speed of
filter processing, but will throttle down the rendering
speed as GPU processors and buses must be shared.
However, the rendering speed can be throttled quite a
bit before making a serious impact on visualization
performance, even when running interactively.

Special purpose parallel reader is developed for
unstructured datasets stored in predefined HDF5 [7]
format. It is adapted for the nature of pilot applications
that decompose the solution domain into sub-domains,
each being assigned to a processor, and ensure load
balancing. Each process writes its own result file,
which can be read and visualised independently. De-
veloped reader is based on the idea that each process
independently reads its file, independently performs
visualization and sends resulting image to the rank=0
MPI process. Parallel rendering library composites the
partial images together and forms the final image,
which is sent to a client. Information on partitioned
data files is stored in XML file, which is read by main
process running on the rank=0 MPI node. Each
process receives the name of data file and other
parameters from the main process. Then it works
independently until partial image is sent to the main
process. Efficiency of performed visualization is
completely insensitive to the amount of data being
rendered. This makes it a very scalable algorithm well
suited to large data.

5. Description of benchmark problem

ParaView is very useful for BalticGrid users per-
forming large distributed computations of actual in-
dustrial problems like oil filters, sediment transport,
dam break, rail guns, nano-powders, compacting, mi-

xing and hopper discharge [10, 11, 13-15, 25]. For
example, porous media flow has been investigated in
oil filters. Up to 9 millions finite volumes have been
employed for modelling of the real industrial filter
6HP26 (Figure 1). Particle systems have been chosen
as a pilot application for visualization, because of
large number of particles that are employed modelling
and visualizing actual industrial applications [14-15].
Particle systems have no permanent connections or
usual grid that can be applied for visualization pur-
poses. Discrete element computations are based on
particle positions, forces acting between particles and
Newton’s laws.

Figure 3. 100037 poly-dispersed particles visualized on 4

processors

Visualization of the tri-axial compaction problem
[15] of poly-dispersed particle systems (Figure 3) is
considered for performance analysis of ParaView. The
three-dimensional computational domain imitates a re-
presentative macroscopic volume element containing
particles and presents a box in the form of rectangular
parallelepiped. Numerical solution of tri-axial com-
paction helps to evaluate unknown material properties.
This problem is very actual and widely solved in the
area of material sciences.

The considered benchmark is based on the glyph
generation, because particles and computed forces are
often represented by glyphs that can be coloured by
investigated scalar values or oriented by the examined
vectors. The examined poly-dispersed system contains
100037 heterogeneous particles. Meaningful data are
composed from the positions of particles and their
radius, therefore, the real size of the visualized dataset
is quite small (3.13 MB). Numerical results include a
lot of values of primary and derived variables that are
written in HDF5 [7] files supplemented by XML
metadata. Moreover, results of ten iterations have been
written to result files. Thus, the size of complete
HDF5 file is equal to 235.16 MB. The total size of
partitioned result files is up to 236.59MB, which is
close to the size of the single file. Particles are
represented by generated spherical glyphs (Figure 3).
The size of the object, which encapsulates data of
generated glyphs, is equal to 326 MB. Rendered
polygon mesh consists of 9603552 cells and 5001850
vertices.

The most importand thing is that the size of rende-
red polygon mesh (glyphs) is significantly larger than
the initial data size (Figure 4). Usually, the second
order difference is observed, for example 3.13 MB

A. Kačeniauskas, R. Pacevič, A. Bugajev, T. Katkevičius

112

and 326 MB. It makes the described benchmark very
specific and inconvenient for some visualization tools.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Dataset HDF5 Glyphs

siz
e,

 M
B

Figure 4. Size of considered dataset

6. Performance tests and discussions

Designing visualization software to run on special
purpose hardware always results in high cost super-
computers [6]. These high-end resources are expen-
sive and often based in secure location with limited
access privileges. Average consumers, with their ac-
tual spending power, are driving developed software
and required technology. Visualization must find ways
to leverage these requirements, otherwise it will be left
aside of the community life. Therefore, heterogeneous
grid architecture based on ordinary PC clusters and
comodity hardware should be the main target of the
research. Efficient visualization performed by using
ordinary personal computers reveals challenge, but is
highly appreciated in academic communities. The
desktop delivered visualisation and grid computing
should become solutions to provide sufficient perfor-
mance visualizing a relatively large dataset using
relatively cheap PC clusters connected by a usual
network.

The benchmark was performed on BalticGrid test-
bed ce2.grid.vgtu.lt collected from ordinary personal
computers and equipped by high performance GPUs.
This cluster was considered for benchmark, because it
supported direct GPU rendering and was targeted for
visualization purposes. The cluster based on the multi-
core architecture consists of 14 HP Compaq dc7900
personal computers (nodes) including Pentium(R)
Dual-Core CPU E5300 (128KB L1 cache and bus
frequency equal to 2.60GHz), 4GB DDR2 RAM 800
MHz, Seagate 500GB HDD (timing buffered disk
reads 129.59 MB/sec). Each node is equipped by high
performance GPU (Nvidia GeForce 9600GT 512MB
256bit). Nodes are connected to 1Gbps Ethernet LAN
by 3Com Baseline Switch 2928-SFP Plus (24 auto
sensing 10/100/1000Mbps Base-TX ports).

Performance of ParaView software was evaluated
by the measurements of parallel speed-up Sp:

p
p t

t
S 1=

where t1 is the program execution time for a single
processor; tp is the wall clock time for a given job to

execute on p processors. The benchmark tests were
repeated up to ten times and the averaged values were
provided in Table 1. Only tests performed in the usual
gLite grid conditions, when two processes run on one
dual-core node and employ the same GPU, are pre-
sented in Table 1. Other cases were also examined in
order to perform quantitative comparison.

Table 1. The benchmark results obtained on the grid testbed

 1 2 4 6 8

Reader, s 0.01939 0.01182 0.00744 0.00586 0.00505
Sphere, s 0.00044 0.00047 0.00047 0.00046 0.00046
Glyphs, s 12.90 5.71 2.92 1.85 1.48
Geometry, s 2.20 1.12 0.57 0.38 0.28
MPI(Client), s 0.00025 0.00026 0.00021 0.00025 0.00021
MPI(Server), s 0.00013 0.00014 0.00015 0.00016 0.00016
GPU render, s 5.72 4.69 2.40 1.63 1.24
CPU render, s 20.07 11.46 5.84 3.96 3.03

The main attention was focused on the perfor-
mance of the developed HDF5 reader, rendering of the
resulting polygon mesh and speed-up attained. The
first row shows the number of processes. The second
row shows the time consumed by the developed HDF5
file reader. The third row presents the run time of
vtkSphereSource module, which generates spherical
particles. This time is negligible comparing to time
consumed by other visualization filters. The fourth
row provides the performance results of the
vtkPVGlyphFilter. The fifth row presents the time
spent on generating outlines by the vtkPVGeo-
metryFilter. The next rows provide data on communi-
cation performed by MPI. The sixth row presents time
spent by vtkMPIMoveData module on the client, while
the seventh row presents time consumed by
vtkMPIMoveData on the rank=0 MPI node of the
server. The zero process gathers all results from other
processes and sends resulting image to the client.
Communication times of other processes are signifi-
cantly shorter. In general, parallel communication was
fast enough and consumed negligible amount of time.
The eight row and the ninth row show GPU and CPU
rendering time, respectively. Work performed by
vtkPolyDataMapper,
vtkOrderedCompositeDistributor,
vtkPVUpdateSuppressor is not investigated, because it
takes about 10-4s or even 10-5s.

The data transfer between the remote parts of the
distributed visualization environment was also consi-
dered. HDF5 files were transferred from the Storage
Element to Working Nodes by using LFC means. This
process lasted from 8.6 s to 17.08s. The consumed
time linearly depended on the number of partitioned
files and their total size, which varied from 235.16MB
to 236.59MB. In average, job submission to the grid
testbed took about 15.7s. It is worth to note that job
submission and data transfer in grid environment takes
quite significant amount of time. The performance
analysis of gLite Resource Broker and LFC does not

Efficient Visualization by Using ParaView Software on BalticGrid

113

fall to the scope of current research, therefore, inves-
tigation was not performed.

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

1 2 3 4 5 6 7 8
proc, n

tim
e,

 s

D-PN2 D-PN1 S-PN2

Figure 5. Execution time of the developed parallel reader

for partitioned HDF5 files

Figure 5 shows the execution time of parallel
HDF5 reader for different number of processors.
Shared home systems are considered as well as
distributed home clusters. Before averaging, tests were
repeated more than one hundred times. The curves D-
PN2 and S-PN2 represent data reading on distributed
home and shared home, respectively. In both cases,
two processes run on one double-core node and use
the same hard disk drive. The curve D-PN1 represents
data reading from distributed home by one process per
node. The best performance was measured in this
case, that was expected. However, the difference
measured is not significant. It can be explained by
rather small data size and complex inherited structure
of all ParaView readers. In general, the developed
reader demonstrated good parallel performance in real
grid environments based on distributed or shared
home systems (curves D-PN2 and S-PN2).

Figure 6 illustrates rendering performance employ-
ing CPU as well as GPU. Figure 6a shows rendering
time, while Figure 6b illustrates speed-up Sp
measured. The curves GPU-1 and GPU-2 represent
GPU rendering performed by one process per node
and two processes per node, respectively. The curve
CPU-2 represents CPU rendering performed by two
processes running on one dual-core node. The special
curve Ideal shows ideal speed-up. Rendering time of
two processes sharing one GPU (the curve GPU-2) is
not significantly different from that of two processes
employing separate GPUs (the curve GPU-1). How-
ever, measured speed-up Sp of GPU-2 is significantly
lower, which leads to bad scaling on larger number of
processors. In general, GPU rendering significantly
outperforms the CPU rendering for relatively small
number of processors. However, speed-up Sp of CPU
rendering is higher, which gives advantage employing
large number of processors.

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8
proc, n

tim
e,

 s

CPU-2 GPU-2 GPU-1

a)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 3 4 5 6 7 8
proc, n

sp
ee

d-
up

Ideal CPU-2 GPU-1 GPU-2

b)

Figure 6. Rendering performance: (a) rendering time;
 (b) parallel speed-up

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 3 4 5 6 7 8
proc, n

sp
ee

d-
up

Ideal Glyph

Figure 7. Parallel speed-up of vtkPVGlyphFilter

Figure 7 demonstrates the parallel speed-up of
glyph generation. vtkPVGlyphFilter requires long exe-
cution time (Table 1), but it does not need any inter-
processor communication. Thus, even super-linear
speed-up caused by advantageous cashing can be
obtained (Figure 7). However, it was observed that
other filter vtkPVGeometryFilter runs efficiently for

A. Kačeniauskas, R. Pacevič, A. Bugajev, T. Katkevičius

114

problems without complex topologies. In other cases,
any significant speed-up can not be achieved
increasing the number of processors [12].

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 3 4 5 6 7 8
proc, n

tim
e,

 s

GPU-1 CPU-2 GPU-2

a)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 2 3 4 5 6 7 8
proc, n

sp
ee

d-
up

Ideal CPU-2 GPU-2

b)

Figure 8. Total performance of visualization:
(a) execution time; (b) parallel speed-up

Figure 8 illustrates the parallel performance of the
whole visualization process employing GPU rendering
or CPU rendering. Figure 8a shows execution time,
while Figure 8b provides speed-up measured. The
total execution time of visualization employing GPU
is shorter than that of using CPU rendering. However,
parallel speed-up of visualization employing GPU ren-
dering is lower, therefore, the total time of visuali-
zation becomes significantly closer when 8 processes
are used. It can be concluded that Figure 8b proves
high speed-up of visualization performed on grid
testbed based on multi-core architecture.

6. Conclusions

In this paper, deployment and performance of
visualization software ParaView on BalticGrid infra-
structure was investigated and described. Reverse con-
nection enabled implementation of fully interactive
user communication mode in grid built by gLite
midleware. ParaView software was sucsesfully dep-
loyed on BalticGrid testbed collected from ordinary
dual-core computers equiped by GPUs. The bench-

mark based on visualization of poly-dispersed particle
systems illustrated high efficiency of the deployed
software. The developed reader for partitioned un-
structured HDF5 files demonstrated good parallel
performance in real grid environment. GPU rendering
on multi-core architectures significantly reduced vi-
sualization time. However, measured speed-up of
GPU rendering was not high enough, which limited
employing large number of processors. Performed
speed-up analysis revealed that deployed ParaView
software is well designed for distributed visualization
of considered datasets.

Acknowledgement

The work described in this paper is supported by
the European Union through the FP7- INFRA-2007-
1.2.3: e-Science Grid infrastructures, contract No
223807, project “Baltic Grid Second Phase
(BalticGrid-II)”.

References
 [1] A.A. Ahmed, M.S.A. Latiff, K.A. Bakar, Z.A. Ra-

jion. Visualization Pipeline for Medical Datasets on
Grid Computing Environment. Proc. of 5th Int. Conf.
on Computational Science and Applications, IEEE
Computer Society Press, 2007, 567–575.

 [2] BalticGrid: http://www.balticgrid.eu/.
 [3] J. Biddiscombe, D. Graham, P. Maruzewski. Visua-

lization and Analysis of SPH Data. ERCOFTAC
Bulletin, SPH special edition, 2008, Vol.76, 9–12.

 [4] gLite: http://glite.web.cern.ch/glite/.
 [5] GLOBUS: http://www.globus.org/.
 [6] C.D. Hansen, C.R. Johnson. The Visualization

Handbook. Elsevier, 2005.
 [7] HDF5: http://hdf.ncsa.uiuc.edu/products/hdf5/.
 [8] G. Humphreys, M. Houston, R. Ng, R. Frank, S.

Ahern, P.D. Kirchner, J.T. Klosowski. Chromium:
A Stream Processing Framework for Interactive
Rendering on Clusters. ACM Transactions on Gra-
phics, 2002, Vol.21(3), 693–702.

 [9] ICENI: http://www.lesc.ic.ac.uk/iceni/index.html.
[10] A. Kačeniauskas. Parallel GMRES Solution of

Convective Transport Problems on Distributed
Memory Computers. Information Technology and
Control, 2004, Vol.30(1), 69–73.

[11] A. Kačeniauskas. Development of Efficient Interface
Sharpening Procedure for Viscous Incompressible
Flows. Informatica, 2008, Vol.19(4), 487–504.

[12] A. Kačeniauskas. Report on Performance Analysis of
Sequential and Parallel Visualization in Grid Envi-
ronment. Deliverable DJRA1.1 of FP7 BalticGrid-II
project, August 2008.

[13] A. Kačeniauskas, R. Kutas. Implementation of stress
dependent boundary conditions in FEM code for
coupled problems. Information Technology and
Control, 2008, Vol. 37(1), 69–74.

Efficient Visualization by Using ParaView Software on BalticGrid

115

[14] A. Kačeniauskas, R. Kačianauskas, A. Maknickas,
D. Markauskas. Computation and Visualization of
Poly-Dispersed Particle Systems on gLite Grid. Civil-
Comp Proceedings, Vol.90, ISSN 1759-3433, Proc. of
1st International Conference on Parallel, Distributed
and Grid Computing for Engineering (Eds. B.H.V.
Topping and P. Iványi), ISBN 978-1-905088-28-7,
Civil-Comp Press, Stirlingshire, United Kingdom,
2009, 1–18.

[15] R. Kačianauskas, A. Maknickas, A. Kačeniauskas,
D. Markauskas, R. Balevičius. Parallel Discrete Ele-
ment Simulation of Poly-Dispersed Granular Material.
Advances in Engineering Software, 2010, Vol.41(1),
52–63.

 [16] D. Kranzlmuller, G. Kurka, P. Heinzlreiter, J. Vol-
kert. Optimizations in the Grid Visualization Kernel.
Proc. of the Workshop on Parallel and Distributed
Computing in Image Processing, Video Processing
and Multimedia, IPDPS 2002, Ft. Lauderdale, Flo-
rida, 2002.

[17] M. Li, M. Baker. The Grid: Core Technologies.
Wiley, 2005.

[18] MPI: http://www-unix.mcs.anl.gov/mpi/.
[19] OpenDX: http://www.opendx.org/.
[20] Qt: http://trolltech.com/products/qt/.
[21] RealityGrid: http://www.realitygrid.org/.
[22] W. Schroeder, K. Martin, B. Lorensen. Visualiza-

tion Toolkit: An Object-Oriented Approach to 3D
Graphics, 4th Edition. Kitware. Inc., 2006.

[23] A. Squillacote. ParaView Guide, Version 3. Kitware,
Inc., 2008.

[24] TeraGrid: http://www.teragrid.org/userinfo/data/vis
/pv_overview.php.

[25] L. Tumonis, M. Shneider, R. Kačianauskas, A. Ka-
čeniauskas. Structural Mechanics of Railguns in the
Case of Discrete Supports. IEEE Transactions on
Magnetics, 2009, Vol.45(1), 474–479.

[26] C. Upson, T.A. Faulhaber, D. Kamins, D.H. Laid-
law, D. Schlegel, J. Vroom, R. Gurwitz, A. Van
Dam. The Application Visualization System: a Com-
putational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 1989,
Vol.9(4), 30–42.

Received December 2009.

