
68

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2010, Vol.39, No.1

DISCOVERY OF MODEL IMPLEMENTATION PATTERNS IN
SOURCE CODE

Linas Ablonskis, Lina Nemuraitė
Kaunas University of Technology, Department of Information Systems

Studentų st. 50-308, LT-51368 Kaunas, Lithuania
linas.ablonskis@stud.ktu.lt, lina.nemuraite@ktu.lt

Abstract. We present a language independent method for detecting model implementation patterns in a source
code. In contrast to most other reverse engineering methods, we exploit existing program model for this purpose. Our
method works by recognizing instances of simple model-to-code transformations. The patterns we use for recognition
of model elements can be reused for composing templates for generating a program code. Our method is used for
recognizing relationships between program model and handwritten program code.

Keywords: reverse engineering, code generation, UML, MDA, abstract syntax tree, implementation patterns.

1. Introduction

Incorporation of abstract models into software
development has become a widely accepted practice.
There are several software development paradigms
such as Model Driven Architecture MDA) [1], Model
Driven Engineering (MDE) [2] and Model Driven
Development (MDD) [3] that use software models not
just for documentation but as one of central artifacts
during software development process.

When developing software based on abstract mo-
dels it is beneficial to use program code generators [4]
to quickly generate repetitive parts of a source code
from program models. Usually, it is possible to make a
program model in the initial steps of the software de-
velopment cycle, but generating a source code from
that program model is not always practical [4]. This
happens when the software is being implemented in a
domain that is not understood well enough to write the
corresponding program code generator. This also
happens when implementation platform changes too
quickly to become a stable enough target for program
code generation.

To rectify this situation we proposed a program
code generator that automatically configures itself to
generate program code from a given program model
while observing partial implementation of that prog-
ram model by a human [5]. In order to achieve this,
we need to relate program model and handwritten
program code. We present such a method in this paper.
Our method works by recognizing the application of
simple model-to-code transformations in a given
source code. In contrast to most other reverse

engineering methods, we exploit existing program
model for reverse engineering; furthermore, the pat-
terns we use for recognition of model elements can be
reused for composing templates for generating a prog-
ram code.

The reminder of this paper is structured as follows:
in Section 2 the related work is considered; in Section
3 the method for finding model implementation pat-
terns in a source code is presented; Section 4 demonst-
rates an example of applying the method and Section
5 is used to draw conclusions and outline future work.

2. Related works

Program code generators are used to generate
program code from abstract program models. There
are various types of abstractions used in modeling
program structure and behavior such as enterprise mo-
dels expressed in UML [6], populated business rule
templates [7], domain rules extracted from ontologies
[8], UML OCL statements [9], etc. Various program
code generators belong to the field of metaprogram-
ming [10] and are used for generating more specific
program code from more abstract program code. For
the purposes of this paper, we understand program
models as being on the level of abstraction that corres-
ponds to UML [11] class models with such elements
as packages, classes, stereotypes and related structural
concepts.

The method presented in this paper belongs to the
field of reverse engineering [12–15]. It is used as a
part of the method for automatically configuring prog-
ram code generator [5]. The field of reverse

Discovery of Model Implementation Patterns in Source Code

69

engineering is quite wide and includes such areas as
re-documentation, architecture recovery, design reco-
very, design pattern recovery, program visualization
and understanding, code metrics and source code ana-
lysis, reengineering, and refactoring. We found the
most related works in areas of design recovery, design
pattern recovery and reengineering.

Techniques for analyzing source code raise the
level of abstraction of a source code being analyzed.
However, this level at most corresponds to the level of
object oriented or functional programming concepts
[16]. This makes them not suitable for reverse engi-
neering to the level of abstractions used in MDA.
Abstractions used in MDA are best represented by the
concepts of UML language.

Most reverse engineering tools and methods [17–
23] follow a well-defined pattern of operation. They
parse a given source code to the level of abstraction
that is somewhere near Abstract Syntax Tree (AST).
They optionally resolve dependencies and entities.
Then this information is written to the database where
a set of extractors are run that extract a set of pre-
dicates and also write them to the database. After that,
a set of analyzers are run to produce some results, or
querying of source code related facts can be perfor-
med. Those reverse engineering tools and methods are
primarily designed to extract code metrics, facts or
code artifacts for the tasks of system architecture
recovery, program comprehension or reengineering.
This makes them unsuitable for our needs. Code met-
rics and facts are just code artifact related measures.
Code artifacts are at too low level of abstraction com-
pared to MDA artifacts. Architecture recovery is often
speculative and primarily produces such abstractions
as possible modules of source code or possible
boundaries of components with interfaces. Those abst-
ractions are too vague for our purposes.

UML Computer Aided Software Engineering
(CASE) tools employ the same reverse engineering
methods as everything else, but they produce UML
artifacts as a result. Static code analysis allows pro-
ducing class models [24]; dynamic analysis of execu-
tion traces creates sequence diagrams and other beha-
vioral artifacts [25]. There are attempts at creating
round-trip engineering environments in UML CASE
tools. One such attempt was done using FUJABA and
employing code annotations in code comments for
producing UML story diagrams (story diagram is a
custom diagram type that merges collaboration and
activity diagrams [26]). The methods used in produc-
ing class models parse program code into AST (or
partial AST omitting unnecessary elements) and then
apply pattern detection algorithms to produce class
models. This kind of reverse engineering requires
creating a custom detection pattern for each artifact to
be recovered. However, these detection patterns can-
not be used to generate source code, unlike the ones
used in our method.

A notable piece of work in MDA related reverse
engineering is described in a 2008 paper by Bork et al.

[27]. They have created a method that allows analyz-
ing generated source code and recognizing the temp-
lates that were used to generate it. Once templates are
found and data tokens are extracted, a set of case-by-
case converters are used to convert those tokens back
into UML models. The main benefit of this method is
that the same template is used for generation of source
code and reverse engineering. This reduces the main-
tenance work of a CASE tool.

The method works by parsing a template and split-
ting source code into words. The template is then
matched token-by-token to the source code with some
look ahead. Variables are filled and all logical
branches are considered. A constraint solver is used to
decide what template branches satisfy the code being
matched by the variables employed for branching.
Hints are used to help matching variables. After temp-
lates are matched, an intermediate data layer is const-
ructed from the data extracted into template variables.
A set of case-by-case converters then work on the
intermediate data layer and convert it back into UML
model. The technique is independent from source code
language; however, it cannot recognize reordered
code. This prevents it from being used for reverse en-
gineering handwritten program code. It also cannot
reverse engineer templates directly into UML model
elements.

Another piece of work that strongly relates to ours
is described in a 1990 paper by Rich and Wills [28].
They have created a method that allows recognizing a
presence of design concepts or techniques in source
code. This is done by parsing source code and creating
an attributed flow graph where nodes represent struc-
tural artifacts and edges represent control or data flow
between the nodes. Artifacts to be recognized are en-
coded as pieces of flow graphs and make a graph
grammar. A special algorithm [29] is used to parse a
flow graph and recognize elements of a graph gram-
mar, thus recognizing related artifacts. While this
algorithm cannot relate a program model and source
code, a chosen approach of artifact recognition is very
close to one employed in our work in a sense that they
do not employ special scripts or case-by-case algo-
rithms to recognize artifacts, but describe artifacts in
the form they are found in abstracted source code and
use this information for recognition.

Another area of reverse engineering that relates to
our work is recovery of design patterns. Design pat-
terns are reusable solutions to common software engi-
neering problems that can be described by a certain
composition of software artifacts [30], often presented
in UML class diagrams. Recovery of design patterns is
concerned with finding instances of design patterns in
program code. This is primarily used for program
comprehension. Methods recovering design patterns
parse the source code being analyzed and create a
representation on the level of AST. Then a search is
performed and design patterns are extracted. The
specifics of this step differ among various methods for
recovering design patterns.

L. Ablonskis, L. Nemuraitė

70

Some methods use additional dynamic analysis to
extract execution traces or call graphs. These data are
then analyzed by a set of predefined algorithms where
each algorithm is tailored for detecting one design
pattern [31, 32]. Another method for recognition of
design patterns [33] uses graphs to describe design
pattern templates like the reverse engineering method
mentioned before [28]. An algorithm that evaluates
edge similarity of two graphs [34] is then used to
finding correspondences between templates of design
patterns and a tree composed of elements of a source
code.

There is a way to accelerate design pattern detec-
tion by fingerprinting them with a set of code metrics
(size, filiation, cohesion and coupling) and then using
those code metrics to quickly reject design pattern
candidates before employing standard detection tech-
niques [35]. This requires a rule engine and an initial
source code base for teaching that rule engine. Simi-
larly, there is a method that uses decision trees and
neural networks for recognizing design patterns
through code metrics [36]. Since it employs a neural
network, this method requires teaching the algorithms
by using manually evaluated design pattern candidates
extracted from a base source code.

There is a method that uses Formal Concept Ana-
lysis (FCA) to analyze a set of predicates extracted
from program code when detecting design patterns
[37] (FCA is a method for grouping objects into hie-
rarchies by their attributes, it is used in various areas
[38]). Predicates describe existence of entities and
their relationships. FCA can detect ad-hock design
patterns and does not require design pattern defi-
nitions.

Another approach is to describe design patterns
with logical formulas that operate on a set of predi-
cates extracted from source code [39]. These predi-
cates describe the existence of various types of ele-
ments and relationships in a parsed program code. The
predicates extracted from the source code and logical
formulas describing design patterns are fed to a logic
engine. The advantage of this method is its ability to
find non-standard variants of design patterns, as long
as they can be logically reduced to a standard form.
There is a paper [40] that suggests standardization of
logic predicates used for program code analysis as this
would allow making a tool working with a wide varie-
ty of programming languages as long as there are suit-
able extractors for those languages.

Back to the basics, there is a method that uses sta-
tic program code analysis and a set of detection algo-
rithms. Each detection algorithm is tailored to detect a
single design pattern [41]. Detection of design patterns
is considered to be a constraint satisfaction problem
where each design pattern provides a constraint on a
set of elements and relations that compose it. There
are suggestions [42, 43] to use XML based language
for describing design patterns and then applying the
same principle to detect them.

Design pattern recovery techniques work by par-
sing source code, building an abstract representation
of it and then either directly working on that repre-
sentation [41–43] or building a set of predicates [39,
40], or computing code metrics and using them with
logical solvers or Artificial Intelligence (AI) techni-
ques. Design patterns are usually described either by
specific recognition algorithms [41, 43], logical
formulas [39, 40] or code metrics based fingerprints
[35, 36], with exception of the method that uses
formal context analysis to detect ad-hoc design
patterns without any kind of prior descriptions [37]
and the method that uses graphs [33]. Our method also
works on abstract representation of the source code
being analyzed, but it uses different technique for
specifying search patterns and different method for
recognition. Our recognition technique is similar in
spirit to those used in methods employing graph-sub-
graph matching [38, 33].

While we were inspired by the ideas used in design
pattern recovery, the direct application of design pat-
tern detection methods was unsuitable for our needs.
Predicates-with-logical-formulas, one-algorithm-per-
pattern and graph-subgraph-matching methods require
a lot of work for building predicate sets, logical for-
mulas, algorithms or graphs that correspond to ar-
tifacts being detected. Code metrics and AI based
methods are either approximate, or they only use code
metrics and AI techniques to quickly reject candidates.
Ad-hoc design pattern detection method [37] is
unsuitable for our needs as it will detect something
that can be viewed as design patterns, but it will
always need a human to comprehend the meaning of
those design patterns.

3. Method for discovering model
implementation patterns in source code

We consider that creating source code that cor-
responds to a given program model is an action of
making transformation from that program model to a
source code. Such a transformation can be divided
into a set of smaller transformations for every model
element. To find how a given model element maps to a
given source code is to find a transformation that pro-
duces a piece of the given source code from that
model element.

To make our method language independent, we as-
sume that program model and program code will be
transformed to an intermediate form that follows mo-
dels defined below. Let call model elements in that
intermediate form “model concepts” and code ele-
ments in that intermediate form “code concepts”. Mo-
del concepts represent concepts of a chosen modeling
language and code concepts represent concepts from a
chosen set of programming languages. To obtain a
model concept tree from a model, we make a model-
to-model transformation. To obtain a code concept tree
from a source code, we parse source code into AST,

Discovery of Model Implementation Patterns in Source Code

71

resolve entities and make a model-to-model transfor-
mation.

We assume that model concepts are made accor-
ding to the model shown in Figure 1. Each model con-
cept has an identifier id and a set of slots. Each slot
has an identifier id and a set of values that are model
concepts. Such a model allows building model con-
cept trees and analyzing structure of model concepts at
runtime. Model concepts that represent named model

elements derive from ConceptWithName and model
concepts that carry some literal values derive from
ConceptWithValue. Since all modern object-oriented
programming languages support at least basic reflec-
tion, we use it at runtime to check if a given instance
of a model concept derives from ConceptWithName
and thus has a name or derives from ConceptWith-
Value and thus has a literal value.

ConcreteModelConceptWithNameAndValue ConcreteModelConceptWithValueConcreteModelConceptWithNameConcreteModelConcept

+id : String
ModelConceptSlot

+name : String
ConceptWithName

+value : Class
ConceptWithValue

+id : String
ModelConcept
+values 0..* 0..*

+slots
0..*1

Figure 1. Model of model concepts

ConcreteCodeConceptWithNameAndValue +id : String

+accepts(concept : CodeConcept) : Boolean

Hole

ConcreteCodeConceptWithValueConcreteCodeConceptWithName ConcreteCodeConcept

+value : Class
ConceptWithValue

+name : String
ConceptWithName

+id : String
CodeConceptSlot

+id : String
CodeConcept

HoleAttachment

ConcreteHole

+values 0..* 0..*

+holes
0..*

1

+slots
0..*1

+hole

1

1

+slot 1
1

Figure 2. Model of code concepts

Code concepts, as shown in Figure 2, have the
same structure and semantics as model concepts with
a single extension – they support attachment of holes.
A hole can be attached to a slot in a code concept and
is said to “cover” that particular slot. Holes are used
to specify places in code concept trees that can optio-
nally contain additional content. Each hole has an
identifier id and a condition function accepts that tells
if a given code concept can be placed in the hole. One
instance of a hole may cover exactly one instance of a
code concept slot in exactly one instance of a code
concept. This allows building code concept trees with
missing parts covered by holes and specifying what
can be placed in those parts.

The last artifact used in our method is called a
“basic transformation” (Figure 3). This is an arbitrary
name that is chosen to reflect that those transfor-
mations are supposed to be small and simple. Basic
transformations represent black box mappings from

model concepts to code concepts. Each basic trans-
formation describes a set of unique roles for inputs it
can consume, where each input role has an identifier
id and describes a type of model concept that can be
placed in this role. Basic transformation can also have
a list of input conditions attached, where each condi-
tion can reject a given input. Input conditions are used
to specify additional conditions on basic transforma-
tion inputs that do not depend solely on the type of
transformed model concepts.

In theory, we can define an infinite amount of
transformations from model concepts to code con-
cepts, but in reality most of them would be meaning-
less. In reality each model concept will have at most
several transformations to code concepts. For
example, if we use the UML language, a model class
can be meaningfully transformed into a source code
class, interface or an instance creation expression,

L. Ablonskis, L. Nemuraitė

72

however, transforming it into a method would have no
sense at all.

While basic transformations support multiple input
roles and thus multiple inputs, in reality they will
usually work on only one input, since abstract model
concepts usually get expanded into one or several
code concepts when they are converted to specific

code, and not vice versa. A possibility for multiple
inputs is supported “just in case”, to make recognition
algorithm generic. Also, a high number of inputs
would require additional input filtering (that is beyond
the scope of this paper) to avoid combinatorial explo-
sion of input permutations in detection algorithm.

+outputRoots : CodeConcept [0..*]
Context

+accepts(input : Input) : Boolean
InputCondition

+id : String

+transform(context : Context)

BasicTransformation

+id : String
+type

InputRole
+id : String
+concept : ModelConcept

Input
+conditions 0..*

1

+inputs 0..*

1 +inputs 0..*

1

Figure 3. Model of basic transformations

Figure 4. Recognition of basic transformation instances in a given code concept tree

To recognize a mapping from model concepts to
code concepts, potentially produced by some basic
transformation, we use an algorithm given in Figure 4.
We test basic transformations one by one. For each
basic transformation we prepare lists of inputs for
every input role. We select only those model concepts
that fit to a given input role by type and satisfy all
input conditions if used in that role.

We sequentially make permutations of inputs in all
input roles. Each permutation produces a list of inputs
for a basic transformation to transform. There are no
duplicate model concepts in a single permutation.
There is no point in providing basic transformation
with the same concept in several roles at the same
time, since basic transformation can extract it several
times from a single role if needed. We apply a basic
transformation for each permutation thus creating one
or more code concept trees with holes as a result.

For every root of a tree of code concepts produced
by a basic transformation we make a list of directly
equal code concepts taken from a given code concept
tree that represents a given source code. Two code
concepts A and B are directly equal iff:

(typeOf(A) = typeOf(B)) and
(A instanceOf ConceptWithName →
 A.name = B.name) and
(A instanceOf ConceptWithValue →
 A.value = B.value)

Direct equality conditions of two code concepts
ensure that those code concepts are equal as far as
their types, names and values are equal, but make no
assertions about equality of the contents of those code
concepts. We use deep equality conditions for that.
Conditions for deep equality are not commutative. Let
us assume that code concept coming from a result of
basic transformation function is called A and code
concept coming from code concept tree that represent
some source code is called B. Code concepts A and B
are deeply equal if and only if they satisfy the condi-
tions stated in Figure 5.

The conditions of deep equality basically overlay
code concept tree with holes, having root at code con-
cept A, on another code concept tree starting with code
concept B. If overlaying succeeds then A is deeply
equal to B, otherwise it is not.

Discovery of Model Implementation Patterns in Source Code

73

Figure 5. Direct equality conditions of code concepts

After running deep equality tests, we have a set of
deeply equal matches for every root of code concept
tree produced by a basic transformation. Each match is
a pair of deeply equal code concepts (A, B) where A
comes from result of basic transformation and B
comes from a given code concept tree. Since code
concept trees represent sibling statements in code in a
basic transformation result, we can make unique per-
mutations from subsets of matches where B's are
sibling nodes in a given code concept tree and record
each permutation as detection of model to code map-
ping by a basic transformation at a position defined by
base code concepts in matches. A basic transformation
is a pattern for implementing a model element in code.
Thus we can detect not only facts of implementation
but also patterns of implementation of specific model
elements in the given program code.

4. Example of discovering model implementa-
tion patterns in source code

The method was implemented using Scala prog-
ramming language [44] and tested by writing a set of
sample transformations that were used to relate a
sample UML model with a sample source code written
in Java. We illustrate the presented method by a fol-
lowing simple example that is adapted from the actual
program code implementing concepts, transformations
and the method being described.

Let us assume that we have model concepts that al-
low partially representing a model class, as displayed
in Figure 6, where function makeSlot makes a slot out
of given field name, getter and setter.

class ModelClass extends ModelConcept with ConceptWithName {
 override var id = “ModelClass”;
 var fields = List[ModelField]();
 val fieldsSlot = makeSlot(name =”fields”, getter= fields _, setter=fields_= _);
 slots += fieldsSlot;
}

class ModelField extends ModelConcept with ConceptWithName with ConceptWithValue {
 override var id = “ModelField”;
}

Figure 6. Concepts for partially representing a model class

ModelClassInstance {
 name = “ClassA”,
 slots = {
 Slot{
 id=”fields”,
 values= {
 ModelFieldInstance {name=”fieldA”, value=”null” }

 }
 }
 }
}

Figure 7. Data structure partially representing a model class

class CodeClass extends CodeConcept with ConceptWithName {
 override var id = “CodeClass”;
 var fields = List[CodeField]();
 val fieldsSlot = makeSlot(name=”fields”, getter= fields _, setter=fields_= _);
 slots += fieldsSlot;
}

class CodeField extends CodeConcept with ConceptWithName with ConceptWithValue {
 override var id = “CodeField”;
}

Figure 8. Concepts for partially representing a code class

L. Ablonskis, L. Nemuraitė

74

The structure displayed in Figure 7 describes an
instance of model class concept. Also, let us assume
we have code concepts that allow partially represen-
ting an OOP class as displayed in Figure 8. The struc-
ture displayed in Figure 9 describes an instance of
code class concept.

Now let us assume we have two basic transfor-
mations: one for transforming model classes into code
classes and another for transforming model fields into
code fields as displayed in Figure 10.

CodeClassInstance {
 name = “ClassA”,
 slots = {
 Slot{
 id=”fields”,
 values= {
 CodeFieldInstance { name=”fieldA”, value=”null” }
 }
 }
 }
}

Figure 9. Data structure partially representing a code class

val class2Class = btf("class2Class")
 .from("class", classOf[ModelClass])
 .hole("fields").onlyFor(BtfHoleConds.Default)
 .using(context => {
 //get source class
 val srcCls = context.input("class").asInstanceOf[ModelClass];

 //create destination class
 val dstCls = new CodeClass();
 dstCls.name = srcCls.name;

 //bind hole to destination class slot "fields"
 context.hole("fields").bindCopyTo(dstCls.fieldsSlot);

 //
 context.output(dstCls);
});

val field2field = btf("field2Field")
 .from("field", classOf[ModelField])
 .using(context => {
 //get source field
 val srcFld = context.input("field").asInstanceOf[ModelField];

 //create destination field
 val dstFld = new CodeField();
 dstFld.name = srcFld.name;
 dstFld.value = srcFld.value;

 //
 context.output(dstFld);
});

Figure 10. Example of basic transformations

Those basic transformations are defined using cus-
tom builders. btf() starts building a transformation,
from() adds an input role, hole() registers a hole for
the later use, using() registers a transformation func-
tion and returns a transformation. We take holes from
the context variable because in the implementation,
the context caries a pointer to the host transformation
of transformation function.

Our algorithm would work on basic transforma-
tions one by one. Let us assume it starts with
class2class transformation. It would scan a given
model concept tree and select a ModelClassInstance
because it matches a single input role of transforma-
tion by type. It would then produce an input object out
of the code concept Input {id = “class”, concept =

ModelConceptInstance} and pass this input to the
context of the transformation. Then the transformation
function would run on the given context and write
back a single code concept instance that matches the
CodeClassInstance and has a hole attached to the slot
“fields”.

Next our algorithm would scan a given code con-
cept tree and would produce a single list with a Code-
ClassInstance in it, since CodeClassInstance is direct-
ly equal to the code concept produced by the transfor-
mation. Next a deep equality checker would run
through the list and find that CodeClassInstance is
deeply equal to the concept produced by the
transformation. This pair of deeply equal code con-
cepts together with the corresponding basic transfor-

Discovery of Model Implementation Patterns in Source Code

75

mation class2class would be registered as a detection
of model to code transformation.

The same process would repeat for field2field
transformation. An algorithm would scan a given mo-
del concept tree and select a ModelFieldInstance be-
cause it matches a single input role of transformation
by type. It would then produce an input object out of
ModelFieldInstance and pass it into the context of the
transformation. Then the transformation function
would run and write back a single code concept
instance that matches the CodeFieldInstance.

Next our algorithm would scan a given code con-
cept tree and would produce a single list with Code-
FieldInstance in it, since CodeFieldInstance is di-
rectly equal to the code concept produced by the
field2field transformation. Next a deep equality che-
cker would run through the list and find that
CodeFieldInstance is deeply equal to the concept
produced by the transformation. This pair of deeply
equal code concepts together with the basic transfor-
mation field2field would be registered as a detection
of model to code transformation.

As a result we would know that the code concept
CodeClassInstance can be produced from the model
concept ModelClassInstance by applying the transfor-
mation class2class and that the CodeFieldInstance can
be produced from the model concept ModelFieldIns-
tance by applying the transformation field2field. This
tells us what implementation patterns were used by a
human to produce parts of the given source code
(represented by code concepts) from parts of the given
program model (represented by model concepts).

5. Conclusions and future work

The method we presented can be used to detect
simple model implementation patterns in source code
using program concept model, code concept model, a
set of basic transformation patterns for matching code
concepts to model concepts, a program model and par-
tially implemented code written by human. We use
this technique as the part of the method for creating
automatically configured program code generator that
is intended for the purpose of generating program
code when the software is being implemented in a do-
main that is not well understood or implementation
platform changes too quickly to become a stable
enough target for conventional program code
generation.

Our method is different from other reverse engi-
neering methods. We exploit existing program model
for reverse engineering and maintain the ability to use
the same artifacts for detecting model implementation
patterns in a source code and for composing program
code generator templates.

In the future we intend to develop a method for
detecting instances of more complex model-to-code
transformations by combining basic transformations
described in this paper.

References
 [1] J. Bézivin. On the unification power of models. Soft-

ware and Systems Modeling, May 2005, Vol. 4,
No. 2, 171–188.

 [2] S. Kent. Model driven engineering. Proceedings of
the Third International Conference on Integrated For-
mal Methods, IFM 2002, Lect. Notes Comput. Sci.,
2002, Vol. 2335, 286–298.

 [3] B. Selic. The pragmatics of model-driven develop-
ment. IEEE Software, 2003, Vol. 20, No. 5, 19–25.

 [4] J. Herrington. Code generation in action. Manning
Publications Co, 2003.

 [5] L. Ablonskis. An approach to generating program
code in quickly evolving environments. In G.A. Papa-
dopoulos, G.. Wojtkowski, W.W. Wojtkowski, S. Wry-
cza, J. Zupancic (eds.) Information Systems Develop-
ment: Towards a Service Provision Society, Springer-
Verlag: New York, 2009, 259–267.

 [6] T. Skersys. Business Knowledge-Based Generation of
the System Class Model. Information Technology and
Control, 2008, Vol. 37, No. 2, 145–153.

 [7] O. Vasilecas, S. Sosunovas. Practical Application of
BRTL Approach for Financial Reporting Domain.
Information Technology and Control, 2008, Vol. 37,
No. 2, 106–113.

 [8] O. Vasilecas, D. Kalibatiene, G. Guizzardi. Towards
a Formal Method for the Transformation of Ontology
Axioms to Application Domain Rules. Information
Technology and Control, 2009, Vol. 38, No. 4, 271–
282.

 [9] A. Armonas, L. Nemuraite. Using Attributes and
Merging Algorithms for Transforming OCL Expres-
sions to Code. Information Technology and Control,
2009, Vol. 38, No. 4, 283–293.

[10] R. Damaševičius, V. Štuikys. Taxonomy of the Fun-
damental Concepts of Metaprogramming. Information
Technology and Control, 2008, Vol. 37, No. 2, 124–
132.

[11] OMG Unified Modeling Language (OMG UML)
Superstructure, V2.1.2. OMG Available Specification
formal/2007-11-02, 2007, http://www.omg.org.

[12] E. J. Chikofsky, J. H. Cross II. Reverse engineering
and design recovery: A taxonomy. IEEE Software,
January 1990, Vol. 7, No. 1, 13–17.

[13] H.A. Müller, J.H. Jahnke, D.B. Smith, M.A. Storey,
S.R. Tilley, K. Wong. Reverse engineering: A road-
map. Proceedings of the Conference on the Future of
Software Engineering, Limerick, Ireland, 2000, 47–60.

[14] G. Canfora, M. Di Penta. New frontiers of reverse
engineering. Proceedings of the 2nd Conference on
the Future of Software Engineering (FOSE’ 07), 2007,
326–341.

[15] G. Canfora, M. Di Penta. Frontiers of reverse engi-
neering: A conceptual model. Proceedings of Fron-
tiers of Software Maintenance (FoSM 2008), 2008,
38–47.

[16] D. Binkley. Source Code Analysis: A Road Map. Pro-
ceedings of Future of Software Engineering, 2007,
104–119.

[17] S.R. Tilley, H.E. Muller, M.J. Whitney, K. Wong.
Domain retargetable reverse enginering. Proceedings
of the 1993 International Conference on Software
Maintenance (CSM 1993), September, 1993, 142–151.

L. Ablonskis, L. Nemuraitė

76

[18] I. D. Baxter, C. Pidgeon, M. Mehlich. DMS: prog-
ram transformations for practical scalable software
evolution. Proceedings of the 26th International Con-
ference on Software Engineering (ICSE 2004), 2004,
625–634.

[19] J.R. Cordy, T.R. Dean, A.J. Malton, K.A. Schnei-
der. Source Transformation in Software Engineering
using the TXL Transformation System. Information
and Software Technology, 2002, Vol. 44, No. 13, 827–
837.

[20] M. Bravenboer, K.T. Kalleberg, R. Vermaas, E. Vis-
ser. Stratego/XT 0.16: components for transformation
systems. Proceedings of the 2006 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-based
Program Manipulation, January 9-10, 2006, 95–99.

[21] S. Ducasse, M. Lanza, S. Tichelaar. Moose: an ex-
tensible language-independent environment for reengi-
neering object-oriented systems. In Proceedings of the
Second International Symposium on Constructing
Software Engineering Tools (CoSET 2000), 2000.

[22] R. Ferenc, A. Beszedes, M. Tarkiainen, T. Gyimo-
thy. Columbus – reverse engineering tool and schema
for C++. Proceedings of the International Conference
on Software Maintenance (ICSM'02), 2002, 172–181.

[23] B. Paradauskas, A. Laurikaitis. Business knowledge
extraxtion using program understanding and data ana-
lysis techniques. Proceedings of the 15th International
Conference on Information and Software Techno-
logies, IT 2009, Kaunas, Lithuania, April 23-24, 2009,
337–354.

[24] A. Sutton, J.I. Maletic. Mappings for accurately re-
verse engineering UML class models from C++. Pro-
ceedings of the 12th Working Conference on Reverse
Engineering, 2005, 175–184.

[25] T. Systa. Static and Dynamic Reverse Engineering
Techniques for Java Software Systems. Academic Dis-
sertation, University of Tampere, 2000.

[26] U.A. Nickel, J. Niere, J.P. Wadsack, A. Zundorf.
Roundtrip Engineering with FUJABA. Proceedings of
the 2nd Workshop on Software-Reengineering (WSR),
August, 2000.

[27] M. Bork, L. Geiger, C. Schneider, A. Zundorf. To-
wards Roundtrip Engineering – a Template-Based Re-
verse Engineering Approach. In Model Driven Archi-
tecture: Foundations and Applications, Lect. Notes
Comput. Sci., 2008, Vol. 5095, 33–47.

[28] C. Rich, L.M. Wills. Recognizing a program's design:
a graph-parsing approach. IEEE Software, 1990, Vol.
7, No. 1, 82–89.

[29] D.C. Brotsky. An Algorithm for Parsing Flow Graphs.
Technical report TR-704, MIT Artificial Intelligence
Laboratory, March, 1984.

[30] E. Gamma, R. Helm, R. Johnson, J.M. Vlissides.
Design Patterns – Elements of Reusable Object-Orien-
ted Software. Addison-Wesley Publishing Co., 1995.

[31] D. Heuzeroth, T. Holl, G. Högström, W. Löwe.
Automatic design pattern detection. Proceedings of the
11th IEEE International Workshop on Program Com-
prehension, 2003, 94–103.

[32] N. Shi, R.A. Olsson. Reverse Engineering of Design
Patterns from Java Source Code. Proceedings of the
21st IEEE/ACM International Conference on Auto-
mated Software Engineering, 2006, 123–134.

 [33] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides,
S.T. Halkidis. Design pattern detection using similari-
ty scoring. IEEE Transactions on Software Eng, 2006,
Vol. 32, No. 1, 896–909.

[34] V.D. Blondel, A. Gajardo, M. Heymans, P. Senel-
lart, P.V. Dooren. A measure of similarity between
graph vertices: applications to synonym extraction and
web searching. SIAM Review, 2004, Vol. 46, No. 4,
647–666.

[35] Y. G. Gueheneuc, H. Sahraoui, F. Zaidi. Fingerprin-
ting design patterns. Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE’04),
2004, 172–181.

[36] R. Ferenc, A. Beszedes, L. Fulop, J. Lele. Design
pattern mining enhanced by machine learning. Procee-
dings of the 21st IEEE International Conference on
Software Maintenance, 2005, 295–304.

[37] P. Tonella, G. Antoniol. Object Oriented Design Pat-
tern Inference. Proceedings of the IEEE International
Conference on Software Maintenance, 1999, 230–238.

[38] A. Laukaitis, O. Vasilecas, D. Plikynas. Formal Con-
cept Analysis for Business Information Systems.
Information Technology and Control, 2008, Vol. 37,
No. 1, 33–37.

[39] J.M. Smith, D. Stotts. Elemental design patterns: A
logical inference system and theorem prover support
for flexible discovery of design patterns. Technical
Report TR02-038, Departament of Computer Science,
University of North Carolina, 2002.

[40] J. Fabry, T. Mens. Language independent detection of
object-oriented design patterns. Computer Languages,
Systems & Structures, 2004, Vol. 30, No. 1-2, 21–33.

[41] H. Albin-Amiot, P. Cointe, Y. G. Guéhéneuc, N. Jus-
sien. Instantiating and detecting design patterns: put-
ting bits and pieces together. Proceedings of the 16th
Annual International Conference on Automated Soft-
ware Engineering (ASE’01), 2001, 166–173.

[42] Z. Balanyi, R. Ferenc. Mining design patterns from
C++ source code. In Proceedings of the International
Conference on Software Maintenance, 2003, 305–314.

[43] J. M. Smith, D. Stotts. SPQR: Flexible automated
design pattern extraction from source code. Procee-
dings of the 18th IEEE International Conference on
Automated Software Engineering, 2003, 215–224.

[44] D. Wampler, A. Payne. Programming Scala. O'Reilly
Media, 2009.

Received October 2009.

