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Abstract. We present a language independent method for detecting model implementation patterns in a source 
code. In contrast to most other reverse engineering methods, we exploit existing program model for this purpose. Our 
method works by recognizing instances of simple model-to-code transformations. The patterns we use for recognition 
of model elements can be reused for composing templates for generating a program code. Our method is used for 
recognizing relationships between program model and handwritten program code. 
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1. Introduction 

Incorporation of abstract models into software 
development has become a widely accepted practice. 
There are several software development paradigms 
such as Model Driven Architecture MDA) [1], Model 
Driven Engineering (MDE) [2] and Model Driven 
Development (MDD) [3] that use software models not 
just for documentation but as one of central artifacts 
during software development process.  

When developing software based on abstract mo-
dels it is beneficial to use program code generators [4] 
to quickly generate repetitive parts of a source code 
from program models. Usually, it is possible to make a 
program model in the initial steps of the software de-
velopment cycle, but generating a source code from 
that program model is not always practical [4]. This 
happens when the software is being implemented in a 
domain that is not understood well enough to write the 
corresponding program code generator. This also 
happens when implementation platform changes too 
quickly to become a stable enough target for program 
code generation. 

To rectify this situation we proposed a program 
code generator that automatically configures itself to 
generate program code from a given program model 
while observing partial implementation of that prog-
ram model by a human [5]. In order to achieve this, 
we need to relate program model and handwritten 
program code. We present such a method in this paper. 
Our method works by recognizing the application of 
simple model-to-code transformations in a given 
source code. In contrast to most other reverse 

engineering methods, we exploit existing program 
model for reverse engineering; furthermore, the pat-
terns we use for recognition of model elements can be 
reused for composing templates for generating a prog-
ram code.  

The reminder of this paper is structured as follows: 
in Section 2 the related work is considered; in Section 
3 the method for finding model implementation pat-
terns in a source code is presented; Section 4 demonst-
rates an example of applying the method and Section 
5 is used to draw conclusions and outline future work. 

2. Related works 

Program code generators are used to generate 
program code from abstract program models. There 
are various types of abstractions used in modeling 
program structure and behavior such as enterprise mo-
dels expressed in UML [6], populated business rule 
templates [7], domain rules extracted from ontologies 
[8], UML OCL statements [9], etc. Various program 
code generators belong to the field of metaprogram-
ming [10] and are used for generating more specific 
program code from more abstract program code. For 
the purposes of this paper, we understand program 
models as being on the level of abstraction that corres-
ponds to UML [11] class models with such elements 
as packages, classes, stereotypes and related structural 
concepts.  

The method presented in this paper belongs to the 
field of reverse engineering [12–15]. It is used as a 
part of the method for automatically configuring prog-
ram code generator [5]. The field of reverse 
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engineering is quite wide and includes such areas as 
re-documentation, architecture recovery, design reco-
very, design pattern recovery, program visualization 
and understanding, code metrics and source code ana-
lysis, reengineering, and refactoring. We found the 
most related works in areas of design recovery, design 
pattern recovery and reengineering.   

Techniques for analyzing source code raise the 
level of abstraction of a source code being analyzed. 
However, this level at most corresponds to the level of 
object oriented or functional programming concepts 
[16]. This makes them not suitable for reverse engi-
neering to the level of abstractions used in MDA. 
Abstractions used in MDA are best represented by the 
concepts of UML language. 

Most reverse engineering tools and methods [17–
23] follow a well-defined pattern of operation. They 
parse a given source code to the level of abstraction 
that is somewhere near Abstract Syntax Tree (AST). 
They optionally resolve dependencies and entities. 
Then this information is written to the database where 
a set of extractors are run that extract a set of pre-
dicates and also write them to the database. After that, 
a set of analyzers are run to produce some results, or 
querying of source code related facts can be perfor-
med. Those reverse engineering tools and methods are 
primarily designed to extract code metrics, facts or 
code artifacts for the tasks of system architecture 
recovery, program comprehension or reengineering. 
This makes them unsuitable for our needs. Code met-
rics and facts are just code artifact related measures. 
Code artifacts are at too low level of abstraction com-
pared to MDA artifacts. Architecture recovery is often 
speculative and primarily produces such abstractions 
as possible modules of source code or possible 
boundaries of components with interfaces. Those abst-
ractions are too vague for our purposes. 

UML Computer Aided Software Engineering 
(CASE) tools employ the same reverse engineering 
methods as everything else, but they produce UML 
artifacts as a result. Static code analysis allows pro-
ducing class models [24]; dynamic analysis of execu-
tion traces creates sequence diagrams and other beha-
vioral artifacts [25]. There are attempts at creating 
round-trip engineering environments in UML CASE 
tools. One such attempt was done using FUJABA and 
employing code annotations in code comments for 
producing UML story diagrams (story diagram is a 
custom diagram type that merges collaboration and 
activity diagrams [26]). The methods used in produc-
ing class models parse program code into AST (or 
partial AST omitting unnecessary elements) and then 
apply pattern detection algorithms to produce class 
models. This kind of reverse engineering requires 
creating a custom detection pattern for each artifact to 
be recovered. However, these detection patterns can-
not be used to generate source code, unlike the ones 
used in our method. 

A notable piece of work in MDA related reverse 
engineering is described in a 2008 paper by Bork et al. 

[27]. They have created a method that allows analyz-
ing generated source code and recognizing the temp-
lates that were used to generate it. Once templates are 
found and data tokens are extracted, a set of case-by-
case converters are used to convert those tokens back 
into UML models. The main benefit of this method is 
that the same template is used for generation of source 
code and reverse engineering. This reduces the main-
tenance work of a CASE tool.  

The method works by parsing a template and split-
ting source code into words. The template is then 
matched token-by-token to the source code with some 
look ahead. Variables are filled and all logical 
branches are considered. A constraint solver is used to 
decide what template branches satisfy the code being 
matched by the variables employed for branching. 
Hints are used to help matching variables. After temp-
lates are matched, an intermediate data layer is const-
ructed from the data extracted into template variables. 
A set of case-by-case converters then work on the 
intermediate data layer and convert it back into UML 
model. The technique is independent from source code 
language; however, it cannot recognize reordered 
code. This prevents it from being used for reverse en-
gineering handwritten program code. It also cannot 
reverse engineer templates directly into UML model 
elements. 

Another piece of work that strongly relates to ours 
is described in a 1990 paper by Rich and Wills [28]. 
They have created a method that allows recognizing a 
presence of design concepts or techniques in source 
code. This is done by parsing source code and creating 
an attributed flow graph where nodes represent struc-
tural artifacts and edges represent control or data flow 
between the nodes. Artifacts to be recognized are en-
coded as pieces of flow graphs and make a graph 
grammar. A special algorithm [29] is used to parse a 
flow graph and recognize elements of a graph gram-
mar, thus recognizing related artifacts. While this 
algorithm cannot relate a program model and source 
code, a chosen approach of artifact recognition is very 
close to one employed in our work in a sense that they 
do not employ special scripts or case-by-case algo-
rithms to recognize artifacts, but describe artifacts in 
the form they are found in abstracted source code and 
use this information for recognition. 

Another area of reverse engineering that relates to 
our work is recovery of design patterns. Design pat-
terns are reusable solutions to common software engi-
neering problems that can be described by a certain 
composition of software artifacts [30], often presented 
in UML class diagrams. Recovery of design patterns is 
concerned with finding instances of design patterns in 
program code. This is primarily used for program 
comprehension. Methods recovering design patterns 
parse the source code being analyzed and create a 
representation on the level of AST. Then a search is 
performed and design patterns are extracted. The 
specifics of this step differ among various methods for 
recovering design patterns. 



L. Ablonskis, L. Nemuraitė 

70 

Some methods use additional dynamic analysis to 
extract execution traces or call graphs. These data are 
then analyzed by a set of predefined algorithms where 
each algorithm is tailored for detecting one design 
pattern [31, 32]. Another method for recognition of 
design patterns [33] uses graphs to describe design 
pattern templates like the reverse engineering method 
mentioned before [28]. An algorithm that evaluates 
edge similarity of two graphs [34] is then used to 
finding correspondences between templates of design 
patterns and a tree composed of elements of a source 
code.  

There is a way to accelerate design pattern detec-
tion by fingerprinting them with a set of code metrics 
(size, filiation, cohesion and coupling) and then using 
those code metrics to quickly reject design pattern 
candidates before employing standard detection tech-
niques [35]. This requires a rule engine and an initial 
source code base for teaching that rule engine. Simi-
larly, there is a method that uses decision trees and 
neural networks for recognizing design patterns 
through code metrics [36]. Since it employs a neural 
network, this method requires teaching the algorithms 
by using manually evaluated design pattern candidates 
extracted from a base source code.  

There is a method that uses Formal Concept Ana-
lysis (FCA) to analyze a set of predicates extracted 
from program code when detecting design patterns 
[37]  (FCA is a method for grouping objects into hie-
rarchies by their attributes, it is used in various areas 
[38]). Predicates describe existence of entities and 
their relationships. FCA can detect ad-hock design 
patterns and does not require design pattern defi-
nitions.  

Another approach is to describe design patterns 
with logical formulas that operate on a set of predi-
cates extracted from source code [39]. These predi-
cates describe the existence of various types of ele-
ments and relationships in a parsed program code. The 
predicates extracted from the source code and logical 
formulas describing design patterns are fed to a logic 
engine. The advantage of this method is its ability to 
find non-standard variants of design patterns, as long 
as they can be logically reduced to a standard form. 
There is a paper [40] that suggests standardization of 
logic predicates used for program code analysis as this 
would allow making a tool working with a wide varie-
ty of programming languages as long as there are suit-
able extractors for those languages. 

Back to the basics, there is a method that uses sta-
tic program code analysis and a set of detection algo-
rithms. Each detection algorithm is tailored to detect a 
single design pattern [41]. Detection of design patterns 
is considered to be a constraint satisfaction problem 
where each design pattern provides a constraint on a 
set of elements and relations that compose it. There 
are suggestions [42, 43] to use XML based language 
for describing design patterns and then applying the 
same principle to detect them. 

Design pattern recovery techniques work by par-
sing source code, building an abstract representation 
of it and then either directly working on that repre-
sentation [41–43] or building a set of predicates [39, 
40], or computing code metrics and using them with 
logical solvers or Artificial Intelligence (AI) techni-
ques. Design patterns are usually described either by 
specific recognition algorithms [41, 43], logical 
formulas [39, 40] or code metrics based fingerprints 
[35, 36], with exception of the method that uses 
formal context analysis to detect ad-hoc design 
patterns without any kind of prior descriptions [37] 
and the method that uses graphs [33]. Our method also 
works on abstract representation of the source code 
being analyzed, but it uses different technique for 
specifying search patterns and different method for 
recognition. Our recognition technique is similar in 
spirit to those used in methods employing graph-sub-
graph matching [38, 33].  

While we were inspired by the ideas used in design 
pattern recovery, the direct application of design pat-
tern detection methods was unsuitable for our needs. 
Predicates-with-logical-formulas, one-algorithm-per-
pattern and graph-subgraph-matching methods require 
a lot of work for building predicate sets, logical for-
mulas, algorithms or graphs that correspond to ar-
tifacts being detected. Code metrics and AI based 
methods are either approximate, or they only use code 
metrics and AI techniques to quickly reject candidates. 
Ad-hoc design pattern detection method [37] is 
unsuitable for our needs as it will detect something 
that can be viewed as design patterns, but it will 
always need a human to comprehend the meaning of 
those design patterns. 

3. Method for discovering model 
implementation patterns in source code 

We consider that creating source code that cor-
responds to a given program model is an action of 
making transformation from that program model to a 
source code. Such a transformation can be divided 
into a set of smaller transformations for every model 
element. To find how a given model element maps to a 
given source code is to find a transformation that pro-
duces a piece of the given source code from that 
model element. 

To make our method language independent, we as-
sume that program model and program code will be 
transformed to an intermediate form that follows mo-
dels defined below. Let call model elements in that 
intermediate form “model concepts” and code ele-
ments in that intermediate form “code concepts”. Mo-
del concepts represent concepts of a chosen modeling 
language and code concepts represent concepts from a 
chosen set of programming languages. To obtain a 
model concept tree from a model, we make a model-
to-model transformation. To obtain a code concept tree 
from a source code, we parse source code into AST, 
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resolve entities and make a model-to-model transfor-
mation. 

We assume that model concepts are made accor-
ding to the model shown in Figure 1. Each model con-
cept has an identifier id and a set of slots. Each slot 
has an identifier id and a set of values that are model 
concepts. Such a model allows building model con-
cept trees and analyzing structure of model concepts at 
runtime. Model concepts that represent named model 

elements derive from ConceptWithName and model 
concepts that carry some literal values derive from 
ConceptWithValue. Since all modern object-oriented 
programming languages support at least basic reflec-
tion, we use it at runtime to check if a given instance 
of a model concept derives from ConceptWithName 
and thus has a name or derives from ConceptWith-
Value and thus has a literal value. 

ConcreteModelConceptWithNameAndValue ConcreteModelConceptWithValueConcreteModelConceptWithNameConcreteModelConcept

+id : String
ModelConceptSlot

+name : String
ConceptWithName

+value : Class
ConceptWithValue

+id : String
ModelConcept
+values 0..* 0..*

+slots
0..*1

 
Figure 1. Model of model concepts 

 

ConcreteCodeConceptWithNameAndValue +id : String

+accepts( concept : CodeConcept ) : Boolean

Hole

ConcreteCodeConceptWithValueConcreteCodeConceptWithName ConcreteCodeConcept

+value : Class
ConceptWithValue

+name : String
ConceptWithName

+id : String
CodeConceptSlot

+id : String
CodeConcept

HoleAttachment

ConcreteHole

+values 0..* 0..*

+holes
0..*

1

+slots
0..*1

+hole

1

1

+slot 1
1

 

Figure 2. Model of code concepts

Code concepts, as shown in Figure 2, have the 
same structure and semantics as model concepts with 
a single extension – they support attachment of holes. 
A hole can be attached to a slot in a code concept and 
is said to “cover” that particular slot. Holes are used 
to specify places in code concept trees that can optio-
nally contain additional content. Each hole has an 
identifier id and a condition function accepts that tells 
if a given code concept can be placed in the hole. One 
instance of a hole may cover exactly one instance of a 
code concept slot in exactly one instance of a code 
concept. This allows building code concept trees with 
missing parts covered by holes and specifying what 
can be placed in those parts. 

The last artifact used in our method is called a 
“basic transformation” (Figure 3). This is an arbitrary 
name that is chosen to reflect that those transfor-
mations are supposed to be small and simple. Basic 
transformations represent black box mappings from 

model concepts to code concepts. Each basic trans-
formation describes a set of unique roles for inputs it 
can consume, where each input role has an identifier 
id and describes a type of model concept that can be 
placed in this role. Basic transformation can also have 
a list of input conditions attached, where each condi-
tion can reject a given input. Input conditions are used 
to specify additional conditions on basic transforma-
tion inputs that do not depend solely on the type of 
transformed model concepts. 

In theory, we can define an infinite amount of 
transformations from model concepts to code con-
cepts, but in reality most of them would be meaning-
less. In reality each model concept will have at most 
several transformations to code concepts. For 
example, if we use the UML language, a model class 
can be meaningfully transformed into a source code 
class, interface or an instance creation expression, 
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however, transforming it into a method would have no 
sense at all. 

While basic transformations support multiple input 
roles and thus multiple inputs, in reality they will 
usually work on only one input, since abstract model 
concepts usually get expanded into one or several 
code concepts when they are converted to specific 

code, and not vice versa. A possibility for multiple 
inputs is supported “just in case”, to make recognition 
algorithm generic. Also, a high number of inputs 
would require additional input filtering (that is beyond 
the scope of this paper) to avoid combinatorial explo-
sion of input permutations in detection algorithm. 

+outputRoots : CodeConcept [0..*]
Context

+accepts( input : Input ) : Boolean
InputCondition

+id : String

+transform( context : Context )

BasicTransformation

+id : String
+type

InputRole
+id : String
+concept : ModelConcept

Input
+conditions 0..*

1

+inputs 0..*

1 +inputs 0..*

1

 

Figure 3. Model of basic transformations 

 

Figure 4. Recognition of basic transformation instances in a given code concept tree 

To recognize a mapping from model concepts to 
code concepts, potentially produced by some basic 
transformation, we use an algorithm given in Figure 4. 
We test basic transformations one by one. For each 
basic transformation we prepare lists of inputs for 
every input role. We select only those model concepts 
that fit to a given input role by type and satisfy all 
input conditions if used in that role.  

We sequentially make permutations of inputs in all 
input roles. Each permutation produces a list of inputs 
for a basic transformation to transform. There are no 
duplicate model concepts in a single permutation. 
There is no point in providing basic transformation 
with the same concept in several roles at the same 
time, since basic transformation can extract it several 
times from a single role if needed. We apply a basic 
transformation for each permutation thus creating one 
or more code concept trees with holes as a result. 

For every root of a tree of code concepts produced 
by a basic transformation we make a list of directly 
equal code concepts taken from a given code concept 
tree that represents a given source code. Two code 
concepts A and B are directly equal iff: 

(typeOf(A) = typeOf(B)) and  
(A instanceOf ConceptWithName →  
   A.name = B.name) and  
(A instanceOf ConceptWithValue →   
   A.value = B.value) 

Direct equality conditions of two code concepts 
ensure that those code concepts are equal as far as 
their types, names and values are equal, but make no 
assertions about equality of the contents of those code 
concepts. We use deep equality conditions for that. 
Conditions for deep equality are not commutative. Let 
us assume that code concept coming from a result of 
basic transformation function is called A and code 
concept coming from code concept tree that represent 
some source code is called B.  Code concepts A and B 
are deeply equal if and only if they satisfy the condi-
tions stated in Figure 5. 

The conditions of deep equality basically overlay 
code concept tree with holes, having root at code con-
cept A, on another code concept tree starting with code 
concept B. If overlaying succeeds then A is deeply 
equal to B, otherwise it is not. 
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Figure 5. Direct equality conditions of code concepts 

After running deep equality tests, we have a set of 
deeply equal matches for every root of code concept 
tree produced by a basic transformation. Each match is 
a pair of deeply equal code concepts (A, B) where A 
comes from result of basic transformation and B 
comes from a given code concept tree. Since code 
concept trees represent sibling statements in code in a 
basic transformation result, we can make unique per-
mutations from subsets of matches where B's are 
sibling nodes in a given code concept tree and record 
each permutation as detection of model to code map-
ping by a basic transformation at a position defined by 
base code concepts in matches. A basic transformation 
is a pattern for implementing a model element in code. 
Thus we can detect not only facts of implementation 
but also patterns of implementation of specific model 
elements in the given program code. 

4. Example of discovering model implementa-
tion patterns in source code 

The method was implemented using Scala prog-
ramming language [44] and tested by writing a set of 
sample transformations that were used to relate a 
sample UML model with a sample source code written 
in Java. We illustrate the presented method by a fol-
lowing simple example that is adapted from the actual 
program code implementing concepts, transformations 
and the method being described.  

Let us assume that we have model concepts that al-
low partially representing a model class, as displayed 
in Figure 6, where function makeSlot makes a slot out 
of given field name, getter and setter. 

class ModelClass extends ModelConcept with ConceptWithName {
   override var id = “ModelClass”;
   var fields = List[ModelField]();
   val fieldsSlot = makeSlot(name =”fields”, getter= fields _, setter=fields_= _);
   slots += fieldsSlot;
}

class ModelField extends ModelConcept with ConceptWithName with ConceptWithValue {
   override var id = “ModelField”;
}

 
Figure 6.  Concepts for partially representing a model class 

ModelClassInstance { 
   name = “ClassA”,  
   slots = {
      Slot{
         id=”fields”, 
         values= {
            ModelFieldInstance {name=”fieldA”, value=”null” }

 }
      }
   }
}

 
Figure 7.  Data structure partially representing a model class 

class CodeClass extends CodeConcept with ConceptWithName {
   override var id = “CodeClass”;
   var fields = List[CodeField]();
   val fieldsSlot = makeSlot(name=”fields”, getter= fields _, setter=fields_= _);
   slots += fieldsSlot;
}

class CodeField extends CodeConcept with ConceptWithName with ConceptWithValue {
   override var id = “CodeField”;
}

 

Figure 8.  Concepts for partially representing a code class 
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The structure displayed in Figure 7 describes an 
instance of model class concept. Also, let us assume 
we have code concepts that allow partially represen-
ting an OOP class as displayed in Figure 8. The struc-
ture displayed in Figure 9 describes an instance of 
code class concept. 

Now let us assume we have two basic transfor-
mations: one for transforming model classes into code 
classes and another for transforming model fields into 
code fields as displayed in Figure 10. 

CodeClassInstance { 
   name = “ClassA”,  
   slots = {
      Slot{
         id=”fields”, 
         values= {
            CodeFieldInstance { name=”fieldA”, value=”null” }
         }
      }
   }
}

 
Figure 9.  Data structure partially representing a code class 

val class2Class = btf("class2Class") 
   .from("class", classOf[ModelClass]) 
   .hole("fields").onlyFor(BtfHoleConds.Default) 
   .using(context => { 
      //get source class 
      val srcCls = context.input("class").asInstanceOf[ModelClass]; 

 
      //create destination class  
      val dstCls = new CodeClass(); 
      dstCls.name = srcCls.name;

 
      //bind hole to destination class slot "fields" 
      context.hole("fields").bindCopyTo(dstCls.fieldsSlot); 

      //
      context.output(dstCls); 
});

val field2field = btf("field2Field")
   .from("field", classOf[ModelField]) 
   .using(context => { 
      //get source field
      val srcFld = context.input("field").asInstanceOf[ModelField]; 

 
      //create destination field
      val dstFld = new CodeField(); 
      dstFld.name = srcFld.name; 
      dstFld.value = srcFld.value;

      // 
      context.output(dstFld); 
});

 
Figure 10.  Example of basic transformations 

Those basic transformations are defined using cus-
tom builders. btf() starts building a transformation, 
from() adds an input role, hole() registers a hole for 
the later use, using() registers a transformation func-
tion and returns a transformation. We take holes from 
the context variable because in the implementation, 
the context caries a pointer to the host transformation 
of transformation function. 

Our algorithm would work on basic transforma-
tions one by one. Let us assume it starts with 
class2class transformation. It would scan a given 
model concept tree and select a ModelClassInstance 
because it matches a single input role of transforma-
tion by type. It would then produce an input object out 
of the code concept Input {id = “class”, concept = 

ModelConceptInstance} and pass this input to the 
context of the transformation. Then the transformation 
function would run on the given context and write 
back a single code concept instance that matches the  
CodeClassInstance and has a hole attached to the slot 
“fields”. 

Next our algorithm would scan a given code con-
cept tree and would produce a single list with a Code-
ClassInstance in it, since CodeClassInstance is direct-
ly equal to the code concept produced by the transfor-
mation. Next a deep equality checker would run 
through the list and find that CodeClassInstance is 
deeply equal to the concept produced by the 
transformation. This pair of deeply equal code con-
cepts together with the corresponding basic transfor-
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mation class2class would be registered as a detection 
of model to code transformation. 

The same process would repeat for field2field 
transformation. An algorithm would scan a given mo-
del concept tree and select a ModelFieldInstance be-
cause it matches a single input role of transformation 
by type. It would then produce an input object out of 
ModelFieldInstance and pass it into the context of the 
transformation. Then the transformation function 
would run and write back a single code concept 
instance that matches the CodeFieldInstance. 

Next our algorithm would scan a given code con-
cept tree and would produce a single list with Code-
FieldInstance in it, since CodeFieldInstance is di-
rectly equal to the code concept produced by the 
field2field transformation. Next a deep equality che-
cker would run through the list and find that 
CodeFieldInstance is deeply equal to the concept 
produced by the transformation. This pair of deeply 
equal code concepts together with the basic transfor-
mation field2field would be registered as a detection 
of model to code transformation. 

As a result we would know that the code concept 
CodeClassInstance can be produced from the model 
concept ModelClassInstance by applying the transfor-
mation class2class and that the CodeFieldInstance can 
be produced from the model concept ModelFieldIns-
tance by applying the transformation field2field. This 
tells us what implementation patterns were used by a 
human to produce parts of the given source code 
(represented by code concepts) from parts of the given 
program model (represented by model concepts). 

5. Conclusions and future work 

The method we presented can be used to detect 
simple model implementation patterns in source code 
using program concept model, code concept model, a 
set of basic transformation patterns for matching code 
concepts to model concepts, a program model and par-
tially implemented code written by human. We use 
this technique as the part of the method for creating 
automatically configured program code generator that 
is intended for the purpose of generating program 
code when the software is being implemented in a do-
main that is not well understood or implementation 
platform changes too quickly to become a stable 
enough target for conventional program code 
generation. 

Our method is different from other reverse engi-
neering methods. We exploit existing program model 
for reverse engineering and maintain the ability to use 
the same artifacts for detecting model implementation 
patterns in a source code and for composing program 
code generator templates. 

In the future we intend to develop a method for 
detecting instances of more complex model-to-code 
transformations by combining basic transformations 
described in this paper.  
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