
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.3

USING STATE COORDINATOR PATTERN FOR TRANSITION FROM
DESIGN INDEPENDENT TO PLATFORM INDEPENDENT MODEL1

Lina Čeponienė, Lina Nemuraitė, Eugenijus Ambrazevičius
Kaunas University of Technology, Department of Information Systems

Studentų 50 - 308, LT-51368 Kaunas, Lithuania

Abstract. Development of the information system is a stepwise process, starting with requirements definition and
proceeding with design and implementation steps. Existing modelling approaches concentrate on formalisation of
requirements definition or start at the design model and analyse its transformation to code under specific platform. In
this work, a possible method for deriving the design model by integrating requirements definition with chosen software
architecture is presented. The proposed transformation based on State Coordinator pattern is a particular case of variety
of possible transformations, but it demonstrates the way to formalize step from requirements to design and to shorten
the development process.

Keywords: UML, OCL, Model Driven Architecture, information system, services, requirements, design.

1. Indroduction

Development of the Information System (IS) is a
stepwise process, starting with requirements definition
and proceeding with design and implementation steps.
Existing modelling approaches concentrate on forma-
lisation of requirements definition or start from the
design model and analyse its transformation to code
under specific platform. Going from requirements to
design remains the most vague step in this process.

The principles of Model Driven Architecture
(MDA) [11] are based on the idea that the foundation
of software development is Platform Independent Mo-
del (PIM) of software system. PIM is the design
model obtained from Business Model (formerly Com-
putation Independent Model or CIM) and it serves for
definition of a set of Platform Specific Models (PSM).
From each PSM implementations on different plat-
forms may be generated. MDA activities are concent-
rated on going from PIM to PSM and from PSM to
code. By our view it is advisable to start from require-
ments definition and translate them to design model.
Elaborated requirements model named Design Inde-
pendent Model (DIM) was introduced in [6, 7]; here
the idea of transformation from requirements specifi-
cation to design model is presented.

There are informal proposals to introduce the ar-
chitectural model and to join it with requirements for
obtaining the design model (for example, [8]). Our

proposal for deriving the design model from require-
ments definition integrated with chosen software ar-
chitecture is more definitive: during architectural
design elements of requirements specification are
allocated to architectural elements defined by chosen
design pattern. It results in platform independent de-
sign (PIM), and still more steps are needed to obtain
the code but the last are straightforward and many
implementations for code generation from PSM al-
ready have been made.

The proposed transformation is a particular case of
variety of possible transformations but it demonstrates
the way to formalize step from requirements to design.
More specifically, the transformation is devoted for
service-oriented design [16] of information systems
using proposed State Coordinator pattern. This pattern
was based on the idea of coordination of services on
the base of information about persisted states of enti-
ties of problem domain. According its definition, ser-
vice is an operation offered as an interface that stands
alone in the model, without encapsulating state [10];
statelessness of service means that it is independent of
context, and any client can use any instance of a
particular service without regard to the history of ins-
tance. In reality, the use of services in information sys-
tems depends on states of information entities, which
comprise service execution context. The State Coordi-
nator pattern serves for loose connection of stateless
services into system that operates on the base of

1 The work is supported by Lithuanian State Science and Studies Foundation according to Eureka programme project

„IT-Europe” (Reg. No 3473)

263

L. Čeponienė, L. Nemuraitė, E. Ambrazevičius

information about persisted states of entities. The
choice of State Coordinator pattern was based on that
fact that states machine is widely recognized as beha-
vioural model for systems composed of services [3, 4].
By using states of entities, our approach differs from
majority of proposed techniques where emphasis is
made on modelling of business processes but informa-
tion modelling is limited to definition of types of mes-
sages and variables[1], textual notes [5], or not
considered at all.

The proposed design method consists of two steps
– making comprehensive specification of requirements
(Design Independent Model (DIM)) and applying the
architectural pattern for going from requirements to
design (PIM in MDA terminology). It is demonstrated,
that DIM specification (based on UML, OCL [14, 15],
and principles of contract-based design [9]) makes it
possible to formalize transition from requirements to
design and shorten development process.

2. Principles for Specifying Requirements
2.1. Textual Requirements Specification Template

Detail requirements model must define the overall
state and behaviour of information systems indepen-
dently of future design. But before creating the formal
requirements model these requirements are described
informally.

In this work, the template for initial textual de-
scription of requirements is used. This template is
based on UML use case diagram and domain model of
the system. The domain model serves as a glossary of
terms that can be used in writing use cases. Use case
model is used to capture the user requirements to the
system by detailing all the actions that users can
perform.

In Publication Agency, Persons
can register, submit their
Publications and apply for Support
for publishing or pay themselves
Some persons can act as
Reviewer
s. To publish, every Publication must
be reviewed and approved.
Reviewers are appointed by
Agency.
To approve, at least minCritiques
must be positive.
To get Support, the Publication
must be approved.
Author cannot get more than
maxSupports Supports,

……

Committee
 Author Revise

Reviewer Review

Committee

Register

Submit

Approve

Use case: Submit
Actions:
1. Author submits Publication
pre: AuthorInfo is registered and the Publication being submitted is not the same
as any other already submitted Publication
post: Publication is Submitted and number of Authors Publications is increased
by one and acceptance message is sent to Author and revision starting message
is sent to Committee

......

Date

 day: Integer
month : Integer
year : Integer

 Constants
maxSupp : Integer = 3
minCritiq : Integer = 5
acceptRating : Double = 8
minRating : Double = 0
maxRating : Double = 10
defaultRating : Double = -1

PersonInfo
name : String
surname : String
personID : ID
registrationDate : Date
lastUpdate : Date

AuthorInfo
degree : String

Approval
approvalID : ID
publicationID : ID
description : String
rating : Double
date : Date

Support
supportID : ID
description : String
date : Date
amount : Currency = 0.00

AuthorPublication
personID : ID
publicationID : ID

Publication
title : String
publicationID : ID
date : Date
annotation : String
approved : Boolean = False
reqSupport : Currency = 0.00

Critique
reviewerID : ID
publicationID : ID
rating : Double
description : String
critiqueID : ID

ReviewerInfo
degree : String
level : String

+author 1

0..1 +support
0..1

+publications
0..n 0..n

1

+publicationAuthors
0..n

1

0..1

1 1
0..1

1

+publication
1

0..n

1

+publication
1

+critiques0..n0..n

1

0..n

+reviewer1

0..n

1

Publication Agency

Figure 1. Fragments of use case and domain models of Publication Agency

Each action of the use case is described using pre
and post conditions. As new objects are discovered
during the use case description the domain model is
updated. The example of applying the proposed re-
quirements definition template for IS of Publications
Agency is presented in Figure 1 where the models and
fragments of description of problem domain and use
cases are presented.

2.2. Design Independent Model

Behaviour of information system is tightly related
with its state and has many aspects: interactions, state
transitions, control flows, and data flows. These
aspects are represented by different kinds of UML
diagrams comprising views under the same model of
target system. In this work, the possibility to achieve
consistency of requirements model is based on adjus-
ted subset of UML 2.0 meta model named Design
Independent Model (DIM) [6, 7]. DIM represents

264

Using State Coordinator Pattern for Transition from Design Independent to Platform Independent Model

overall structure and behaviour of the system, but,
differently from PIM, no design decisions should be
made in it. In DIM, class, sequence and state diagrams
are used, supported with OCL constraints; all kinds of
diagrams are interrelated and may be derived from the
other ones. DIM was devoted for development of
services but it also may be applied for many software
or information systems where explicit management of
business processes is not required.

In DIM, use cases are mapped to interfaces of the
target system, associated with actors – service users –
and communicating with external systems (service
providers), whose interfaces must be used by the
target system to provide requested services. Interfaces

are defined by the sets of operations identified from
steps of use case specifications. Every operation is
defined by its signature, pre and post conditions. Be-
sides the interfaces, DIM includes entities and states
of entities modelling the state of problem domain and
sub-domains associated with particular interfaces.

For development of DIM, one or more sequence
diagrams for every use case are constructed from
specifications of use cases (Figure 2). These sequence
diagrams must represent all desirable interactions bet-
ween actors (service users), interfaces of the system
and possibly the interfaces to external systems, if they
are required to fulfil service requests.

 : Author : ISubmit : IRevise

submit(Author,Publication,Date)

resp_revise(Publication)

resp_submit(Publication)

accept_submit()

…

Context ISubmit::submit(p:Publication,a:Author,d:Date)
pre: a.oclInState(Registered)and
 a.AuthorPublication->forAll(ap|ap.Publication<>p)
post: p.oclIsNew() and p.oclInState(Submitted) and
 a.AuthorPublication->size()=a.AuthorPublication->size()@pre+1
 and Author^accept_submit() and IRevise^revise(p,d)

revise(Publication, Date)

IRegister
register()

Author

Committee

ISubmit
submit()
resp_revise()

IRevise
revise()
resp_appoint()
approve()

<<use>>

Figure 2. Publication submission sequence diagram and related interfaces in DIM of Publication Agency

Submitted

Accepted Rejected

Funded

Paid

ISubmit

Include/IRevise
StateMachine

SubmitState WaitState

IRevise.resp_revise()

Author.submit()[Author.oclInState(Registered)]
^Author.accept_submit()

^IRevise.revise()
[Publication.oclInState(Submitted)]

^Author.resp_submit()

Publication

Figure 3. Fragment of state machines of Publication Agency demonstrating interrelationships between state machines

of interfaces and state machines of entities

Sequence diagrams represent interaction related
aspect of behavioural requirements. The “engine” of
behaviour of object system is the state machine; se-
mantics of functioning information system may be re-
presented by transition system, affected by external
events, where interactions between different actors
and parts of the system take place and system moves
from one compound state to another (Figure 3). If
state machines would be derived from sequence dia-
grams, inconsistencies between interactions would be
removed, as interactions of one classifier would be

integrated from several sequence diagrams. It is also
possible to begin from class diagrams or state charts
and generate possible interactions for the purpose to
revise and improve constraints or other elements of
initial diagrams.

Class diagrams of interfaces and entities with re-
spective constraints represent the final definition of
requirements. It is the most informative view, from
which design model may be obtained, but to develop
this view comprehensively it is necessary to consider
and integrate other views.

265

L. Čeponienė, L. Nemuraitė, E. Ambrazevičius

266

3. From Requirements to Design Models

In this section the step going from design indepen-
dent model to design (PIM) is analyzed. Design model
is different from requirements model in several
aspects: design model should be supplemented with
control classes or components; as result, sequence and
state diagrams should be extended respectively; me-
thods for operations must be elaborated (the last acti-
vity may remain in the responsibility of designer, or be
automated). We consider the architectural design,
during which elements of requirements specification
are allocated to architectural elements.

For service-oriented design, the State Coordinator
pattern (Figure 5) was constructed on the base of
Facade and State patterns [2, 12, 13]). It is obvious,
that for practical development of information system

considerably more patterns should be used. In large
systems, coordinator may be attached to every com-
posite service. Coordinator handles incoming message
and passes it to services according its actual context. It
does it with assistance of Checker that checks precon-
ditions and post-conditions of operations. Operations
of services must be stateless so the information about
states is captured by entities, and all constraints de-
scribing services subject to state changes are kept in
Constraint base. There are many ways to proceed from
requirements to design though we believe that it
would be valid to use State Coordinator in design
related with service-oriented architecture when busi-
ness processes are not explicitly defined as e.g. in [1,
5], but managed using information about states of
entities of problem domain.

Actor
model

Interface
model

Domain
model

(including the
list of feasible

states of
entities)

D I M

Abstract
actor

Service
model

Domain
model

(including the
list of feasible

states of
entities)

P I M

T r a n s f o r m a t i o n

: Service : Actor : Coordinator : Checker

request(MessageEntity)
checkPre(Operation):Boolean

operation(MessageEntity) [checkPre.result=true]

checkPost(Operation):Set(Message)

response(MessageEntity)

response(MessageEntity)

ConcreteService

Constraint

Actor
response()
exception()
accept()

Checker
checkPre()
checkPost()Coordinator

request()
response()

Entity

Service
operation()

Coordinator pattern

 Figure 4. Principles of transition from DIM to PIM using State Coordinator pattern

ISubmitService

submit(MessageEntity)
resp_revise(messageEntity)

...

Author

Publication

submitReqMsg

DateAuthor

Publication

submitAccpMsg

DateAuthor

Publication
Date

submitExcpMsg

Precondition

submitRespMsg

Publication

ISubmit
submit(MessageEntity)

...
resp_revise(MessageEntity)

ISubmit
submit(Publication, Author, Date)
resp_revise(Publication)...

DIM

PIM

Figure 5. Example of the transformation of the publication submission interface and its operation

Using State Coordinator Pattern for Transition from Design Independent to Platform Independent Model

Transformation from DIM to PIM, based on State
Coordination pattern, is presented in Figure 5. Trans-
formations mainly are straightforward: DIM entities
are represented as PIM entities, interfaces as inter-
faces; message entities (also called value objects) are
created for request, response, acceptance and excep-
tion messages associated with checking of precondi-
tions; preconditions and message expressions from
post-conditions are allocated to constraints, and body
conditions together with operation parameters are des-
tined to services for oncoming detailed design.

Really, body conditions specified in comprehen-
sive manner define all information necessary for gene-
ration of code of methods implementing operations of
services. In Figure 6 the example of transformation
from DIM to design model for a certain interface and
its operation (publication submission) is presented.
The interface is transformed into the service class and

its interface. For the considered operation, request,
response, acceptance and exception message entities
are created.

In Figure 6, the sequence diagram of publication
submission in PIM is presented. This diagram corres-
ponds to the sequence diagram in DIM presented in
Figure 3, but here the Coordinator and Checker clas-
ses are introduced that perform handling of incoming
messages and checking their context; if preconditions
of requested services are satisfied according informa-
tion kept about states of information entities of the
system, the acceptance messages are sent and services
are delivered according contract, possibly in collabo-
ration with other (internal or external) services, re-
quired for fulfilment of request (Submit Service uses
Revise service as shown in Figure 6). If preconditions
are unsatisfied, the exceptional messages are sent.

 : Actor : Coordinator : Checker : ISubmitService : IReviseService

request(submitReqMsg)
checkPre(Operation)

submit(submitReqMsg)
response(submitRespMsg)

checkPre(Operation)

revise(reviseReqMsg)
response(reviseRespMsg)

checkPost(Operation)

accept(submitAccpMsg)

checkPre(Operation)

resp_revise(resp_reviseReqMsg)
response(resp_reviseRespMsg)

response(sumitRespMsg)

checkPost(Operation)

...

checkPost(Operation)

ISubmitService
submit()
resp_revise()

Actor

IReviseService
revise()

<<use>> IRevise

ISubmit

Coordinator
request()
response()

Checker
checkPre()
checkPost()

Figure 6. Publication submission sequence diagram and related interfaces in PIM of Publication Agency

Checking of post-conditions is devoted for unfold-
ing the expressions of sending messages to other
services. Message expressions enable to define com-
positional behaviour when the requested service uses
other services: one or more messages may be sent in
sequence, parallel or broadcasting mode when targets
of messages are identified dynamically during the
execution of requests. Really, the all required variety
of interactions between services might be specified.

The abstract Checker may be implemented in dif-
ferent ways. In simple case, the pair of check opera-
tions might be created for every service introduced
into system. In advanced case, it is possible to suppose
the rule engine that is able to add, delete, read, check
and transform operation constraints stored declarati-
vely in the base.

In presented design some assumptions were made
that may vary in different circumstances, for example,
concrete naming scheme. Also, all preconditions here
have textual descriptions, and exception messages are
created by concatenation of negation of precondition
and standard textual phrase. In practice, requirements
for message entities may be predefined in require-
ments phase.

Development in MDA is associated with the suite
of standards: UML, OCL, MOF, XMI, and working on
the meta model level. The early prototype of UML
CASE tool supporting Design Independent Modelling
was implemented on the base of open source tool Argo
UML. Today, the Eclipse platform seems the most
promising environment for expansion of CASE tools
having advanced possibilities for development in

267

L. Čeponienė, L. Nemuraitė, E. Ambrazevičius

MDA, but inconsistencies between large variety of
versions and standards are discouraging. Currently,
transformation from DIM to PIM using State Coordi-
nator pattern is under trial implementation using
Magic Draw API and JMI.

4. Conclusions

The main purpose of the work was to demonstrate
that comprehensive definition of requirements of in-
formation system enables to obtain meaningful design
in formal way and to shorten the development process.

Allocation of requirements to elements of architec-
tural design is presented, during which elements de-
fined in requirement specification are distributed to
design elements following State Coordinator pattern
proposed for service-oriented design of information
systems.

Resulting design may be further subjected to detail
design of operations and implementation in WSDL
and web services framework. Proposed pattern is
simple alternative for development of service-oriented
information systems where explicit management of
business processes is not required.

References
 [1] T. Andrews et all. Business Process Execution

Language for Web Services. Version 1.1, 2003. Avail-
able at http://www-128.ibm.com/developerworks/lib-
rary/specification/ws-bpel.

 [2] B. Benatalah, M. Dumas, M.C. Fauvet, F.A. Rabhi,
Q.Z. Sheng. Overview of some patterns for archi-
tecting and managing composite web services. ACM
SIGecom Exchanges archive, Vol.3, Issue 3, Summer,
2002, 9-16.

 [3] B. Benatallah, F. Casati, F. Toumani, R. Hamadi.
Conceptual Modeling of Web Service Conversations.
In: Goos, G., Hartmanis, J., van Leeuwen, J. (eds.):
Proceedings of the 15th International Conference on
Advanced Information Systems Engineering
(CAiSE'03), LNCS Vol.2681, Springer Verlag, Kla-
genfurt, Austria, 2003, 449-467.

 [4] D. Berardi, D. Calvanese, G. De Giacomo, M. Len-
zerini, M. Mecella. A foundational vision of e-
services. In: Goos, G., Hartmanis, J., van Leeuwen, J.
(eds). Proc. of the CAiSE 2003 Workshop on Web
Services, LNCS, Vol.3095, 2003, 28-40.

 [5] BPMN: Business Process Modelling Notation. Version
1.0 – May 3 2004, BPMI. Available at http://www.
bpmn.org.

 [6] L. Ceponiene, L. Nemuraite. Design Independent
Modeling of Information Systems. In: Barzdins, J.,
Caplinskas, A. (eds.) Databases and Information
Systems. Selected Papers from the Sixth International
Baltic Conference DB&IS’2004. Frontiers in Artificial
Intelligence and Applications, Vol. 118, IOS Pres.,
2005, 224-237.

 [7] L. Ceponiene, L. Nemuraite, B. Paradauskas. De-
sign of schemas of state and behaviour for emerging
information systems. In: Thalheim, B., Fiedler, G.
(eds.): Computer Science Reports, Vol.14. Brander-
burg University of Technology at Cottbus, 2003, 27–
31.

 [8] A. Crain. The simple artifacts of Analysis and Design.
The Rational Edge, 8 Jun 2004. Available at
http://www-106.ibm.com.developerworks/ rational/lib-
rary /4871.html.

 [9] D.F. D’Souza, A.C. Wills. Objects, Components, and
Frameworks with UML. The Catalysis Approach.
Addison Wesley, Boston, 1999.

[10] E. Evans. Domain Driven Design. Tackling comple-
xity at the heart of software. Addison-Wesley, Boston,
2003.

[11] A. Kleppe, J. Warmer, W. Bast. MDA Explained:
The Model Driven Architecture™: Practice and Pro-
mise. Addison Wesley, Boston, 2003.

[12] I. Singh, S. Brydon, G. Murray, V. Ramachandran,
T. Violleau, B. Stearns. Designing Web Services with
the J2EE™ 1.4 Platform JAX-RPC, SOAP, and XML
Technologies. Addison Wesley, Boston, 2004.

[13] UML: Superstructure Specification. Version 2.0, OMG
document ptc/03-08-02, 2003. Available at
http://www.omg.org.

[14] UML: OCL. Version 2.0. OMG document ptc/03-08-
08, 2003. Available at http://www.omg.org.

[15] J.B. Warmer, A.G. Kleppe. Object constraint lan-
guage, The: Getting Your Models Ready for MDA.
Second Edition, Addison Wesley, Boston, 2003.

[16] O. Zimmerman, P. Krogdahl, C. Gee. Elements of
Service-Oriented Analysis and Design. International
Business Machines, 6/16/2004. Available at http://
www-106.ibm.com/developerworks/library/ws-soad1.

268

