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Abstract. Crossover (i.e. solution recombination) operators play very important role by constructing competitive 
genetic algorithms (GAs). In this paper, the basic conceptual features and specific characteristics of various crossover 
operators in the context of the quadratic assignment problem (QAP) are discussed. The results of experimental 
comparison of more than 10 different crossover operators for the QAP are presented. The results obtained demonstrate 
high efficiency of the crossovers with relatively low degree of disruption, namely, the swap path crossover (SPX), the 
cohesive crossover (COHX), the one point crossover (OPX). Another promising operator is so-called multiple parent 
crossover (MPX) operator based on special type of recombination of several solutions-parents. The results from the 
experiments show that MPX operator enables to achieve better solutions than other operators tested. 
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1. Indroduction 

The quadratic assignment problem (QAP) can be 
formulated as follows. Let two matrices A = (aij)n×n 
and B = (bkl)n×n and the set Π of all possible permuta-
tions of {1, 2, ..., n} be given. The goal is to find a 
permutation π = (π(1), π(2), ..., π(n)) ∈ Π that mini-
mizes 
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One of the interpretations of the QAP is the facili-
ty layout problem [14]. In this case, n is the number of 
facilities/locations, the element aij denotes the flow of 
materials from facility i to facility j, and bkl can be 
seen as the distance between location k and location l. 
The permutation π = (π(1), π(2), ..., π(n)) then repre-
sents an assignment of n facilities to n locations (here, 
π(i) (π(i) ∈ {1, 2, ..., n}) is the location what facility i 
is assigned to). 

It has been proved that the QAP is NP-hard, there-
fore various heuristic approaches are used for solving 
medium- and large-scale QAPs within reasonable 
computation times. For surveys of the heuristics for 
the QAP, see [3,5]. Starting from 1994, genetic algo-
rithms (GAs), their modifications and hybrids are 
among the advanced heuristic techniques for this 
problem (see, for example, [1,8,15,18,21]). 

Very roughly, genetic algorithms can be charac-
terized as follows [12]. Let P be a subset of Π; it is 
referred to as a population, and it is composed of 

individuals, i.e. solutions (permutations in the context 
of the QAP), π1, π2, ... πPS = |P|. Each individual (πi) is 
associated with a fitness, i.e. the corresponding objec-
tive function value (z(πi)). The individual πi is prefer-
red to individual πj if z(πi) < z(πj). (Further, we also 
shall call the solution (permutation), π, as a chromo-
some, the single position, i, of the solution (chromo-
some) − as a gene, and the value at the given position 
(gene), π(i) − as an allele.) The following are the main 
steps of the genetic search. A pair (or fraction) of 
solutions of P is selected to be parents by use of a 
selection mechanism. New solutions (i.e. offspring) 
are created by combining (merging) the parents; this 
recombination operator is known as a crossover. 
Afterward, a replacement (culling) scheme is applied 
to the previous generation and the offspring to deter-
mine which individuals survive to form the next gene-
ration. In addition, some individuals undergo a muta-
tion (random perturbation) to prevent a premature loss 
of the diversity within the population. Over many 
steps, i.e. generations, less fit individuals (worse solu-
tions) tend to die-off, while better individuals (solu-
tions) tend to predominate. The process is continued 
until a certain termination criterion is met. The best-
survived individual is regarded as a result of the 
genetic algorithm. 

For a more complete discussion on the principles 
of GAs, the reader is addressed to [6,12,27]. 

It should be noted that the state-of-the-art genetic 
algorithms are rather hybrid (combined genetic local 
search) algorithms which incorporate additional 
heuristic components [24]. Typically, a post-crossover 
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(or post-merging) procedure is used to play the role of 
a local improvement algorithm applied to the solution 
previously produced by the crossover. This way of 
proceeding ensures that the population consists solely 
of locally optimal solutions. However, despite the 
optimized populations, the recombination of solutions 
still remains one of the critical things by constructing 
competitive genetic algorithms. Very likely, the role of 
recombination operators within hybrid genetic algo-
rithms (HGA) is more significant than in the ordinary 
GAs. In fact, we can think of HGA as a process that 
combines intensification and diversification (I&D) of 
the search (for more details on I&D methodology, see, 
for example, [22]). The intensification (local improve-
ment algorithm) concentrates the search in certain 
local (limited) portions of the solution space, while the 
diversification is responsible for escaping from the 
current local optimum and moving towards unvisited 
so far solutions. From this point of view, the crossover 
is a special sort of the diversification (solution recon-
struction) mechanism, which − generally speaking − 
guides the global search, i.e. exploration of new and 
new regions of the solution space. The proper explo-
ration mechanism is, in some sense, even more severe 
than intensification, and may add crucial influence on 
the resulting efficiency of the search. 

In this paper, we discuss issues related, namely, to 
the investigation of crossover operators within HGAs 
in the context of the quadratic assignment problem. 
Both conceptual and experimental comparison of va-
rious types of crossovers for the QAP are given. More 
precisely, in Section 2, the basic features of twelve 
different crossover operators for the QAP are over-
viewed. Then, the computational results for these 
crossovers are presented in Section 3. Section 4 com-
pletes the paper with concluding remarks. 

2.  Discussion of crossover operators for the 
QAP 

As mentioned above, crossover is one of the main 
genetic search operators. It is capable of producing a 
new feasible solution (i.e. child) by exchanging the 
information contained in both parents. From the philo-
sophical point of view, crossover is a structured and, at 
that time, randomized process (operation) that guaran-
tees both inheritance of the parents’ characteristics and 
creation of entirely new features. Mathematically, 
crossover can be defined as a binary operator 
(function) ψ: Π × Π → Π  such that ψ(π′, π′′) ≠  
π′ ∨ ψ(π′, π′′) ≠ π′′ if π′ ≠ π′′; here, we assume that 
the solutions are represented by permutations. As a 
rule, the recombination operators ensure that the 
offspring definitely inherits the alleles which are com-
mon to both parents; more formally, π′(i) = π′′(i) ⇒  
π°(i) = π′(i) = π′′(i), i = 1, 2, ..., n, where π′, π′′, π° are 
the parents and offspring, respectively. The inheritance 
of the remaining genes can be accomplished in a 
variety of ways. These ways, with respect to the 
quadratic assignment problem, are discussed below. 

We start our overview of the crossover operators 
with the crossover by Tate and Smith proposed as far 
back as 1995 [29]. This crossover can be viewed as 
some kind of uniform crossover adapted to permuta-
tion-based solutions. So, we call it as uniform like 
crossover (ULX). It works as follows. First, all items 
assigned to the same position in both parents are 
copied to this position in the child. Second, the 
unassigned positions of a permutation are scanned 
from left to right: for the unassigned position, an item 
is chosen randomly, uniformly from those in the 
parents if they are not yet included in the child. Third, 
remaining items are assigned at random (see also 
Figure 1). 

 
3 6 7 4 1 5 2 9 8 
7 3 6 4 2 9 5 1 8 
   4     8 
7 6  4 2 5  1 8 
3 9        
7 6 9 4 2 5 3 1 8 

 

parent 1
parent 2

offspring 

Figure 1. Example of uniform like crossover

Uniform crossover allows some flexibility, and 
different variations of the basic procedure are 
possible. Below, we give three modifications/en-
hancements of the basic ULX operator. In some sense, 
these modifications can also be considered as special 
kind crossovers. We will call them: randomized ULX 
(RULX), modified ULX (or block crossover (BX)), 
and extended ULX (or repair crossover (RX)). 

The only difference between the standard uniform 
crossover described above and the randomized one is 
in the manner how the positions of solutions are 
scanned. In standard ULX, the order of scanning is 
fixed − from left to right. In RULX, the consideration 
of the positions (both the assigned and unassigned) is 

done in a random way. The motivation of this tech-
nique is adding more randomness and diversity to the 
offspring generation process (this is important by 
avoiding a premature convergence). 

Another modification of ULX − we call it block 
crossover − is distinguishing for the fact that some 
blocks (segments) of elements are considered, instead 
of the single elements. The block size BS is in the 
range [1, n/2]. Note that blocks may be of different 
sizes; for example, if n = 9 and the number of blocks 
is equal to 4, then one obtains three blocks of size 2 
and one block of size 3. By copying blocks, the 
feasibility of permutation must be kept (see Figure 2). 
BS = n/2 means that the first segment of size n/2 is 
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copied from one of the parents (say, π′) to the 
offspring, the remaining items are copied from the 
"opposite" parent (π′′)) in such a way that the feasibi-
lity of the resulting solution is preserved. If there still 
exist unassigned positions in the offspring, then the 
missing elements can be taken from either the first or 
second parent. 

The central idea of the extended crossover is the 
combination of ULX and a local improvement-based 
repair (correction) procedure applied to the offspring 
produced by ULX. More precisely, one tries to 

improve the offspring by pairwise interchanges of the 
elements − but only those that are not inherited from 
the parents. A candidate list CL is created, where 
CL(i) = π°(i), CL(i) ≠ π′(i), CL(i) ≠ π′′(i) (π′, π′′, π° 
are the parents and offspring, respectively). The 
members of the candidate list take part in the 
improvement process (Of course, if the candidate list 
size is zero (| CL | = 0), the improvement process is 
omitted.) The template of the corresponding procedure 
is given in Figure 3. 

Figure 2. Example of block crossover 

procedure partial_steepest_descent 
 // Let π be the current solution-offspring. At each step of procedure, an attempt is made to  
 // replace the current solution by the solution that improves most the objective function value.  
 // The process is continued until no improving solution exists 
 repeat 
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  if z(π•) < z(π) then π := π• // replace the current solution by the new one 
 until π• ≠ π 
end // partial_steepest_descent 
 

Figure 3. Template of partial local improvement procedure used in repair crossover. 
Notes. 1. pij is the elementary perturbation operator which simply exchanges ith and jth elements 

in the current permutation; in this case, the expression ijp⊕π  denotes the permutation that is obtained  

from the current permutation π by applying pij. 2. w = | CL | 

 
3 6 7 4 1 

 
1 8 6 2 4 5 3 7 9 
6 7 1 4 2 9 8 5 3 
1 8 6 2 4 5 3 7 9 
1 8 6 2 4 5 3 7 9 
1 3 6 2 4 5 8 7 9 
6 3 1 2 4 5 8 7 9 
6 3 1 2 4 7 8 5 9 

5 2 9 8 
7 3 6 4 2 9 5 1 8 
7 3  4 1 9 5  8 
6 
7 

2 
3 

 
6 

 
4 

 
1 

 
9 

 
5 

 
2 

 
8 

 

parent 1

offspring 

parent 2

missing elements 

parent 1

clone of parent 1 
parent 2

step 2
step 1

offspring 
step 3

Figure 4. Example of uniform partially mapped crossover 

The experiments have shown that the size of the 
candidate list is much more less than n in most cases; 
so, the partial local improvement procedure does not 
contribute considerably to the total amount of run time 
of the genetic algorithm. 

Further, let us describe a variant of the well-known 
recombination operator, the partially-mapped cross-
over (PMX). The key idea of PMX is that it works 
with a part of a chromosome − mapping section − lo-
cated between two crossover points (sites) [13]. PMX 
has been proven to be highly effective for the traveling 
salesman problem [13], however the straightforward 
PMX procedure does not work well for the QAP. For 
this reason, Migkikh et al. [19] proposed a modifica-
tion of PMX based on using a number of random 

mapping points − instead of one mapping segment. 
This crossover was referred to as a uniform PMX 
(UMPX). The basic steps of UPMX are as follows: a) 
clone the offspring π° from the first parent π′; b) 
choose a position pos1 of the offspring at random; c) 
find a position pos2 in the offspring where the content 
is equal to the content of pos1 in the second parent π′′, 
i.e. π°(pos2) = π′′(pos1); d) swap the content of 
π°(pos1) and π°(pos2); e) repeat steps a-e k times, 
where k = n/3 (according to [19]). An illustration of 
UPMX is presented in Figure 4. 

In [16], Merz and Freisleben introduced a distance 
preserving crossover (DPX) for the QAP. (The earlier 
version of this crossover was tried on the traveling 
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salesman problem [10].) The main idea of DPX is that 
this recombination operator aims at producing the 
offspring which has the same distance to each of its 
parents, and this distance is equal to the distance bet-
ween the parents themselves. Remind that the "dis-
tance" ρ between two permutations π1 and π2 is defi-
ned as a number of the elements that are assigned to 
different positions in the corresponding permutations, 
i.e. )}()(|{),( 2121 iii ππππρ ≠= . So, the elements 
that are identical for the same positions in both parents 
(π′ and π′′) will be copied to the offspring (π°). The 
contents for all other genes change; that is, the 
remaining positions are randomly filled in with the yet 
unassigned elements, taking care that no assignment 
that appears in just one parent is copied to the child. A 
simple example of how DPX works is shown in Fi-
gure 5. 

We continue consideration of the crossover opera-
tors by concerning the principle of a cycle crossover 
(CX) [17,18,25]. The key idea of this operator is that 
CX preserves the information contained in both 
parents, that is, all the alleles of the offspring are taken 
either from the first or second parent. The main steps 
of CX are as follows. 1. All the alleles found at the 
same locations in both parents are assigned to the cor-
responding locations in the child. 2. Starting from the 
first (or randomly chosen location) (provided that the 
corresponding element has not been included in the 
offspring yet), an element is chosen in a random way 
from the two parents. After this, one performs additio-
nal assignments to ensure that no random assignment 
(mutation) occurs. Then, the next unassigned location 
is processed in the same manner until all the locations 
have been considered. An example is presented in Fi-
gure 6. 

Figure 5. Example of distance preserving crossover 
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Figure 6. Example of cycle crossover 
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Ahuja et al. used a swap path crossover (SPX) in 
their "greedy genetic algorithm" [1]. (Note that the 
original idea of this type of crossover was developed 
by Glover [11], who referred to it as a "path relink-
ing".) Let π′, π′′ be a pair of parents. In SPX, one 
starts at the first (or some random) gene, and the pa-
rents are examined from left to right until all the genes 
have been considered. If the alleles at the position 
being looked at are the same, one moves to the next 
position; otherwise, one performs a swap (inter-
change) of two alleles in π′ or in π′′ so that the alleles 
at the current position become alike. (For example, if 
the current gene is i, and a = π′(i), b = π′′(i), then, 
after a swap, either π′(i) becomes b, or π′′(i) becomes 
a.) Ahuja et al. propose to perform the swap for which 
the corresponding solution has a lower cost (objective 
function value). The elements in the two resulting 

solutions are then considered, starting at the next posi-
tion, and so on. The best solution obtained during this 
process (the fittest child) serves as an offspring. The 
"fragment" of swap path crossover is illustrated in Fi-
gure 7. For more details, see [1]. 

One point crossover (OPX) operators [12] are clas-
sical solution recombination procedures widely used 
in early versions of genetic algorithms. One of the 
variants of OPX for the QAP is due to Lim et al. [15]. 
The idea of OPX is quite simple. A crossing point 
(site) is chosen randomly between 1 and n − 1 in one 
of the parents. As a result, a child chromosome is ob-
tained, containing information partially determined by 
each of parent chromosomes. Again, the care of pre-
serving of the solution feasibility should be taken (see 
Figure 8). 

Figure 7. Example of swap path crossover 

step 2: start position is 3, start element is 8 
step 1: elements 5,1,7 are inherited from the parents

offspring π°
step 3: start position is 4, start element is 9 

 
5 2 3 4 1 7 6 8 9 
2 1 3 4 6 5 7 8 9 
2 5 3 4 1 7 6 8 9 
5 1 3 4 6 2 7 8 9 
2 
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5 
5 

3 
3 

4 
4 

1 
1 

7 
7 

6 
6 

8 
8 

9 
9 

2 1 3 4 6 5 7 8 9 
2 1 3 4 5 7 6 8 9 
2 5 3 4 6 1 7 8 9 

... ... ... ... ... ... ... ... ...

parent 1

child 1
parent 2

better child
child 2

new pair of parents

child 3
child 4

offspring = the best child 
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2 8 7 1 4 5 9 3 6 
7 6 4 1 8 9 2 3 5 
2 8 

parent 1

Figure 8. Example of one point crossover 

7 1 4 5    
      6 3 9 
2 8 7 1 4 5 6 3 9 

 

Figure 9. Example of order-based crossover 

offspring 

parent 2

crossing site

elements of parent 1 
elements of parent 2 

 
8 6 4 2 1 5 9 3 7 
2 3 4 6 7 1 5 9 8 
0 1 0 1 1 0 0 0 1 
 6  2 1    7 
3  4   5 9 8  
3 6 4 2 1 5 9 8 7 

 

parent 1
parent 2
random template 
elements from parent 1 
missing
offspring

So-called order-based operators [7] have been ap-
plied successfully for problems as scheduling, where 
the objective is to obtain the order (sequence) in which 
jobs are assigned by the schedule. The basic feature of 
order-based crossovers (OBX) is that they preserve the 
relative order of the alleles in chromosomes. So, a 
number of items (elements) are selected from one of 
the parents and copied to the offspring. The missing 
elements (alleles) are taken from the other parent in 
order. An example of this crossover is shown in Fi-
gure 9 (see also [30] for more details). 

Recently, Drezner introduced a quite original solu-
tion recombination operator − a cohesive crossover 
(COHX) [8]. COHX produces the offspring in several 
steps. At the beginning, some mask − an n1 × n2 matrix 
M − is created. n1 and n2 are chosen in such a way that 
n1 ⋅ n2 = n ∧ n1 + n2 → min. The initial mask position 
is fixed at (i0, j0), where i0 ∈ {1, 2, ..., n1}, j0 ∈ {1,  2,  
..., n2}. The mask matrix is then filled in according to 
wave propagation fashion (see Figure 10). There exist 
n different masks M(1), M(2), ..., M(k), ..., M(n), where k, 
i0, and j0 are in the following relation: k = n2⋅(i0 − 1)  
+ j0, i0 = 1, 2, ..., n1, j0 = 1, 2, ..., n2. Then, the kth 
recombined solution π(k) (k ∈ {1, 2, ..., n}) is gene-
rated in three steps: 
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where i = 1, 2, ..., n, πworse = argmax {z(π′), z(π′′)}; 

3) for every unassigned position i (π (k)(i) = 0), an item 
is chosen randomly from those not yet included in the 
offspring. 

A visual example of generation of a solution is 
given in Figure 11. As a result, n solutions are pro-
duced, but only the best of them is regarded as an off-
spring, i.e. . )(minarg )(

,...2,1

k
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 2 1 2  
2 1 0 1 2 
 2 1 2  
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Figure 10. Filling in a mask
Multiple parent crossover (MPX) was described by 

Misevičius in [23], although the idea of using com-
binations of several solutions goes back to Boese et al. 
[2] and Fleurent and Glover [9]. MPX is distinguished 
for the fact that the offspring derives the information 
from many parents − this is the contrast and, at that 
time, advantage to the traditional operators, where 
useful information may be left out of account because 
of using two parents only. In MPX, the ith element, 
i.e. allele of the offspring π° is created by choosing 
such a number j (among those not yet chosen) that 
probability that π°(i) = j  is maximized. 

Here, the probability ))( ji =°Pr(π  is equal to 
∑

n

j
ij

ij

d

d
, 

where dij is the entry of a desirability matrix 
D = (dij)n×n, and is equal to the number of times that 
the element i is assigned to the position j = π(i) in µ 
parents (which participate in creation of the child). 
The process is to be continued until all the genes of 
the offspring take on their values. An example of 
producing of the offspring in multiple parent crossover 
(µ = 5) is given in Figure 12. 

))(Pr( ji =°π

Note that, in this work, the desirability matrix was 
slightly modified. Instead of D = (dij)n×n, we used 
D′ = (d′ij)n×n, where d′ij = dij + ε, here ε is a correction 
(noise). 
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3 2 1 4 7 8 9 6 5 
8 9 7 3 2 1 5 4 6 
3 2 1       
4 7 8       
9 6 5       
3 2 1  7     
      5 4 6 
   9  8    
3 2 1 9 7 8 5 4 6 

 

Figure 11. Example of cohesive crossover 

Figure 12. Example of multiple parent crossover 

The recombination operators discussed can be 
categorized depending on various criteria (factors): the 
number of parents, the level (degree) of randomness 
(distortion), the problem oriented knowledge, 
time/memory complexity, implementation/program-
ming aspects, etc. Let us concern the randomization 
factor in more details. Very roughly speaking, this 
factor can be viewed as a measure of how "far" is the 
offspring from the parents. Regarding this factor, the 
crossover operators can be classified as less disruptive 
and more disruptive. Radcliffe and Surry [26] use the 
terms "assorting" and "respectful", respectively. (Note 
that most of the above crossovers may be viewed as 
"respectful"; the only cycle crossover falls into the 
category of "assorting" operators.) In general, there 
are two situations in merging process: explicit muta-
tion and implicit mutation. The "assorting" crossover 
is characterized by explicit mutation, while implicit 
mutation is an indication of the "respectful" operator. 
As an explicit mutation, we call the situation where 
the offspring is different from both first and second 
parent, however every allele of the child is from the 
corresponding gene of either first or second parent; 
that is, π° ≠ π′ ∧ π° ≠ π′′ ∧ (π°(i) = π′(i) ∨ π°(i) =  
π′′(i),  i = 1, 2, ..., n). This is a very strict condition. It 
is the reason of why the assorting recombination is 
hardly accomplished for some problems. Meanwhile, 
implicit mutation offers more "degree of freedom"; the 
only requirement to fulfil is that the offspring is diffe-

rent from the parents (provided that the offspring 
necessary inherits common parents’ alleles). More 
formally, the implicit mutation takes place if there 
exists (at least one) such an i that π°(i) ≠  
π′(i) ∧ π°(i) ≠ π′′(i). The corresponding element (all-
ele) (π°(i)) can be considered as "foreign" element, 
since this element is not contained in (one of) the 
parents. The number of foreign elements may be seen 
as an indicator of "disruptiveness" of the crossover: 
the more number of foreign elements, the more dis-
ruptive crossover operator. 

It can be guessed that implicit mutations have a 
positive effect on the performance of the genetic 
search, especially, in the cases where highly elabo-
rated post-crossover algorithms are used. The results 
obtained (see Section 3) confirmed this preliminary 
conjecture: crossovers with implicit mutation outper-
formed the representative of explicit operators, the 
cycle crossover, for most of the QAP instances tested. 
However, the crossover designer must be very careful 
by preferring a "respectful" crossover to an "assorting" 
one: for the particular problems, implicit mutations 
may appear to be inferior to explicit ones. 

The other factors of crossovers seem to be more 
intuitively clear. These factors (together with the ran-
domization level characteristic) are summarized in 
Table 1. 

 
 

mask M(k) (k = 2) parent 1 (better parent) 
parent 2  

1 0 1 
2 1 2 
3 2 3 

"wrapping" parent 1 

these items are copied from parent 1
these items are copied from parent 2

recombined solution π(k) (k = 2)
these items are assigned randomly 

 
4 3 6 7 1 2 9 8 5 
4 3 6 7 1 9 5 8 2 
4 6 3 1 7 5 9 2 8 
4 7 3 1 8 5 9 6 2 
5 6 3 1 2 4 9 7 8 

 

0 0 0 4 1 0 0 0 0 
0 0 2 0 0 2 1 0 0 
0 0 3 0 0 2 0 0 0 
3 0 0 0 0 0 2 0 0 
2 1 0 0 0 0 1 1 0 
0 1 0 1 2 0 0 0 1 
0 0 0 0 1 0 0 0 4 
0 1 0 0 0 1 1 2 0 
0 2 0 0 1 0 0 2 0 

 

4 6 3 7 1 5 9 8 2 
 

five parents

entries of the desirability matrix 
 

assume that the sequence of indices (is) is as follows: 
7, 3, 1, 8, 2, 6, 5, 4, 9; 
then, the offspring is created in the following way: 
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9

===
≠

j
j

ππ ; { } 4))1(Pr(maxarg)1(
9,3

===
≠

j
j

ππ ;
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Table 1. Crossover characteristics: towards conceptual comparison of crossovers 

Crossovers 

Characteristics 
ULX,RULX, 

BX,OBX RX UPMX DPX CX SPX OPX COHX MPX

Number of parents 2 2 2 2 2 2 2 2 ≥2 

Randomization level 
(explicit mutation (EM), 
implicit mutation (IM)) 

IM IM IM IM EM IM IM IM IM 

Time complexity O(n) O(n + w2) O(n) O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

Memory size complexity O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n2)

Implementation (program-
ming) aspects (TI − rather 
trivial implementation, 
NTI − rather non-trivial 
implementation) 

TI NTI TI NTI NTI TI TI NTI NTI

Problem oriented know-
ledge (embedded (E), 
not embedded (NE)) 

NE E NE NE NE E NE E E 

Additional properties   k2),( ≤°′ ππρ ,
where k is the 

number of 
swaps 

high 
degree of 
disruption 

of the 
offspring

 low 
degree of 
disruption

relatively low de-
gree of disruption; 

cn −≤°′ ),( ππρ , 
where c is the 

crossing position 

relatively 
low 

degree of 
disruption

 

 

 

3. Computational experiments 

In this section, we present the results of experi-
mental comparison of the crossovers outlined above. 
In the experiments, we used the instances (bench-
marks) of the QAP taken from the well-known library 
QAPLIB [4]. The types of the instances we examined 
are as follows: 

(a) random instances (these instances are randomly 
generated according to a uniform distribution; in 
QAPLIB, they are denoted by tai20a, tai25a, tai30a, 
tai35a, tai40a, tai50a, tai60a, tai80a, and tai100a; the 
corresponding numeral (20, 25, and so on) in the 
instance name denotes the size of the instance); 

(b) real-life like instances (instances of this type 
are generated in such a way that the entries of the mat-
rices A and B resemble the distribution from real 
world problems; these instances are denoted by tai20b, 
tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, tai80b, 
tai100b, and tai150b). 

As an experimental basis for the crossover opera-
tors, we used an extended hybrid genetic algorithm 
(EHGA). The basic flowchart of EHGA is shown in 
Figure 13. The details of this algorithm are presented 
in Misevičius' paper [20]. Remind that the high per-
formance of this algorithm was achieved by effective 
implementation of the genetic-tabu search paradigm, 
i.e. combining the genetic operators with the iterated 
tabu search (ITS) procedure. The details of the ITS 
procedure can be found in [22]. 

The efficiency measure for crossover operators is 
the average deviation of solutions obtained from the 

best known solution − δ  ( %][ )(100 zzz ((−=δ , 
where z  is the average objective function value over 
10 restarts (single applications of EHGA to a given 
instance), and z(  is the best known value (BKV) of the 
objective function). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NO

EHGA 

Initial population generation by ITS 

Selection 

Crossover 

Limited ITS 

Population replacement 

NOProcess converged?

YES 
Restart 

Stop? 

YES 
END 

Figure 13. Generalized flowchart of 
the extended hybrid genetic algorithm
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In the experimental comparison, equated condi-
tions are created: all the crossover variants use the 
identical initial solutions and require approximately 
the same CPU time. For the sake of more fairness, we 
carried out two sets of experiments (shorter runs and 
longer runs, with smaller and larger number of genera-
tions, respectively). The following are the values of 
the control parameters of EHGA (of course, they are 
equivalent for all the crossovers compared): popula-
tion size −  n ; number of generations − n/3 (for the 

first set of experiments) and 3n (for the second set); 
number of offsprings (crossovers) per generation − 1; 
number of iterations of the post-crossover, i.e. the 
iterated tabu search (ITS) procedure − 2

10
1 n  (for the 

random instances) and 4n (for the real-life like 
instances). The number of parents in the MPX cros-
sover is equal to the population size. 

The results of comparison of the crossovers are 
presented in Tables 2−5. 

Table 2. Comparison of the crossover operators for the QAP: shorter run results for the random instances.  The best results ob-
tained are printed in bold face. CPU times per restart are given in seconds. 900 MHz PENTIUM computer was used in the ex-
periments 

Instance BKV 
δ  

 BX RX UPMX DPX CX SPX OPX OBX COHX MPX 
CPU 
time 

tai20a  703482 a 0.730 0.666 0.680 0.718 0.652 00..662222  00..662222  0.681 0.655 0.615 0.1 
tai25a  1167256 a 1.005 00..771100  0.754 1.090 0.923 0.899 0.717 0.882 0.899 0.698 0.3 
tai30a  1818146 a 0.685 0.648 00..552255  0.827 0.603 0.668 0.531 0.693 0.496 0.636 0.6 
tai35a  2422002 a 0.754 0.734 0.659 0.779 0.695 0.814 0.763 0.711 0.698 00..668877  1.2 
tai40a  3139370 a 00..772277  0.810 0.838 0.863 0.786 0.765 0.752 0.770 0.766 0.708 2.7 
tai50a  4941410 a 0.964 0.918 0.961 0.966 0.901 0.865 0.945 0.919 00..888899  0.904 8.8 
tai60a  7205962 b 0.833 0.866 0.876 0.878 0.833 00..882288  0.850 0.841 0.848 0.819 21 
tai80a  13546960 b 0.499 0.498 0.506 0.522 0.458 0.435 0.458 0.518 0.505 00..445555  85 
tai100a  21123042 b 0.377 0.411 0.402 0.406 0.370 0.314 0.377 0.403 0.385 00..332299  250 

Average:  0.730 0.696 0.689 0.783 0.691 0.690 00..666688  0.713 0.682 0.650  

a comes from [4]; b comes from [22]. 

Table 3. Comparison of the crossover operators for the QAP: shorter run results for the real-life like instances.  The best results 
obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the 
experiments 

Instance BKV 
δ  

 RULX RX UPMX DPX CX SPX OPX OBX COHX MPX 
CPU 
time 

tai20b  122455319 a 00..009900  0.045 00..009900  0.101 0.085 00..009900  00..009900  0.091 0.045 00..009900  0.1 
tai25b  344355646 a 0.150 0.201 0.194 0.206 0.166 0.045 0.273 00..007799  0.175 0.115 0.2 
tai30b  637117113 a 0.315 0.410 0.549 0.690 0.514 0.551 0.371 0.560 0.528 00..335533  0.3 
tai35b  283315445 a 0.289 0.287 0.163 0.368 0.240 0.281 0.271 00..221188  0.242 0.289 0.4 
tai40b  637250948 a 0.550 0.420 0.444 0.411 0.464 0.068 0.352 0.515 0.414 00..224433  0.9 
tai50b  458821517 a 0.285 0.261 0.228 0.500 0.205 00..116688  0.296 0.223 0.121 0.316 2.4 
tai60b  608215054 a 0.184 0.181 0.176 0.330 0.183 0.163 0.176 0.201 00..116666  0.173 4.3 
tai80b  818415043 a 0.337 0.477 0.594 0.909 0.547 0.448 0.381 0.474 0.396 00..333388  15 
tai100b  1185996137 a 0.357 0.422 0.387 0.644 0.458 0.471 0.429 0.370 00..331133  0.290 35 
tai150b  498896643 b 0.639 0.622 0.684 1.020 0.698 0.674 00..559922  0.599 0.623 0.557 120 

Average:  0.320 0.333 0.351 0.518 0.356 00..229966  0.323 0.333 0.302 0.276  

a comes from [4]; b comes from [28]. 
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Table 4. Comparison of the crossover operators for the QAP: longer run results for the random instances. The best results 
obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the 
experiments 

Instance BKV 
δ  

 BX RX UPMX DPX CX SPX OPX OBX COHX MPX 
CPU 
time 

tai20a  703482  0.216 0.216 0.238 0.221 0.268 00..220077  0.202 0.268 0.229 0.246 1.0 
tai25a  1167256  0.190 0.191 0.117 0.231 0.158 0.151 0.190 0.159 0.169 00..115500  3.0 
tai30a  1818146  0.091 0.097 0.111 0.074 00..004400  0.091 0.120 0.112 0.091 0.035 6.0 
tai35a  2422002  0.175 0.388 0.284 0.433 0.312 0.283 0.209 0.324 0.279 00..119944  12 
tai40a  3139370  0.454 0.474 0.455 0.503 0.424 0.444 0.441 0.425 00..441177  0.374 27 
tai50a  4941410  0.638 0.609 0.565 0.693 0.627 0.585 0.602 00..557799  0.638 0.583 88 
tai60a  7205962  0.608 0.629 0.623 0.689 0.619 0.609 00..559966  0.613 0.651 0.572 210 
tai80a  13546960  00..221199  0.295 0.265 0.330 0.251 0.240 0.268 0.260 0.266 0.218 850 
tai100a  21123042  0.192 0.203 0.191 0.230 0.165 00..114422  0.178 0.219 0.195 0.108☼ 2500 

Average:  0.309 0.345 0.317 0.378 0.318 00..330066  0.312 0.329 0.326 0.276  

☼ During the experimentation with MPX on the instance tai100a, we were successful in discovering new record-breaking 
solution. The new objective function value, which is better than that reported in [22], is equal to 21090402. 

 

Table 5. Comparison of the crossover operators for the QAP: longer run results for the real-life like instances.  The best results 
obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the 
experiments 

Instance BKV 
δ  

 RULX RX UPMX DPX CX SPX OPX OBX COHX MPX 
CPU 
time 

tai20b  122455319  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0 
tai25b  344355646  0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 2.0 
tai30b  637117113  0.000 0.018 0.001 0.019 0.017 0.001 0.001 0.000 0.000 0.001 3.0 
tai35b  283315445  0.049 0.014 00..001199  0.047 0.042 0.029 0.062 0.037 0.038 00..001199  4.0 
tai40b  637250948  0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.000 9.0 
tai50b  458821517  0.035 0.003 0.006 0.088 0.002 0.012 0.000 0.000 0.000 0.014 24 
tai60b  608215054  0.024 00..000044  0.012 0.025 0.007 0.002 0.002 0.015 0.009 0.010 43 
tai80b  818415043  0.004 0.067 0.119 0.173 00..001133  0.017 0.045 0.017 0.015 0.016 150 
tai100b  1185996137  0.104 0.091 0.117 0.145 0.108 0.091 0.113 0.114 00..007799  0.064 350 
tai150b  498896643  0.305 0.243 0.410 0.608 0.360 0.232 0.261 0.338 0.309 00..224411  1200 

Average:  0.052 0.044 0.068 0.116 0.055 00..003388  0.048 0.052 0.045 0.037  

 
Table 6. Summarizing results of the experimental comparison of the crossover operators for the QAP 

Instance groups 
Deviation from BKV averaged over two sets of experiments 
 RULX BX RX UPMX DPX CX SPX OPX OBX COHX MPX 

tai∗a  0.520 0.521 0.503 0.581 0.505 0.498 00..449900  0.521 0.504 0.463 
tai∗b 0.186  0.189 0.210 0.317 0.206 00..116677  0.186 0.193 0.174 0.157 

Average:   0.355 0.357 0.449 0.356 00..333333  0.338 0.357 0.339 0.310 

 
Some observations, looking at the results in Tables 

2−5, are as follows. 1. Shorter run results are quite 
"flat", so it may be complicated to draw right 
conclusions; meanwhile, longer run results (obtained 

by large number of generations) are differentiated in a 
higher degree and allow to judge more about the effi-
ciency of crossover operators. 2. Long time results de-
monstrate that crossovers have considerable influence 
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on the final solutions produced by the genetic algo-
rithm, even in the cases when the powerful post-
crossover procedures are used. This indicates that the 
recombination operators, which are responsible for the 
exploration of new regions in the solution space, hide 
high potential. 3. The performance of different cros-
sover operators varies in large ranges; nevertheless 
some regularities can be discovered. For example, less 
disruptive crossovers appear to be more efficient than 
highly disruptive crossovers; surprisingly, the cycle 
crossover (the minimally available disruptive cros-
sover) produces only medium-quality results. It can 
also be seen that the crossovers which incorporate the 
problem-oriented knowledge seem to be in average 
better than the remaining ("pure") operators. 4. Also, it 
can be observed that there exists some dissipation of 
results for the random and real-life like problems: 
typically, some of crossovers (except MPX and, may-
be, SPX and OPX operators) work well on the random 
instances, but produce worse solutions for the real-life 
like instances, and vice versa. It is even more surpris-
ing that the MPX operator outperforms all the other 
competitors for both random and real-life like instan-
ces. This is a clear indication of high stability and 
universality of the multiple parent crossover. 5. The 
preliminary overall ranking of the crossover operators 
(sorted according to decreasing quality of solutions) 
for the random instances looks as follows: MPX-
OPX-SPX-UPMX-COHX-CX-BX-RX-OBX-DPX. 
The similar ranking for the real-life like problems is as 
follows: MPX-SPX-COHX-RULX-OPX-RX-OBX-
CX-UPMX-DPX. The resulting ranking is: MPX-
SPX-OPX-COHX-RX-CX-UPMX-OBX-DPX (see 
Table 6). (It was somewhat unexpected that OPX 
produced slightly better results than COHX, which, in 
turn, was shown by Drezner [8] to be very effective 
for pseudo-random grid-based QAP instances. Thus, 
some more experiments would be useful in order to 
acknowledge the above ranking as really fair.) To 
summarize, SPX, OPX, COHX, and, especially, MPX 
appear to be superior to the remaining crossovers with 
respect to the QAP instances tested and could be 
recommended as perfect recombination operators for 
the designers of new (hybrid) genetic algorithms for 
the QAP. 

4. Concluding remarks 

In this paper, the solution recombination, i.e. cros-
sover operators in the context of the quadratic assign-
ment problems are discussed. These operators are 
known as playing an important role by developing 
robust genetic algorithms. The crossover procedures 
are considered in two aspects. Firstly, the basic prin-
ciples (factors) and specific features of various recom-
bination operators are outlined, and the table of cros-
sover characteristics is given; then the results of the 
experimental comparison within the framework of 
hybrid genetic-tabu search algorithm are presented. 

We implemented twelve different crossover proce-
dures and their modifications in order to test the influ-
ence of the recombination operators to the genetic 
search process when applied to the quadratic assign-
ment problem. The following crossover operators have 
been used in the experimentation: the uniform like 
crossover (ULX) and its modifications (the randomi-
zed ULX crossover (RULX), the ULX crossover 
combined with repair procedure (RX), the block cros-
sover (BX)), the uniform partially-mapped crossover 
(UPMX), the distance preserving crossover (DPX), 
the cycle crossover (CX), the swap path crossover 
(SPX), the one point crossover (OPX), the order-based 
crossover (OBX), the cohesive crossover (COHX), 
and, finally, the multiple parent crossover (MPX). The 
results obtained from the experiments with the test 
instances of the QAP show high performance of the 
crossovers with lower degree of disruption and, 
especially, the multiple parent crossover. These robust 
crossovers incorporated into the hybrid genetic-tabu 
search algorithm resulted in encouraging results with-
in small computation time. New best known solution 
for the QAP instance tai100a was obtained by using, 
namely, the MPX operator. 

Further elaboration of the crossover operators 
mentioned with the focus on the multiple parent 
recombination, as well as development of innovative 
crossover operators for the QAP and similar com-
binatorial problems may be the subject of the future 
research. 
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