
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.2

COMPARISON OF CROSSOVER OPERATORS FOR THE QUADRATIC
ASSIGNMENT PROBLEM

Alfonsas Misevičius1, Bronislovas Kilda2
Department of Practical Informatics1, Computer Department2, Kaunas University of Technology

Studentų St. 50−400a/416a1, Studentų St. 50−4122, LT−51368 Kaunas, Lithuania

Abstract. Crossover (i.e. solution recombination) operators play very important role by constructing competitive
genetic algorithms (GAs). In this paper, the basic conceptual features and specific characteristics of various crossover
operators in the context of the quadratic assignment problem (QAP) are discussed. The results of experimental
comparison of more than 10 different crossover operators for the QAP are presented. The results obtained demonstrate
high efficiency of the crossovers with relatively low degree of disruption, namely, the swap path crossover (SPX), the
cohesive crossover (COHX), the one point crossover (OPX). Another promising operator is so-called multiple parent
crossover (MPX) operator based on special type of recombination of several solutions-parents. The results from the
experiments show that MPX operator enables to achieve better solutions than other operators tested.

Keywords: heuristic algorithms, genetic algorithms, crossover operators, quadratic assignment problem.

1. Indroduction

The quadratic assignment problem (QAP) can be
formulated as follows. Let two matrices A = (aij)n×n
and B = (bkl)n×n and the set Π of all possible permuta-
tions of {1, 2, ..., n} be given. The goal is to find a
permutation π = (π(1), π(2), ..., π(n)) ∈ Π that mini-
mizes

.)(
1 1

)()(∑∑
= =

=
n

i

n

j
jiijbaz πππ (1)

One of the interpretations of the QAP is the facili-
ty layout problem [14]. In this case, n is the number of
facilities/locations, the element aij denotes the flow of
materials from facility i to facility j, and bkl can be
seen as the distance between location k and location l.
The permutation π = (π(1), π(2), ..., π(n)) then repre-
sents an assignment of n facilities to n locations (here,
π(i) (π(i) ∈ {1, 2, ..., n}) is the location what facility i
is assigned to).

It has been proved that the QAP is NP-hard, there-
fore various heuristic approaches are used for solving
medium- and large-scale QAPs within reasonable
computation times. For surveys of the heuristics for
the QAP, see [3,5]. Starting from 1994, genetic algo-
rithms (GAs), their modifications and hybrids are
among the advanced heuristic techniques for this
problem (see, for example, [1,8,15,18,21]).

Very roughly, genetic algorithms can be charac-
terized as follows [12]. Let P be a subset of Π; it is
referred to as a population, and it is composed of

individuals, i.e. solutions (permutations in the context
of the QAP), π1, π2, ... πPS = |P|. Each individual (πi) is
associated with a fitness, i.e. the corresponding objec-
tive function value (z(πi)). The individual πi is prefer-
red to individual πj if z(πi) < z(πj). (Further, we also
shall call the solution (permutation), π, as a chromo-
some, the single position, i, of the solution (chromo-
some) − as a gene, and the value at the given position
(gene), π(i) − as an allele.) The following are the main
steps of the genetic search. A pair (or fraction) of
solutions of P is selected to be parents by use of a
selection mechanism. New solutions (i.e. offspring)
are created by combining (merging) the parents; this
recombination operator is known as a crossover.
Afterward, a replacement (culling) scheme is applied
to the previous generation and the offspring to deter-
mine which individuals survive to form the next gene-
ration. In addition, some individuals undergo a muta-
tion (random perturbation) to prevent a premature loss
of the diversity within the population. Over many
steps, i.e. generations, less fit individuals (worse solu-
tions) tend to die-off, while better individuals (solu-
tions) tend to predominate. The process is continued
until a certain termination criterion is met. The best-
survived individual is regarded as a result of the
genetic algorithm.

For a more complete discussion on the principles
of GAs, the reader is addressed to [6,12,27].

It should be noted that the state-of-the-art genetic
algorithms are rather hybrid (combined genetic local
search) algorithms which incorporate additional
heuristic components [24]. Typically, a post-crossover

109

A. Misevičius, B. Kilda

(or post-merging) procedure is used to play the role of
a local improvement algorithm applied to the solution
previously produced by the crossover. This way of
proceeding ensures that the population consists solely
of locally optimal solutions. However, despite the
optimized populations, the recombination of solutions
still remains one of the critical things by constructing
competitive genetic algorithms. Very likely, the role of
recombination operators within hybrid genetic algo-
rithms (HGA) is more significant than in the ordinary
GAs. In fact, we can think of HGA as a process that
combines intensification and diversification (I&D) of
the search (for more details on I&D methodology, see,
for example, [22]). The intensification (local improve-
ment algorithm) concentrates the search in certain
local (limited) portions of the solution space, while the
diversification is responsible for escaping from the
current local optimum and moving towards unvisited
so far solutions. From this point of view, the crossover
is a special sort of the diversification (solution recon-
struction) mechanism, which − generally speaking −
guides the global search, i.e. exploration of new and
new regions of the solution space. The proper explo-
ration mechanism is, in some sense, even more severe
than intensification, and may add crucial influence on
the resulting efficiency of the search.

In this paper, we discuss issues related, namely, to
the investigation of crossover operators within HGAs
in the context of the quadratic assignment problem.
Both conceptual and experimental comparison of va-
rious types of crossovers for the QAP are given. More
precisely, in Section 2, the basic features of twelve
different crossover operators for the QAP are over-
viewed. Then, the computational results for these
crossovers are presented in Section 3. Section 4 com-
pletes the paper with concluding remarks.

2. Discussion of crossover operators for the
QAP

As mentioned above, crossover is one of the main
genetic search operators. It is capable of producing a
new feasible solution (i.e. child) by exchanging the
information contained in both parents. From the philo-
sophical point of view, crossover is a structured and, at
that time, randomized process (operation) that guaran-
tees both inheritance of the parents’ characteristics and
creation of entirely new features. Mathematically,
crossover can be defined as a binary operator
(function) ψ: Π × Π → Π such that ψ(π′, π′′) ≠
π′ ∨ ψ(π′, π′′) ≠ π′′ if π′ ≠ π′′; here, we assume that
the solutions are represented by permutations. As a
rule, the recombination operators ensure that the
offspring definitely inherits the alleles which are com-
mon to both parents; more formally, π′(i) = π′′(i) ⇒
π°(i) = π′(i) = π′′(i), i = 1, 2, ..., n, where π′, π′′, π° are
the parents and offspring, respectively. The inheritance
of the remaining genes can be accomplished in a
variety of ways. These ways, with respect to the
quadratic assignment problem, are discussed below.

We start our overview of the crossover operators
with the crossover by Tate and Smith proposed as far
back as 1995 [29]. This crossover can be viewed as
some kind of uniform crossover adapted to permuta-
tion-based solutions. So, we call it as uniform like
crossover (ULX). It works as follows. First, all items
assigned to the same position in both parents are
copied to this position in the child. Second, the
unassigned positions of a permutation are scanned
from left to right: for the unassigned position, an item
is chosen randomly, uniformly from those in the
parents if they are not yet included in the child. Third,
remaining items are assigned at random (see also
Figure 1).

3 6 7 4 1 5 2 9 8
7 3 6 4 2 9 5 1 8
 4 8
7 6 4 2 5 1 8
3 9
7 6 9 4 2 5 3 1 8

parent 1
parent 2

offspring

Figure 1. Example of uniform like crossover

Uniform crossover allows some flexibility, and
different variations of the basic procedure are
possible. Below, we give three modifications/en-
hancements of the basic ULX operator. In some sense,
these modifications can also be considered as special
kind crossovers. We will call them: randomized ULX
(RULX), modified ULX (or block crossover (BX)),
and extended ULX (or repair crossover (RX)).

The only difference between the standard uniform
crossover described above and the randomized one is
in the manner how the positions of solutions are
scanned. In standard ULX, the order of scanning is
fixed − from left to right. In RULX, the consideration
of the positions (both the assigned and unassigned) is

done in a random way. The motivation of this tech-
nique is adding more randomness and diversity to the
offspring generation process (this is important by
avoiding a premature convergence).

Another modification of ULX − we call it block
crossover − is distinguishing for the fact that some
blocks (segments) of elements are considered, instead
of the single elements. The block size BS is in the
range [1, n/2]. Note that blocks may be of different
sizes; for example, if n = 9 and the number of blocks
is equal to 4, then one obtains three blocks of size 2
and one block of size 3. By copying blocks, the
feasibility of permutation must be kept (see Figure 2).
BS = n/2 means that the first segment of size n/2 is

110

Comparison of Crossover Operators for the Quadratic Assignment Problem

111

copied from one of the parents (say, π′) to the
offspring, the remaining items are copied from the
"opposite" parent (π′′)) in such a way that the feasibi-
lity of the resulting solution is preserved. If there still
exist unassigned positions in the offspring, then the
missing elements can be taken from either the first or
second parent.

The central idea of the extended crossover is the
combination of ULX and a local improvement-based
repair (correction) procedure applied to the offspring
produced by ULX. More precisely, one tries to

improve the offspring by pairwise interchanges of the
elements − but only those that are not inherited from
the parents. A candidate list CL is created, where
CL(i) = π°(i), CL(i) ≠ π′(i), CL(i) ≠ π′′(i) (π′, π′′, π°
are the parents and offspring, respectively). The
members of the candidate list take part in the
improvement process (Of course, if the candidate list
size is zero (| CL | = 0), the improvement process is
omitted.) The template of the corresponding procedure
is given in Figure 3.

Figure 2. Example of block crossover

procedure partial_steepest_descent
 // Let π be the current solution-offspring. At each step of procedure, an attempt is made to
 // replace the current solution by the solution that improves most the objective function value.
 // The process is continued until no improving solution exists
 repeat

 ;)(minarg:
)(,...,1

)1(),...,1(
ij

wCLij
wCLCLi

pz ⊕=

+=
−=

• ππ

 if z(π•) < z(π) then π := π• // replace the current solution by the new one
 until π• ≠ π
end // partial_steepest_descent

Figure 3. Template of partial local improvement procedure used in repair crossover.
Notes. 1. pij is the elementary perturbation operator which simply exchanges ith and jth elements

in the current permutation; in this case, the expression ijp⊕π denotes the permutation that is obtained

from the current permutation π by applying pij. 2. w = | CL |

3 6 7 4 1

1 8 6 2 4 5 3 7 9
6 7 1 4 2 9 8 5 3
1 8 6 2 4 5 3 7 9
1 8 6 2 4 5 3 7 9
1 3 6 2 4 5 8 7 9
6 3 1 2 4 5 8 7 9
6 3 1 2 4 7 8 5 9

5 2 9 8
7 3 6 4 2 9 5 1 8
7 3 4 1 9 5 8
6
7

2
3

6

4

1

9

5

2

8

parent 1

offspring

parent 2

missing elements

parent 1

clone of parent 1
parent 2

step 2
step 1

offspring
step 3

Figure 4. Example of uniform partially mapped crossover

The experiments have shown that the size of the
candidate list is much more less than n in most cases;
so, the partial local improvement procedure does not
contribute considerably to the total amount of run time
of the genetic algorithm.

Further, let us describe a variant of the well-known
recombination operator, the partially-mapped cross-
over (PMX). The key idea of PMX is that it works
with a part of a chromosome − mapping section − lo-
cated between two crossover points (sites) [13]. PMX
has been proven to be highly effective for the traveling
salesman problem [13], however the straightforward
PMX procedure does not work well for the QAP. For
this reason, Migkikh et al. [19] proposed a modifica-
tion of PMX based on using a number of random

mapping points − instead of one mapping segment.
This crossover was referred to as a uniform PMX
(UMPX). The basic steps of UPMX are as follows: a)
clone the offspring π° from the first parent π′; b)
choose a position pos1 of the offspring at random; c)
find a position pos2 in the offspring where the content
is equal to the content of pos1 in the second parent π′′,
i.e. π°(pos2) = π′′(pos1); d) swap the content of
π°(pos1) and π°(pos2); e) repeat steps a-e k times,
where k = n/3 (according to [19]). An illustration of
UPMX is presented in Figure 4.

In [16], Merz and Freisleben introduced a distance
preserving crossover (DPX) for the QAP. (The earlier
version of this crossover was tried on the traveling

A. Misevičius, B. Kilda

112

salesman problem [10].) The main idea of DPX is that
this recombination operator aims at producing the
offspring which has the same distance to each of its
parents, and this distance is equal to the distance bet-
ween the parents themselves. Remind that the "dis-
tance" ρ between two permutations π1 and π2 is defi-
ned as a number of the elements that are assigned to
different positions in the corresponding permutations,
i.e.)}()(|{),(2121 iii ππππρ ≠= . So, the elements
that are identical for the same positions in both parents
(π′ and π′′) will be copied to the offspring (π°). The
contents for all other genes change; that is, the
remaining positions are randomly filled in with the yet
unassigned elements, taking care that no assignment
that appears in just one parent is copied to the child. A
simple example of how DPX works is shown in Fi-
gure 5.

We continue consideration of the crossover opera-
tors by concerning the principle of a cycle crossover
(CX) [17,18,25]. The key idea of this operator is that
CX preserves the information contained in both
parents, that is, all the alleles of the offspring are taken
either from the first or second parent. The main steps
of CX are as follows. 1. All the alleles found at the
same locations in both parents are assigned to the cor-
responding locations in the child. 2. Starting from the
first (or randomly chosen location) (provided that the
corresponding element has not been included in the
offspring yet), an element is chosen in a random way
from the two parents. After this, one performs additio-
nal assignments to ensure that no random assignment
(mutation) occurs. Then, the next unassigned location
is processed in the same manner until all the locations
have been considered. An example is presented in Fi-
gure 6.

Figure 5. Example of distance preserving crossover

3 5 8 2 9 1 4 6 7
8 5 6 4 9 1 3 2 7
 5 9 1 7
6
6

5

2
2

3
3

9

1

8
8

4
4

7

parent π′
parent π′′

5),(),(),(=′′′=°′′=°′ ππρππρππρ

offspring π°

Figure 6. Example of cycle crossover

3 5 8 2 9 1 4 6 7
8 5 6 9 4 1 2 3 7
 5 1 7
3 8 6

9

4

2

3 5 8 9 4 1 2 6 7

parent π′
parent π′′

Ahuja et al. used a swap path crossover (SPX) in
their "greedy genetic algorithm" [1]. (Note that the
original idea of this type of crossover was developed
by Glover [11], who referred to it as a "path relink-
ing".) Let π′, π′′ be a pair of parents. In SPX, one
starts at the first (or some random) gene, and the pa-
rents are examined from left to right until all the genes
have been considered. If the alleles at the position
being looked at are the same, one moves to the next
position; otherwise, one performs a swap (inter-
change) of two alleles in π′ or in π′′ so that the alleles
at the current position become alike. (For example, if
the current gene is i, and a = π′(i), b = π′′(i), then,
after a swap, either π′(i) becomes b, or π′′(i) becomes
a.) Ahuja et al. propose to perform the swap for which
the corresponding solution has a lower cost (objective
function value). The elements in the two resulting

solutions are then considered, starting at the next posi-
tion, and so on. The best solution obtained during this
process (the fittest child) serves as an offspring. The
"fragment" of swap path crossover is illustrated in Fi-
gure 7. For more details, see [1].

One point crossover (OPX) operators [12] are clas-
sical solution recombination procedures widely used
in early versions of genetic algorithms. One of the
variants of OPX for the QAP is due to Lim et al. [15].
The idea of OPX is quite simple. A crossing point
(site) is chosen randomly between 1 and n − 1 in one
of the parents. As a result, a child chromosome is ob-
tained, containing information partially determined by
each of parent chromosomes. Again, the care of pre-
serving of the solution feasibility should be taken (see
Figure 8).

Figure 7. Example of swap path crossover

step 2: start position is 3, start element is 8
step 1: elements 5,1,7 are inherited from the parents

offspring π°
step 3: start position is 4, start element is 9

5 2 3 4 1 7 6 8 9
2 1 3 4 6 5 7 8 9
2 5 3 4 1 7 6 8 9
5 1 3 4 6 2 7 8 9
2
2

5
5

3
3

4
4

1
1

7
7

6
6

8
8

9
9

2 1 3 4 6 5 7 8 9
2 1 3 4 5 7 6 8 9
2 5 3 4 6 1 7 8 9

...

parent 1

child 1
parent 2

better child
child 2

new pair of parents

child 3
child 4

offspring = the best child

Comparison of Crossover Operators for the Quadratic Assignment Problem

2 8 7 1 4 5 9 3 6
7 6 4 1 8 9 2 3 5
2 8

parent 1

Figure 8. Example of one point crossover

7 1 4 5
 6 3 9
2 8 7 1 4 5 6 3 9

Figure 9. Example of order-based crossover

offspring

parent 2

crossing site

elements of parent 1
elements of parent 2

8 6 4 2 1 5 9 3 7
2 3 4 6 7 1 5 9 8
0 1 0 1 1 0 0 0 1
 6 2 1 7
3 4 5 9 8
3 6 4 2 1 5 9 8 7

parent 1
parent 2
random template
elements from parent 1
missing
offspring

So-called order-based operators [7] have been ap-
plied successfully for problems as scheduling, where
the objective is to obtain the order (sequence) in which
jobs are assigned by the schedule. The basic feature of
order-based crossovers (OBX) is that they preserve the
relative order of the alleles in chromosomes. So, a
number of items (elements) are selected from one of
the parents and copied to the offspring. The missing
elements (alleles) are taken from the other parent in
order. An example of this crossover is shown in Fi-
gure 9 (see also [30] for more details).

Recently, Drezner introduced a quite original solu-
tion recombination operator − a cohesive crossover
(COHX) [8]. COHX produces the offspring in several
steps. At the beginning, some mask − an n1 × n2 matrix
M − is created. n1 and n2 are chosen in such a way that
n1 ⋅ n2 = n ∧ n1 + n2 → min. The initial mask position
is fixed at (i0, j0), where i0 ∈ {1, 2, ..., n1}, j0 ∈ {1, 2,
..., n2}. The mask matrix is then filled in according to
wave propagation fashion (see Figure 10). There exist
n different masks M(1), M(2), ..., M(k), ..., M(n), where k,
i0, and j0 are in the following relation: k = n2⋅(i0 − 1)
+ j0, i0 = 1, 2, ..., n1, j0 = 1, 2, ..., n2. Then, the kth
recombined solution π(k) (k ∈ {1, 2, ..., n}) is gene-
rated in three steps:

1) ;

≤+−
+−

=
otherwise,0

))1)mod)1((
,1)div)1(((),(

)(
2

2
)(

)(
η

π
π nk

nki
i

k
better

k
M

where i = 1, 2, ..., n, πbetter = argmin {z(π′), z(π′′)}, π′,
π′′ are the solutions-parents, and η is the median of

M(k), i.e.
21

1 2
)(),(

nn

ji
n

i

n

j

k

⋅

∑∑
=

M

η ;

2) ;

∧=

>
=

otherwise,0
in not)(0)(),(

0)(),(
)()(

)()(

)(k
worse

k
worse

kk

k iii
ii

i ππππ
ππ

π

where i = 1, 2, ..., n, πworse = argmax {z(π′), z(π′′)};

3) for every unassigned position i (π (k)(i) = 0), an item
is chosen randomly from those not yet included in the
offspring.

A visual example of generation of a solution is
given in Figure 11. As a result, n solutions are pro-
duced, but only the best of them is regarded as an off-
spring, i.e. .)(minarg)(

,...2,1

k

nk
z ππ

=
=°

 2
 2 1 2
2 1 0 1 2
 2 1 2
 2

Figure 10. Filling in a mask
Multiple parent crossover (MPX) was described by

Misevičius in [23], although the idea of using com-
binations of several solutions goes back to Boese et al.
[2] and Fleurent and Glover [9]. MPX is distinguished
for the fact that the offspring derives the information
from many parents − this is the contrast and, at that
time, advantage to the traditional operators, where
useful information may be left out of account because
of using two parents only. In MPX, the ith element,
i.e. allele of the offspring π° is created by choosing
such a number j (among those not yet chosen) that
probability that π°(i) = j is maximized.

Here, the probability))(ji =°Pr(π is equal to
∑

n

j
ij

ij

d

d
,

where dij is the entry of a desirability matrix
D = (dij)n×n, and is equal to the number of times that
the element i is assigned to the position j = π(i) in µ
parents (which participate in creation of the child).
The process is to be continued until all the genes of
the offspring take on their values. An example of
producing of the offspring in multiple parent crossover
(µ = 5) is given in Figure 12.

))(Pr(ji =°π

Note that, in this work, the desirability matrix was
slightly modified. Instead of D = (dij)n×n, we used
D′ = (d′ij)n×n, where d′ij = dij + ε, here ε is a correction
(noise).

113

A. Misevičius, B. Kilda

3 2 1 4 7 8 9 6 5
8 9 7 3 2 1 5 4 6
3 2 1
4 7 8
9 6 5
3 2 1 7
 5 4 6
 9 8
3 2 1 9 7 8 5 4 6

Figure 11. Example of cohesive crossover

Figure 12. Example of multiple parent crossover

The recombination operators discussed can be
categorized depending on various criteria (factors): the
number of parents, the level (degree) of randomness
(distortion), the problem oriented knowledge,
time/memory complexity, implementation/program-
ming aspects, etc. Let us concern the randomization
factor in more details. Very roughly speaking, this
factor can be viewed as a measure of how "far" is the
offspring from the parents. Regarding this factor, the
crossover operators can be classified as less disruptive
and more disruptive. Radcliffe and Surry [26] use the
terms "assorting" and "respectful", respectively. (Note
that most of the above crossovers may be viewed as
"respectful"; the only cycle crossover falls into the
category of "assorting" operators.) In general, there
are two situations in merging process: explicit muta-
tion and implicit mutation. The "assorting" crossover
is characterized by explicit mutation, while implicit
mutation is an indication of the "respectful" operator.
As an explicit mutation, we call the situation where
the offspring is different from both first and second
parent, however every allele of the child is from the
corresponding gene of either first or second parent;
that is, π° ≠ π′ ∧ π° ≠ π′′ ∧ (π°(i) = π′(i) ∨ π°(i) =
π′′(i), i = 1, 2, ..., n). This is a very strict condition. It
is the reason of why the assorting recombination is
hardly accomplished for some problems. Meanwhile,
implicit mutation offers more "degree of freedom"; the
only requirement to fulfil is that the offspring is diffe-

rent from the parents (provided that the offspring
necessary inherits common parents’ alleles). More
formally, the implicit mutation takes place if there
exists (at least one) such an i that π°(i) ≠
π′(i) ∧ π°(i) ≠ π′′(i). The corresponding element (all-
ele) (π°(i)) can be considered as "foreign" element,
since this element is not contained in (one of) the
parents. The number of foreign elements may be seen
as an indicator of "disruptiveness" of the crossover:
the more number of foreign elements, the more dis-
ruptive crossover operator.

It can be guessed that implicit mutations have a
positive effect on the performance of the genetic
search, especially, in the cases where highly elabo-
rated post-crossover algorithms are used. The results
obtained (see Section 3) confirmed this preliminary
conjecture: crossovers with implicit mutation outper-
formed the representative of explicit operators, the
cycle crossover, for most of the QAP instances tested.
However, the crossover designer must be very careful
by preferring a "respectful" crossover to an "assorting"
one: for the particular problems, implicit mutations
may appear to be inferior to explicit ones.

The other factors of crossovers seem to be more
intuitively clear. These factors (together with the ran-
domization level characteristic) are summarized in
Table 1.

mask M(k) (k = 2) parent 1 (better parent)
parent 2

1 0 1
2 1 2
3 2 3

"wrapping" parent 1

these items are copied from parent 1
these items are copied from parent 2

recombined solution π(k) (k = 2)
these items are assigned randomly

4 3 6 7 1 2 9 8 5
4 3 6 7 1 9 5 8 2
4 6 3 1 7 5 9 2 8
4 7 3 1 8 5 9 6 2
5 6 3 1 2 4 9 7 8

0 0 0 4 1 0 0 0 0
0 0 2 0 0 2 1 0 0
0 0 3 0 0 2 0 0 0
3 0 0 0 0 0 2 0 0
2 1 0 0 0 0 1 1 0
0 1 0 1 2 0 0 0 1
0 0 0 0 1 0 0 0 4
0 1 0 0 0 1 1 2 0
0 2 0 0 1 0 0 2 0

4 6 3 7 1 5 9 8 2

five parents

entries of the desirability matrix

assume that the sequence of indices (is) is as follows:
7, 3, 1, 8, 2, 6, 5, 4, 9;
then, the offspring is created in the following way:

{ } { } 9maxarg))7(Pr(maxarg)7(7 ==== j
jj

djππ ;

{ } 3))3(Pr(maxarg)3(
9

===
≠

j
j

ππ ; { } 4))1(Pr(maxarg)1(
9,3

===
≠

j
j

ππ ;

offspring

114

Comparison of Crossover Operators for the Quadratic Assignment Problem

Table 1. Crossover characteristics: towards conceptual comparison of crossovers

Crossovers

Characteristics
ULX,RULX,

BX,OBX RX UPMX DPX CX SPX OPX COHX MPX

Number of parents 2 2 2 2 2 2 2 2 ≥2

Randomization level
(explicit mutation (EM),
implicit mutation (IM))

IM IM IM IM EM IM IM IM IM

Time complexity O(n) O(n + w2) O(n) O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)

Memory size complexity O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n2)

Implementation (program-
ming) aspects (TI − rather
trivial implementation,
NTI − rather non-trivial
implementation)

TI NTI TI NTI NTI TI TI NTI NTI

Problem oriented know-
ledge (embedded (E),
not embedded (NE))

NE E NE NE NE E NE E E

Additional properties k2),(≤°′ ππρ ,
where k is the

number of
swaps

high
degree of
disruption

of the
offspring

 low
degree of
disruption

relatively low de-
gree of disruption;

cn −≤°′),(ππρ ,
where c is the

crossing position

relatively
low

degree of
disruption

3. Computational experiments

In this section, we present the results of experi-
mental comparison of the crossovers outlined above.
In the experiments, we used the instances (bench-
marks) of the QAP taken from the well-known library
QAPLIB [4]. The types of the instances we examined
are as follows:

(a) random instances (these instances are randomly
generated according to a uniform distribution; in
QAPLIB, they are denoted by tai20a, tai25a, tai30a,
tai35a, tai40a, tai50a, tai60a, tai80a, and tai100a; the
corresponding numeral (20, 25, and so on) in the
instance name denotes the size of the instance);

(b) real-life like instances (instances of this type
are generated in such a way that the entries of the mat-
rices A and B resemble the distribution from real
world problems; these instances are denoted by tai20b,
tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, tai80b,
tai100b, and tai150b).

As an experimental basis for the crossover opera-
tors, we used an extended hybrid genetic algorithm
(EHGA). The basic flowchart of EHGA is shown in
Figure 13. The details of this algorithm are presented
in Misevičius' paper [20]. Remind that the high per-
formance of this algorithm was achieved by effective
implementation of the genetic-tabu search paradigm,
i.e. combining the genetic operators with the iterated
tabu search (ITS) procedure. The details of the ITS
procedure can be found in [22].

The efficiency measure for crossover operators is
the average deviation of solutions obtained from the

best known solution − δ (%][)(100 zzz ((−=δ ,
where z is the average objective function value over
10 restarts (single applications of EHGA to a given
instance), and z(is the best known value (BKV) of the
objective function).

NO

EHGA

Initial population generation by ITS

Selection

Crossover

Limited ITS

Population replacement

NOProcess converged?

YES
Restart

Stop?

YES
END

Figure 13. Generalized flowchart of
the extended hybrid genetic algorithm

115

A. Misevičius, B. Kilda

In the experimental comparison, equated condi-
tions are created: all the crossover variants use the
identical initial solutions and require approximately
the same CPU time. For the sake of more fairness, we
carried out two sets of experiments (shorter runs and
longer runs, with smaller and larger number of genera-
tions, respectively). The following are the values of
the control parameters of EHGA (of course, they are
equivalent for all the crossovers compared): popula-
tion size − n ; number of generations − n/3 (for the

first set of experiments) and 3n (for the second set);
number of offsprings (crossovers) per generation − 1;
number of iterations of the post-crossover, i.e. the
iterated tabu search (ITS) procedure − 2

10
1 n (for the

random instances) and 4n (for the real-life like
instances). The number of parents in the MPX cros-
sover is equal to the population size.

The results of comparison of the crossovers are
presented in Tables 2−5.

Table 2. Comparison of the crossover operators for the QAP: shorter run results for the random instances. The best results ob-
tained are printed in bold face. CPU times per restart are given in seconds. 900 MHz PENTIUM computer was used in the ex-
periments

Instance BKV
δ

 BX RX UPMX DPX CX SPX OPX OBX COHX MPX
CPU
time

tai20a 703482 a 0.730 0.666 0.680 0.718 0.652 00..662222 00..662222 0.681 0.655 0.615 0.1
tai25a 1167256 a 1.005 00..771100 0.754 1.090 0.923 0.899 0.717 0.882 0.899 0.698 0.3
tai30a 1818146 a 0.685 0.648 00..552255 0.827 0.603 0.668 0.531 0.693 0.496 0.636 0.6
tai35a 2422002 a 0.754 0.734 0.659 0.779 0.695 0.814 0.763 0.711 0.698 00..668877 1.2
tai40a 3139370 a 00..772277 0.810 0.838 0.863 0.786 0.765 0.752 0.770 0.766 0.708 2.7
tai50a 4941410 a 0.964 0.918 0.961 0.966 0.901 0.865 0.945 0.919 00..888899 0.904 8.8
tai60a 7205962 b 0.833 0.866 0.876 0.878 0.833 00..882288 0.850 0.841 0.848 0.819 21
tai80a 13546960 b 0.499 0.498 0.506 0.522 0.458 0.435 0.458 0.518 0.505 00..445555 85
tai100a 21123042 b 0.377 0.411 0.402 0.406 0.370 0.314 0.377 0.403 0.385 00..332299 250

Average: 0.730 0.696 0.689 0.783 0.691 0.690 00..666688 0.713 0.682 0.650

a comes from [4]; b comes from [22].

Table 3. Comparison of the crossover operators for the QAP: shorter run results for the real-life like instances. The best results
obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the
experiments

Instance BKV
δ

 RULX RX UPMX DPX CX SPX OPX OBX COHX MPX
CPU
time

tai20b 122455319 a 00..009900 0.045 00..009900 0.101 0.085 00..009900 00..009900 0.091 0.045 00..009900 0.1
tai25b 344355646 a 0.150 0.201 0.194 0.206 0.166 0.045 0.273 00..007799 0.175 0.115 0.2
tai30b 637117113 a 0.315 0.410 0.549 0.690 0.514 0.551 0.371 0.560 0.528 00..335533 0.3
tai35b 283315445 a 0.289 0.287 0.163 0.368 0.240 0.281 0.271 00..221188 0.242 0.289 0.4
tai40b 637250948 a 0.550 0.420 0.444 0.411 0.464 0.068 0.352 0.515 0.414 00..224433 0.9
tai50b 458821517 a 0.285 0.261 0.228 0.500 0.205 00..116688 0.296 0.223 0.121 0.316 2.4
tai60b 608215054 a 0.184 0.181 0.176 0.330 0.183 0.163 0.176 0.201 00..116666 0.173 4.3
tai80b 818415043 a 0.337 0.477 0.594 0.909 0.547 0.448 0.381 0.474 0.396 00..333388 15
tai100b 1185996137 a 0.357 0.422 0.387 0.644 0.458 0.471 0.429 0.370 00..331133 0.290 35
tai150b 498896643 b 0.639 0.622 0.684 1.020 0.698 0.674 00..559922 0.599 0.623 0.557 120

Average: 0.320 0.333 0.351 0.518 0.356 00..229966 0.323 0.333 0.302 0.276

a comes from [4]; b comes from [28].

116

Comparison of Crossover Operators for the Quadratic Assignment Problem

117

Table 4. Comparison of the crossover operators for the QAP: longer run results for the random instances. The best results
obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the
experiments

Instance BKV
δ

 BX RX UPMX DPX CX SPX OPX OBX COHX MPX
CPU
time

tai20a 703482 0.216 0.216 0.238 0.221 0.268 00..220077 0.202 0.268 0.229 0.246 1.0
tai25a 1167256 0.190 0.191 0.117 0.231 0.158 0.151 0.190 0.159 0.169 00..115500 3.0
tai30a 1818146 0.091 0.097 0.111 0.074 00..004400 0.091 0.120 0.112 0.091 0.035 6.0
tai35a 2422002 0.175 0.388 0.284 0.433 0.312 0.283 0.209 0.324 0.279 00..119944 12
tai40a 3139370 0.454 0.474 0.455 0.503 0.424 0.444 0.441 0.425 00..441177 0.374 27
tai50a 4941410 0.638 0.609 0.565 0.693 0.627 0.585 0.602 00..557799 0.638 0.583 88
tai60a 7205962 0.608 0.629 0.623 0.689 0.619 0.609 00..559966 0.613 0.651 0.572 210
tai80a 13546960 00..221199 0.295 0.265 0.330 0.251 0.240 0.268 0.260 0.266 0.218 850
tai100a 21123042 0.192 0.203 0.191 0.230 0.165 00..114422 0.178 0.219 0.195 0.108☼ 2500

Average: 0.309 0.345 0.317 0.378 0.318 00..330066 0.312 0.329 0.326 0.276

☼ During the experimentation with MPX on the instance tai100a, we were successful in discovering new record-breaking
solution. The new objective function value, which is better than that reported in [22], is equal to 21090402.

Table 5. Comparison of the crossover operators for the QAP: longer run results for the real-life like instances. The best results
obtained are printed in bold face. CPU times per restart are given in seconds.900 MHz PENTIUM computer was used in the
experiments

Instance BKV
δ

 RULX RX UPMX DPX CX SPX OPX OBX COHX MPX
CPU
time

tai20b 122455319 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0
tai25b 344355646 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 2.0
tai30b 637117113 0.000 0.018 0.001 0.019 0.017 0.001 0.001 0.000 0.000 0.001 3.0
tai35b 283315445 0.049 0.014 00..001199 0.047 0.042 0.029 0.062 0.037 0.038 00..001199 4.0
tai40b 637250948 0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.000 9.0
tai50b 458821517 0.035 0.003 0.006 0.088 0.002 0.012 0.000 0.000 0.000 0.014 24
tai60b 608215054 0.024 00..000044 0.012 0.025 0.007 0.002 0.002 0.015 0.009 0.010 43
tai80b 818415043 0.004 0.067 0.119 0.173 00..001133 0.017 0.045 0.017 0.015 0.016 150
tai100b 1185996137 0.104 0.091 0.117 0.145 0.108 0.091 0.113 0.114 00..007799 0.064 350
tai150b 498896643 0.305 0.243 0.410 0.608 0.360 0.232 0.261 0.338 0.309 00..224411 1200

Average: 0.052 0.044 0.068 0.116 0.055 00..003388 0.048 0.052 0.045 0.037

Table 6. Summarizing results of the experimental comparison of the crossover operators for the QAP

Instance groups
Deviation from BKV averaged over two sets of experiments
 RULX BX RX UPMX DPX CX SPX OPX OBX COHX MPX

tai∗a 0.520 0.521 0.503 0.581 0.505 0.498 00..449900 0.521 0.504 0.463
tai∗b 0.186 0.189 0.210 0.317 0.206 00..116677 0.186 0.193 0.174 0.157

Average: 0.355 0.357 0.449 0.356 00..333333 0.338 0.357 0.339 0.310

Some observations, looking at the results in Tables

2−5, are as follows. 1. Shorter run results are quite
"flat", so it may be complicated to draw right
conclusions; meanwhile, longer run results (obtained

by large number of generations) are differentiated in a
higher degree and allow to judge more about the effi-
ciency of crossover operators. 2. Long time results de-
monstrate that crossovers have considerable influence

A. Misevičius, B. Kilda

on the final solutions produced by the genetic algo-
rithm, even in the cases when the powerful post-
crossover procedures are used. This indicates that the
recombination operators, which are responsible for the
exploration of new regions in the solution space, hide
high potential. 3. The performance of different cros-
sover operators varies in large ranges; nevertheless
some regularities can be discovered. For example, less
disruptive crossovers appear to be more efficient than
highly disruptive crossovers; surprisingly, the cycle
crossover (the minimally available disruptive cros-
sover) produces only medium-quality results. It can
also be seen that the crossovers which incorporate the
problem-oriented knowledge seem to be in average
better than the remaining ("pure") operators. 4. Also, it
can be observed that there exists some dissipation of
results for the random and real-life like problems:
typically, some of crossovers (except MPX and, may-
be, SPX and OPX operators) work well on the random
instances, but produce worse solutions for the real-life
like instances, and vice versa. It is even more surpris-
ing that the MPX operator outperforms all the other
competitors for both random and real-life like instan-
ces. This is a clear indication of high stability and
universality of the multiple parent crossover. 5. The
preliminary overall ranking of the crossover operators
(sorted according to decreasing quality of solutions)
for the random instances looks as follows: MPX-
OPX-SPX-UPMX-COHX-CX-BX-RX-OBX-DPX.
The similar ranking for the real-life like problems is as
follows: MPX-SPX-COHX-RULX-OPX-RX-OBX-
CX-UPMX-DPX. The resulting ranking is: MPX-
SPX-OPX-COHX-RX-CX-UPMX-OBX-DPX (see
Table 6). (It was somewhat unexpected that OPX
produced slightly better results than COHX, which, in
turn, was shown by Drezner [8] to be very effective
for pseudo-random grid-based QAP instances. Thus,
some more experiments would be useful in order to
acknowledge the above ranking as really fair.) To
summarize, SPX, OPX, COHX, and, especially, MPX
appear to be superior to the remaining crossovers with
respect to the QAP instances tested and could be
recommended as perfect recombination operators for
the designers of new (hybrid) genetic algorithms for
the QAP.

4. Concluding remarks

In this paper, the solution recombination, i.e. cros-
sover operators in the context of the quadratic assign-
ment problems are discussed. These operators are
known as playing an important role by developing
robust genetic algorithms. The crossover procedures
are considered in two aspects. Firstly, the basic prin-
ciples (factors) and specific features of various recom-
bination operators are outlined, and the table of cros-
sover characteristics is given; then the results of the
experimental comparison within the framework of
hybrid genetic-tabu search algorithm are presented.

We implemented twelve different crossover proce-
dures and their modifications in order to test the influ-
ence of the recombination operators to the genetic
search process when applied to the quadratic assign-
ment problem. The following crossover operators have
been used in the experimentation: the uniform like
crossover (ULX) and its modifications (the randomi-
zed ULX crossover (RULX), the ULX crossover
combined with repair procedure (RX), the block cros-
sover (BX)), the uniform partially-mapped crossover
(UPMX), the distance preserving crossover (DPX),
the cycle crossover (CX), the swap path crossover
(SPX), the one point crossover (OPX), the order-based
crossover (OBX), the cohesive crossover (COHX),
and, finally, the multiple parent crossover (MPX). The
results obtained from the experiments with the test
instances of the QAP show high performance of the
crossovers with lower degree of disruption and,
especially, the multiple parent crossover. These robust
crossovers incorporated into the hybrid genetic-tabu
search algorithm resulted in encouraging results with-
in small computation time. New best known solution
for the QAP instance tai100a was obtained by using,
namely, the MPX operator.

Further elaboration of the crossover operators
mentioned with the focus on the multiple parent
recombination, as well as development of innovative
crossover operators for the QAP and similar com-
binatorial problems may be the subject of the future
research.

References
 [1] R.K. Ahuja, J.B. Orlin, A. Tiwari. A greedy genetic

algorithm for the quadratic assignment problem. Com-
puters & Operations Research, 2000, Vol.27, 917–
934.

 [2] K.D. Boese, A.B. Kahng, S. Muddu. A new adaptive
multi-start technique for combinatorial global optimi-
zations. Operations Research Letters, 1994, Vol.16,
101–113.

 [3] R.E. Burkard, E. Çela, P.M. Pardalos, L. Pitsoulis.
The quadratic assignment problem. In D.Z.Du, P.M.
Pardalos (eds.), Handbook of Combinatorial Optimi-
zation, Kluwer, Dordrecht, 1998, Vol.3, 241−337.

 [4] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a
quadratic assignment problem library. Journal of Glo-
bal Optimization, 1997, Vol.10, 391−403. [See also
http://www.seas.upenn.edu/qaplib/.]

 [5] E. Çela. The Quadratic Assignment Problem: Theory
and Algorithms. Kluwer, Dordrecht, 1998.

 [6] L. Davis. Handbook of Genetic Algorithms, Van Nost-
rand, New York, 1991.

 [7] L. Davis. Order-based genetic algorithms and the
graph coloring problem. In L.Davis (ed.), Handbook of
Genetic Algorithms, Van Nostrand, New York, 1991,
72−90.

 [8] Z. Drezner. A new genetic algorithm for the quadratic
assignment problem. INFORMS Journal on
Computing, 2003, Vol.15, 320−330.

118

Comparison of Crossover Operators for the Quadratic Assignment Problem

 [9] C. Fleurent, F. Glover. Improved constructive multi-
start strategies for the quadratic assignment problem
using adaptive memory. INFORMS Journal on Com-
puting, 1999, Vol.11, 198−204.

[10] B. Freisleben, P. Merz. A genetic local search algo-
rithm for solving symmetric and asymmetric traveling
salesman problems. Proceedings of the 1996 IEEE
International Conference on Evolutionary Computa-
tion, Nagoya, Japan, 1996, 616−621.

[11] F. Glover. Genetic algorithms and scatter search:
unsuspected potential. Statistics and Computing, 1994,
Vol.4, 131−140.

[12] D.E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning, Addison-Wesley,
Reading, 1989.

[13] D.E. Goldberg, R. Lingle. Alleles, loci, and the trave-
ling salesman problem. In J.J. Grefenstette (ed.), Pro-
ceedings of the First International Conference on
Genetic Algorithms and their Applications, Lowrence
Erlbaum, Hillsdale, 1985, 154−159.

[14] T. Koopmans, M. Beckmann. Assignment problems
and the location of economic activities. Econometrica,
1957, Vol.25, 53−76.

[15] M.H. Lim, Y. Yuan, S. Omatu. Efficient genetic
algorithms using simple genes exchange local search
policy for the quadratic assignment problem. Compu-
tational Optimization and Applications, 2000, Vol.15,
249−268.

[16] P. Merz, B. Freisleben. A genetic local search ap-
proach for the quadratic assignment problem. In
T.Bäck (ed.), Proceedings of the Seventh International
Conference on Genetic Algorithms, Morgan Kauf-
mann, East Lansing, 1997, 465–472.

[17] P. Merz, B. Freisleben. A comparison of memetic
algorithms, tabu search, and ant colonies for the
quadratic assignment problem. In P.Angeline (ed.),
Proceedings of 1999 Congress on Evolutionary Com-
putation (CEC'99), IEEE Press, New York, 1999,
2063–2070.

[18] P. Merz, B. Freisleben. Fitness landscape analysis
and memetic algorithms for the quadratic assignment
problem. IEEE Transactions on Evolutionary Compu-
tation, 2000, Vol.4, 337−352.

[19] V.V. Migkikh, A.A. Topchy, V.M. Kureichik, A.Y.
Tetelbaum. Combined genetic and local search algo-
rithm for the quadratic assignment problem. Proceed-
ings of the First International Conference on Evolutio-
nary Computation and its Applications (EVCA'96),
Presidium of the Russian Academy of Sciences, Mos-
cow, 1996, 335−341.

[20] A. Misevicius. An extension of hybrid genetic algo-
rithm for the quadratic assignment problem. Informa-
tion Technology and Control, 2004, Vol.4(33), 53−60.

[21] A. Misevicius. An improved hybrid genetic algorithm:
new results for the quadratic assignment problem.
Knowledge-Based Systems, 2004, Vol.17, 65−73.

[22] A. Misevicius. A tabu search algorithm for the quad-
ratic assignment problem. Computational Optimiza-
tion and Applications, 2005, Vol.30, 95−111.

[23] A. Misevicius, D. Rubliauskas. Performance of hyb-
rid genetic algorithm for the grey pattern problem.
Information Technology and Control, 2005, Vol.34,
No.1, 15−24.

[24] P. Moscato. Memetic algorithms: a short introduction.
In D.Corne, M.Dorigo, F.Glover (eds.), New Ideas in
Optimization, McGraw-Hill, London, 1999, 219–234.

[25] I.M. Oliver, D.J. Smith, J.R.C. Holland. A study of
permutation crossover operators on the traveling
salesman problem. In J.J.Grefenstette (ed.), Genetic
Algorithms and their Applications: Proceedings of the
Second International Conference on Genetic Algo-
rithms, Lawrence Erlbaum, Hillsdale, 1987, 224–230.

[26] N. Radcliffe, P. Surry. Fitness variance of formae
and performance prediction. In L.D. Whitley, M. Vose
(eds.), Proceedings of the Third Workshop on Founda-
tions of Genetic Algorithms, Morgan Kaufmann, San
Francisco, 1994, 51–72.

[27] C.R. Reeves, J.E. Rowe. Genetic Algorithms: Prin-
ciples and Perspectives. Kluwer, Norwell, 2001.

[28] E. Taillard, L.M. Gambardella. Adaptive memories
for the quadratic assignment problem. Tech. Report
IDSIA-87-97, Lugano, Switzerland, 1997.

[29] D.M. Tate, A.E. Smith. A genetic approach to the
quadratic assignment problem. Computers & Opera-
tions Research, 1995, Vol.1, 73–83.

[30] M. Vázquez, L.D. Whitley. A hybrid genetic algo-
rithm for the quadratic assignment problem. In L.D.
Whitley, D.E. Goldberg, E. Cantú-Paz et al. (eds.),
Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO’00), Morgan Kaufmann,
San Francisco, 2000, 135–142.

119

