
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.2A

DEVELOPMENT OF CASE TOOLS FOR SOFTWARE PROCESS
IMPROVEMENT

Eduardas Bareiša, Eimutis Karčiauskas, Tomas Blažauskas
Software Engineering Department, Kaunas University of Technology

Studentų 50-404, LT-51368 Kaunas, Lithuania

Abstract. In this paper issues of creating case tools, implementing capability maturity models, for software process
improvement are analyzed. A range of aspects of using the maturity models were analyzed to this end; these aspects
were taken into consideration when designing the case tools structure. The group of existing case tools is reviewed,
their benefits and limitations are displayed. The inner structures for organizing the model and data under selection are
analyzed. Solutions and issues regarding creation of capability maturity models development environments are discus-
sed. Recommendations for the development of analogous tools are presented.

1. Indroduction

Software Capability Maturity Models is a rapidly
growing area of software engineering. Its origins seek
the second part of the eighth decade in USA when a
short description of process maturity framework and
the maturity questionnaire were created. This ques-
tionnaire was used to estimate the places of the organi-
zation’s software development process to be impro-
ved. After a while, having applied the collected data of
the assessment of software products development
processes the Capability Maturity Model for Software
(SW-CMM) was created. This model was a success, as
well the need for applying this model in other areas
(e.g., system engineering) kept growing. Consequently
this model was „split“, i.e. a few versions of this
model (SE, SSE, SA, IPD, People) were developed.
Later there emerged a new „integrated“ CMM version
– CMMI ([6]). In parallel with the models of the
CMM ([8]) family the “European reply” to these
models have been created: ISO/IEC 15504 (SPICE)
([9],[10]), starting with the year 1993. The main dif-
ference from the SW-CMM was not the evaluation of
organizations, but of key processes (a continuous
representation). It is worth mentioning that the ex-
perience with ISO/IEC 15504 standard was used in the
development of the CMMI model. The CMMI model
has both cascade and continuous representation; there-
fore it is compatible with the ISO/IEC 15504 model.
Several models and guidelines have been produced to
support assessments and subsequent improvement
process ([1],[3],[4],[5],[7]).

Observing the evolution of software quality stan-
dards, models and methodologies the following stages
may be distinguished: creation, split or development
of separate versions, integration and consolidation.

Generally the split is influenced by its successful ap-
plication in a certain area. Then it is attempted to
adapt in other areas. Eventually there raises a need to
have a generalized solid model, consequently an inte-
grated model is being created, thereby considering the
contemporary decisions of the competitors (the men-
tioned American CMM and the European ISO/IEC
15504 (SPICE) are constantly being developed incor-
porating each other’s experience).

Beyond any doubt all these changes in a relatively
short period (less than 20 years) brought in some
confusion not only for enterprises (that wish to imple-
ment a standard for maintaining the software develop-
ment process), but also for software developers that
produce instrumental tools for facilitating the imple-
mentation of capability maturity models. It was more
the whole evolutional process mentioned above than
the created different models (ISO9000, CMM and
ISO/IEC 15504) that brought in the confusion. Maybe
this is the reason why the number of software suitable
for a wide range of consumers is not so huge this day.

Developers of tools for Capability Maturity Mo-
dels are interested in model development frameworks.
Unfortunately, commercial software developers often
do not reveal the methodologies they use for tools
creation and material development; whereas related
Open Source software is developed by separate per-
sons and in most cases it use no mature development
methods. Having initiated the project of creation tools
supporting assessment, definition and implementation
of mature software process based on SPICE model, in
the first phase, we focused on creating the effective
collaborative development environment expecting that
the companies and communities of the universities
participating in the project will be capable to maintain

181

E. Bareiša, E. Karčiauskas, T. Blažauskas

the model’s development after the project is termi-
nated.

Our experience in creating model development
environment will be presented throughout the paper.
Section 2 covers an overview of existing related soft-
ware. The merits and demerits of existing commercial
and open source software are investigated. In section 3
a distributed architecture of model development and
software process improvement tools is presented. Sec-
tion 4 describes issues on organising model data struc-
ture. In section 5 we investigate the means, which can
be used to organize the model material. In section 6
we discuss the issues related to collaborative model
development environment. Section 7 completes the
paper with concluding remarks.

2. Software overview

All software for implementing and maintaining
capability maturity models can be divided according
to the model under maintenance: CMMI or ISO/IEC
15504 (SPICE). The other aspect of division is open
source software and commercial software. Analysing
open source software the attention can be drawn to the
fact that the better-known tools are developed for the
models of the CMM family (according to the survey
presented in [2]). Beyond any doubt there exists some
non-commercial tools for ISO/IEC 15504 (SPICE).
But in most cases this is exploratory software. The
need for tools, enabling efficient and reliable capture
of assessment data is addressed in the SPICE project
through notion of an Assessment Instrument. A num-
ber of tools emerged to support the data collection and
storage procedures (for example the Seal tool [12])
[11]. Other researchers investigated effective ways to
visualize acquired assessment data. The software by
Robin Hunter (Strathclyde University) can be mentio-
ned as an example; this software is created using MS
Access and its aim is to explore software process
visualization (in the paper [13]). We can state that
there is no strong open source society which would be
capable of developing software maintaining capability
maturity models constantly. Generally such enterprises
and persons whose main activity is the assessment are
producing open source tools; for this purpose they de-
velop their own tools. It goes without saying that such
tools cannot match up to professional commercial
software in point of the versatility. Open source soft-
ware is more oriented either at the representation of
the model itself, either at the basic calculations (i.e.
calculations that are prerequisite to the assessments);
meanwhile, the visualization subsystem of the assess-
ment data is developed less than in commercial soft-
ware, the attention paid to the maintenance of the pro-
cess implementation and improvement is low.

Analysing commercial software the main attention
was paid to the commercial tools of one of the leading
companies HM&S; these tools are designed for work-
ing both with ISO/IEC 15504 (SPICE 1-2-1, SPICE
LITE, SynQuest) and with CMMI (CMM-QUEST).

Such commercial software is distinguished by a relati-
vely huge price (from 700$ to 12.000$ depending on
the licence). Its main features are a well-organized
subsystem of the assessment presentation, a sufficient
amount of tools for maintaining the process improve-
ment, integration with other tools (this is exceptionally
highlighted). Nevertheless, despite of all the advan-
tages that allow affirming the existence of efficient
assessment and maintenance tools nowadays, not
inconsiderable demerits are observed as well. There-
fore we can expect a growth of tools and more variety
in tools organization (architecture).

3. Distributed architecture of tools

Selecting the tool architecture was mainly influen-
ced by the striving to fulfill the needs of various user
groups – from those who study software engineering
to those who participate in the evaluation process.

A major part of the known tools, discussed in Sec-
tion 2, operate as a standalone program or a package
that includes both the model information and the repo-
sitory of data under selection and analysis and the
additional material. Of course, a tool organized in
such a way can be used effectively in developing and
maintaining software development processes in enter-
prises; as well it can be used for assessments. How-
ever such tool organization is not applicable to the
multi-user collaborative development of model. Orga-
nizing a continuous development of the model and
having some institutions under participation it is more
convenient to organize software of a distributed archi-
tecture.

Developing system architecture the objective was
to detach the information about the model and its
material from the information of accounts and assess-
ments. Such a detachment enables:
• a more flexible possibility for updating;
• better possibilities for security: it is possible to

use the model information that is updated globally
and contained on the external server, whereas the
data about firm and firm assessments can be
stored in the inner servers of the firm;

We specially did not present the particular deploy-
ment diagram in Figure 1, because there can be va-
rious deployment scenarios when using separated ser-
vices. As the model, its material and tools are being
developed by several separate organizations, therefore
an interface for data exchange has to be provided. This
interface is realized on the basis of the web-service.
Both software of portals and client executable prog-
rams that support the web-services interface can con-
nect to it. This interface enables the organizations to
create the development and analysis tools themselves
adjusting the material placed in the external servers to
the organization needs. “Model services registry”
shown in Figure 1 is a package that contains web-ser-
vices (functions) for performing operations with data
of the model and its material. “Account and

182

Development of Case Tools for Software Process Improvement

assessment services registry” shown in Figure 1 is a
package that contains web-services (functions) for
performing operations with client information and da-
ta of assessments he performs. “Assessment tool (ap-
plication)” is client software for performing evalua-
tions. It is used in case the users prefer using the en-
vironment that is provided by the executable program

instead of a web-page. “Assessment tool (portal)” is
an Internet page for data gathering and evaluations.
“Integrated Development Environment” is a tool for
model and its material development. “Development
and analysis tools” are utility client programs for ma-
terial analysis.

Application(s)

Developement

and analysis tools

Developers

Portal

Integrated

Developement
Environment

Assessment

tool

Users

Portal

Application(s)

Assessment

tool

Account
services
registry

Account and
Assessment repository

Model
services
registry

Model objects and
material repository

Figure 1. Distributed tools and web-service based architecture

4. Issues on organizing model data structure

In our implementation the MySQL database is
used for storing both data of the model under deve-
lopment, material and assessment data. As well this
choice was influenced by the requirement for the
usage of free technologies that guarantee a high capa-
city and portability.

The major problem rises in choosing the model
structure representation in the database. Two ways

were considered:
1. the structure of the database has to reflect the

model structure;
2. the model structure has to be detached from the

structure of the database.
The organization of the detachment of the model

structure from the database would enable the model
developers to realize various models or to perform
structural modifications without the help of prog-
rammers. In other words the markup would allow

183

E. Bareiša, E. Karčiauskas, T. Blažauskas

controlling not only the features of the model elements
themselves but as well their interrelationships. How-
ever such flexibility would cause quite a lot of new
problems: the absence of a defined structure (in the
database) would make the model accuracy control
difficult, would require more resources for represen-
ting the model structure, additional tags for defining
relations would emerge, there would be a need for
creating additional tools for representing information
during the development.

A major part of these objectives can be reached by
using the XML markup. The material described in this
language can be easily transformed to HTML docu-
ments; the language expandability would enable to
define model elements; the XML format would allow
exchanging data among the remote systems without
difficulty. However, the XML markup does not con-
form to the “fast designating” technology, the non-
processed material is hard to read. The overall markup
system used in our prototype for the development of
the model can be divided into the following main
parts:

Despite the freedom the detachment of the model
structure from the structure of the database would give
the first way was chosen. This choice was influenced
by the requirements imposed on our project earlier;
these requirements say that the structure of the data-
base should reflect the model structure; furthermore,
the database tools should perform a partial data
control.

• The markup of text formatting;
• Object, resource markup;
• Scenario description markup;
• Formula interpretation and result representation

markup;
• Scripting markup (php extension).

The subset of MediaWiki tags was selected for for-
matting the material under development (for text
formatting). MediaWiki is an open source software,
originally written for the Wikipedia ([14]) project,
therefore a part of the MediaWiki system was integra-
ted into the project of the prototype under develop-
ment. The tags of Wiki formatting are designed for
text formatting, therefore a separate subset of tags was
created to describe the model and the information
elements of the model.

5. Material organization issues

The material of capability maturity models as any
other material that has complex relations among a
large number of information elements has to be pre-
sented on the grounds of hypertext documents. One of
the simpler ways is to present material in HTML
documents – this enables to present it in web pages, as
well there exist components in various programming
environments that allow presenting material of HTML
documents in executable programs, material can be
presented in various systems. Though the storage of
material in a form of HTML documents is not
convenient, as:

Both the information elements of the model, files
of various format and free (non-depending to the
model elements) texts of various purposes can be ob-
jects and resources in the environment of the model
development. The following objects that are used for
material structuralization and supplementation are rea-
lized in the system:

• Generally the material is not separated from the
visualization, consequently it is difficult to
present in different environments;

• Category. A tag that describes the category of
processes. Its usage creates a reference to a for-
mal description of the category in the formatted
text.

• Tags in HTML documents interlace with the ma-
terial a lot quite often, so the material is hard to
read when editing. It is called a „tag soup“
problem;

• Process. A tag that describes the nominal process.
Its usage creates a reference to a formal descrip-
tion of the process in the formatted text.

• Visual editing tools often create false and sub-
standard HTML documents, therefore problems
of presenting may occur later;

• Practice. A tag that describes the basic practice.
Its usage creates a reference to a formal descrip-
tion of the basic practice in the formatted text.

• The HTML language is not extensible, con-
sequently it is difficult to distinguish custom in-
formation elements in documents for an automa-
ted analysis of the material. • Work product. A tag that describes the work pro-

duct. Its usage creates a reference to a formal de-
scription of the work product in the formatted
text.

We think these are the reasons why it is better to
create such markup that:
• Would allow separating material representation

from markup in order to present the material in
various environments;

• Term. It is used for short descriptions of the terms
under usage. If the term used in the material is on
the term table, its description is presented as an
alternative text.

• Would conform to the “fast markup” (or Wiki)
technology in order to make the usage more
productive, the depicted material easier to read
and to reduce the data flow among the systems
during the transfer of data;

• Picture. A picture as a term as well is a free object
that is not related with other objects (the depen-
dence to the descriptions of the objects mentioned
above is not being formed). Pictures are stored in • Would enable to identify model elements.

184

Development of Case Tools for Software Process Improvement

non-structuralized storage (in one directory),
therefore it is strongly recommended to provide
the pictures or at least the keys of their
relationship with meaningful names.

• It has a textual (not visual) environment of fast
editing; this environment uses a special Wiki
markup;

• The users create development templates in the
same environment; • Path. This object is used in such a case when the

relational path to the object server in the directory
structure has to be created. It is useful when, e. g.,
one desires to refer a picture using the HTML
designating.

• It has tools for controlling the system resources,
for keeping the track of changes, for material
analysis, for user control.

The Wikipedia project uses this environment and it
exists successfully, however the requirements for
systems differ and consequently it is not enough to use
the development environment just what it is. We think
that the main disadvantage of the Wikipedia project is
that the development environment is “width”-oriented
(the amount of the material) and not quality-oriented.
As a result of such orientation the material can be
edited practically by anyone; there is no defined
process of the material development and the formed
groups of users use their own methodologies; the ab-
sence of the developers’ hierarchy burdens material
and pattern quality assessment and validation (qua-
lified developers are usually involved in unnecessary
disputes); the absence of project control tools does not
allow developing the material purposefully (material
development is spontaneous), to keep the track on the
progress.

• Media. It can be any multimedia object. It is unre-
lated object as well.

• Free object. It is a textual resource that is not as-
signed to the formal material of the model. Gene-
rally this is the material used for an informal de-
scription of the model.

The scenario scripting markup subset was de-
signed on purpose to use it for user training. There is a
possibility to describe various scenarios of work with
the program, to keep the track of user actions and to
react to them in an appropriate way. The actions
performed by the user are being memorized; therefore
there is a possibility to react to the user training prog-
ress by selecting the learning material for the user.
Moreover, the scenario marking subset can be used for
an interactive representation of informal material of
the model.

Considering the advantages and the disadvantages
of the Wikipedia project and the other requests of
project participants the following requirements for the
model development environment were formed:

Often during the modeling certain calculations
have to be performed, controlled and presented. Our
system has several ways for doing that, e. g. the usage
of scenarios or the programming possibility. However,
a separate markup is formed for the ease of applica-
tion. This markup is created so that the description of
the mathematical formula would conform to the tradi-
tional marking used in programming languages.

• The development environment has to provide
with a model material editor, which enables to
automate those formatting actions that are perfor-
med frequently;

Situations may occur when the possibilities of the
system marking mentioned above are not enough for
realizing the idea. Developers have a possibility to
program just in the material under editing. The
interpretation of the written program is transferred to
the php interpreter and the system prepares the va-
riables and translates them into a subset of the php
language. We have not decided yet whether to leave
this possibility in the final version or to remove it due
to the possible problems of security. Though this
possibility will probably be removed due to a too huge
hazard – the problems could be explored on purpose
to distinguish a safe subset of the programming
language.

• The development environment must have a deve-
loped system of authorization and material cont-
rol; this system enables to define the rights for the
material under development;

• The development environment has to provide a
subsystem of changes tracking;

• The development environment has to provide a
subsystem of the project control;

• The development environment has to provide a
subsystem of patterns and other utility resources
development;

• The development environment has to provide the
import/export subsystem.

These subsystems had to be improved by revising
the requirements for the development environment
and the need for additional subsystems during the
development of the prototype.

6. Model development environment

Creating the model development environment the
main attention was paid to the analysis of Wikipedia
development environment whose main features are:

Developing the prototype a large attention was
paid to the editor of the model’s material, because the
editor’s convenience influences the usability of the
development environment in essence. In the first stage
of developing the prototype a textual editor is intended
to be created by automating the text formatting func-
tions and the model element identification insertion

• It is a multi-user collaborative development envi-
ronment that has no developed hierarchy of rights
(a major part of the material can be edited by
anyone);

185

E. Bareiša, E. Karčiauskas, T. Blažauskas

functions. Considering the features of editor handling
the decision will be made if a visual editing environ-
ment is worth to be composed. Composing a visual
editing environment a range of problems would occur
as during the editing the text under formatting in the
client program has to be converted to the Wiki markup
and vice versa when the resources distributed in client
area and in server area will be used. Therefore a visual
editing subsystem will be composed only under the
necessity.

The authorization and material control system has
to meet the requirements for document management
systems in substance. Each information element of the
model of the material, defined by a unique identifica-
tion, has to be treated as a separate document. The
subsystem has to ensure the document (material) load,
withdrawal for editing, return, lock, right setting and
other functions performed by document management
systems.

The track changes tool is the main tool of the
Wikipedia project; this tool has a huge influence on
improving the material quality. One of work techni-
ques recommended by the Wikipedia developers is to
look over the list of the latest changes, to make com-
ments on the changes performed, to complement the
changed material with a new content. Thus, starting
with a small initial content, the material is being deve-
loped to a thorough resource. The key requirement for
the track changes tool is a good mechanism of setting
and presenting the differences among the versions;
such a tool enables to track changes in a short time.

The project control subsystem is required for en-
suring a purposeful development of the model and its
material. It has to ensure the setting of work inclusion
and their priority, terms, the required resources,
executables, and the execution state. Depending on the
demand, the project control subsystem can be de-
signed as a constituent of the development environ-
ment or a template for work tracking can be composed
and filled in the system according to the users’ con-
vention. The latter version is chosen in the prototype –
the need for the project control subsystem will be
evaluated upwards.

The templates can be used both in the model deve-
lopment (e. g. the development of templates for the
project control) and for the assessments (e. g. the for-
mation of the assessment report for the export can be
performed using templates). The templates should be
composed using the same editor of the material, how-
ever the template information itself should be deta-
ched from the model and its information.

The demand for import/export tools emerged
having noticed that the Office programs (such as Ex-
cel, Access) are useful in analyzing the information
elements of the model under development and the
development of additional tools is not purposeful in
that case. Furthermore, project developers and asses-
sors have mastered the Office programs; it is more
convenient to perform a partial analysis in the Office
programs namely. A fair amount of the open source

software is developed by the assessors and is
adjustable for the Office programs namely (e. g. CMM
Browser is for MS Access, IME tools – for MS Excel).
In fact all the presented material can be exported. The
material is always being formed as a HTML docu-
ment; such a document does not include the elements
from the development environment. However such a
method is more suitable for importing into the envi-
ronment of the MS Word program. A separate sub-
system for exporting various information elements
from (and importing into) the MS Excel program was
created; this subsystem allows to exchange data by
using the CSV1 format.

7. Conclusions

In this paper a short overview of existing software
is given. Various aspects of creating CASE tools for
software improvement process were investigated; a
big attention is paid to the maturity model develop-
ment environment. Creating the model development
environment it is particularly important to take into
consideration that:
• A part of capability maturity models are still

being improved and transformed intensely;
• The enterprises that plan the assessment often

treat the capability maturity models as a frame-
work for software development; they desire not
only the formal material of the model but also
specific examples, templates that are not provided
by the formal material of the model;

• The enterprises endeavor to store the assessment
data in their servers;

• The enterprises store the assessment data – as
many other reports – in the Office documents.

Generalized solutions and schemes are presented
in this paper; those aimed to ensure that:
• The model, its material and the additional infor-

mation material will have to be under a constant
development;

• The formal, information and systemic material of
the model and the assessment data have to be
separated;

• The material can be distributed with a view to the
flexibility of the material updating and matching
up with the unwillingness of the enterprises to
store the assessment data in the external servers;

• The access to the model information elements and
material can be realized on the basis of the web-
services in order to be able to create independent
tools;

• Tools and development methodologies for the
model development environment have to be
oriented at the quality of the model material;

1 CSV – Comma Separated Values, a textual file format

usually used to exchange data.

186

Development of Case Tools for Software Process Improvement

187

• Both the model development environment and the
assessment system must have the interface with
the Office programs or a possibility to import/ex-
port data.

The success of collaborative model and its material
development will largely depend on how model
developers will accept model development
environment. Further research must be performed in
order to propose methodologies and effective set of
tools for constant model and its material development.

References
 [1] M.C. Paulk, C.W. Weber, B. Curtis, M. B. Chrissis.

The Capability Maturity Model: Guide-lines for
improving the software process. Pittsburg: Addison
Wesley, 1993.

 [2] E. Karčiauskas, T. Blažauskas. Brandaus programų
kūrimo proceso programinės įrangos apžvalga. Infor-
macinės Technologijos 2004 konferencijos medžiaga,
Kaunas, 2004.

 [3] P. Kuvaja, A. Bicego. BOOTSTRAP – an European
assessment methodology. Software Quality Journal,
Vol.3, 1994.

 [4] B. McFeeley. IDEAL: A User‘s guide for Software
Process Improvement. SEI, Pitsburg, Handbook
CMU/SEI-96-HB-001, 1996.

 [5] K. Caputo. CMM Implementation Guide – Choreogra-
phing Software Process Improvement. Massachusets:
Addison Wesley, 1998.

 [6] SEI. CMMI for Systems Engineering/Software Engi-
neering, Version 1.02. CMU/SEI-200-TR-019, Carne-
gie Mellon University/Software Engineering Institute,
Pittsburg, 606.

 [7] R.B. Grady. Successful Software Process Improve-
ment. Prentice Hall, 1997.

 [8] M.C. Paulk, C.W. Weber, B. Curtis, M. B. Chrissis.
Capability Maturity Model for Software. SEI, 1991.

 [9] ISO. ISO/IEC 15504 Draft Standard for Software
Process Assessment (Parts 1-9). International Stan-
dards Organisation, 1995.

[10] K. El Emam, J.N. Droin, W. Melo. SPICE: The Teo-
ry and Practice of Software Process Improvement and
Capability Determination. IEEE, 1997.

[11] R. Hunter, G. Robinson, I. Woodman. Tool support
for software process assessment and Improvement.
Software Process: Improvement and Practice, John
Wiley and Sons Ltd., 1997.

[12] R. Him Lok, A.J. Walker. Automated tool support
for an emerging international software process asses-
sment standard, ISESS 97, IEEE Computer Society,
Wlnut Creek, 1997, 25-35.

[13] R. Hunter, C. McCallum. A visual approach to soft-
ware process improvement. Software Process
Improvement '98 (SPI98), Monte Carlo, 1998.

[14] Wikipedia. http://www.wikipedia.org.

