
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.2

TRANSFORMATION FOR DESIGNING DISTRIBUTED INTERNET
INFORMATION SYSTEMS UNDER MODEL DRIVEN ARCHITECTURE

Sigitas Drasutis, Vytautas Pilkauskas, Dalius Rubliauskas
Department of Practical Informatics, Kaunas University of Technology

Studentų st. 50, LT – 51368, Kaunas, Lithuania

Abstract. This article deals with the specification and transformation of distributed systems under Model Driven
Architecture (MDA). It reviews basic concepts and benefits of MDA approach, its relations with traditional software
development and suggests an alternative method for specification of distributed internet information systems using
unified modeling language (UML) notation and transformation of these specifications into program code. Transforma-
tion method enables to ease work of the system analyst when creating large and complex information systems. It
allows separating full system specification into different parts and converting functions of these parts into platform
dependent program code. This article also refers to a synthesis of object interaction diagrams of distributed systems
mentioned before.

1. The traditional software development
process

Progress in software development is evident from
the fact that it is feasible to build much more complex
and larger systems. Just think how quickly and
efficiently we would be able to build a monolithic
mainframe application that has no graphical user

interface and no connections to other systems. We
never do this anymore, and that is why we do not have
solid figures to support the idea that progress has been
made.

A typical software development process, as illust-
rated in Figure 1, includes a number of phases [1].

programmer’s
shortcut

requirements

analysis

low-level design

coding

testing

deployment

code

code

mostly text

diagrams and text

diagrams and text

iterative
process

Figure 1. Typical software development process

Still, software development is an area in which we
are struggling with a number of major problems [1]:
• The productivity problem – whether we use an in-

cremental and iterative version of this process, or
the traditional waterfall process, documents and
diagrams are produced during first three phases.
These include requirements descriptions in text
and pictures, and often many Unified Modeling
Language (UML) [2] diagrams like use cases,
class diagrams, interaction diagrams, activity
diagrams, and so on. Created documents and cor-
responding diagrams rapidly lose their value as
soon as the coding starts. The connection between
the diagrams and the code fades away as the

coding phase progresses. Instead of being an
exact specification of the code, the diagrams
usually become more or less unrelated pictures.

• The portability problem – the new technologies
(for example XML, UML, J2EE, .NET, JSP, ASP,
Web Services, and so on) offer tangible benefits
for companies and many of them cannot afford to
lag behind. As a consequence, the investments in
previous technologies lose value and they may
even become worthless.

• The interoperability problem – software systems
rarely live in isolation. Most systems need to
communicate with other, often already existing,
systems. The new end-user application runs in a

102

Transformation for Designing Distributed Internet Information Systems under Model Driven Architecture

Web browser (using various technologies like
HTML, ASP, JSP, and so on) and it needs to get
its information from existing back-end systems.

The maintenance and documentation problem –
writing documentation during development costs time
and slows down the process. It does not support the
developer's main task. This is one of the main reasons
why documentation is often not of very good quality.
The only persons that can check the quality are fellow
developers who hate the job of writing documentation

just as much. With every change in the code the
documentation needs to be changed as well – by hand!

2. The Model Driven Architecture

The Model Driven Architecture (MDA) is a
framework for software development defined by the
Object Management Group (OMG). Key to MDA is
the importance of models in the software development
process [1].

MDA process

requirements

analysis

low-level design

coding

testing

deployment

code

code

mostly text

PIM

PSM

Figure 2. MDA software development process

The MDA development life cycle, which is shown
in Figure 2, does not look very different from the
traditional life cycle. The same phases are identified.
One of the major differences lies in the nature of the
artifacts that are created during the development pro-
cess. The artifacts are formal models, i.e., models that
can be understood by computers. The following three
models are at the core of the MDA:
• Platform Independent Model (PIM). A PIM de-

scribes a software system that supports some
business. Within a PIM, the system is modeled
from the viewpoint of how it best supports the
business. Whether a system will be implemented
on a mainframe with a relational database or on
an EJB application server plays no role in a PIM.

• Platform Specific Model (PSM). PSM is tailored
to specify a system in terms of the implementa-
tion constructs that are available in one specific
implementation technology. For example, an EJB
PSM model typically contains EJB-specific terms
like "home interface," "entity bean," "session
bean," and so on. A relational database PSM in-
cludes terms like "table," "column," "foreign
key," and so on. It is clear that a PSM will only
make sense to a developer who has knowledge
about the specific platform.

Code. The final step in the development is the
transformation of each PSM to code. Because a PSM
fits its technology rather closely, this transformation is
relatively straightforward.

3. MDA benefits

Let us now take a closer look at what application
of MDA brings us in terms of improvement of the
software development process:

• Productivity – in MDA the focus for a developer
shifts to the development of a PIM. The PSMs
that are needed are generated by a transformation
from PIM to PSM:
• the PIM developers have less work to do

because platform-specific details need not be
designed and written down. At the PSM and
code level, there is much less code to be
written, because a large amount of the code is
already generated from the PIM.

• the developers can shift focus from code to
PIM, thus paying more attention to solving
the business problem at hand. This results in
a system that fits much better with the needs
of the end users.

• Portability – within the MDA, portability is achie-
ved by focusing on the development of PIMs,
which are by definition platform independent.
The same PIM can be automatically transformed
into multiple PSMs for different platforms.
Everything that is specified at the PIM level is
therefore completely portable.

• Interoperability - If we are able to transform one
PIM into two PSMs targeted at two platforms, all
of the information we need to bridge the gap bet-
ween the two PSMs is available. For each element
in one PSM we know from which element in the
PIM it has been transformed. From the PIM ele-
ment we know what the corresponding element is
in the second PSM. We can therefore deduce how
elements from one PSM relate to elements in the
second PSM.

• Maintenance and Documentation – working with
the MDA life cycle, developers can focus on the
PIM, which is at a higher level of abstraction than
code. The PIM is used to generate the PSM,

103

S. Drasutis, V. Pilkauskas, D. Rubliauskas

which in turn is used to generate the code. The
model is an exact representation of the code.
Thus, the PIM fulfills the function of high-level
documentation that is needed for any software
system.

4. Technological architectures of modern
internet applications

At first answer the question: if internet systems are
distributed systems? A distributed system is a piece of
software that ensures that: a collection of independent
computers that appears to its users as a single coherent
system. There are two aspects of these systems: (1)
independent computers and (2) single system –
middleware [3]. Distributed systems usually use some
kind of client-server organization.

A typical web-based application would have the
following logical application logic partitioning:
• Presentation Layer – manages user interfaces and

user interaction.
• Business Logic Layer – performs business trans-

actions and models business processes.
• Data Layer - used by the business logic layer to

persist business data.
These layers are mapped to corresponding physical

tiers where the actual application code resides and is
executed. Usually we can expect to have the following
tiers [4]:

Presentation Tier
Runs within a Web Server, which hosts a number

of so-called web components, based on presentation-
related technologies such as: HTML, ASP, Servlets,
JSP, etc. In a clustered environment we can have
several Web servers hosting the same web components
in order to provide maximum scalability of the presen-
tation tier. Web Routers can be used to distribute
traffic among the available web servers.

Business Logic Tier
Usually runs within an Application Server, which

provides a containment environment for business logic
components and a number of middleware services
such as transaction management, persistence, state
management, security, resource pooling, cashing, etc.
In a multi-node configuration this tier consists of seve-
ral machines each running an instance of the Applica-
tion Server. Modern application servers provide com-
ponent clustering functionality, which handles the
complexities of replication, load balancing and fail
over for business logic components. More concretely,
an intelligent active load balancer tracks information
about the load of each application server and distri-
butes client requests so that none of the servers is
overloaded. Furthermore, the state of business compo-
nents is replicated across servers. In this way, in case
one of the servers fails, requests can be rerouted to

another server, which can automatically restore the
needed components and provide transparent failover.

Data Tier
Consists of one or more databases and a Database

Server, which manages data persistence. This tier may
contain data-related logic in the form of stored proce-
dures. As with web servers and application servers,
database servers can also be clustered in order to pro-
vide maximum scalability, load balancing and fault
tolerance in the database tier.

Independent computers, middleware and client-
server organization of the internet systems proves that
they have all characteristics of the distributed systems.
So it is possible to apply all design rules of the
distributed system for designing internet information
systems.

5. The transformation of the distributed
systems

Earlier described software development models are
not finally finished. What will happen in traditional
software development process or MDA approach if
there won’t be validation after each development stage
and if inaccuracy will be noticed at the deployment
time? Project cost will grow twice. To complete pro-
ject finally few iterations may be not enough. This is
why verification and validation (V&V) is needed. The
verification and validation is the generic term for
checking processes which ensure that the software
meets its requirements and that the requirements meet
the needs of the software procurer. This is a con-
tinuing process through each stage of the software
development process. The V&V process has two
objectives:
• The discovery of defects in the system.
• The assessment of whether or not the system is

usable in an operational situation.
More realistic software development process view

with verification and validation of the product after
each development stage is illustrated in Figure 3.

requirements

analysis

low-level design

coding

testing

deployment

Code

Code

mostly text

PIM

PSM

v&v

v&v

v&v

Figure 3. Real MDA development process

104

Transformation for Designing Distributed Internet Information Systems under Model Driven Architecture

This process is suitable for information systems

that are not distributed and working like a single
whole. It can’t be adjusted for the system that consists
of few different parts which have to be created separa-
tely. Then development process must be separated and

every part created in its own way. After all, testing and
deployment of the full system is needed.

In case of the distributed system the software de-
velopment process is more complicated as illustrated
in Figure 4.

requirements

analysis

low-level design

coding

testing

deployment

Code 1

Code 1

mostly text

PIM 1

PSM 1

full system testing
Code

low-level design

coding

testing

Code N

Code N

PIM N

PSM N

manual decomposition

PIMv&v

v&vv&v

v&vv&v

v&v v&v

Figure 4. MDA development process for the distributed systems

After analysis step manual decomposition of distri-
buted system to separate parts is required. This pro-
cess requires of high level software specialist who has
to divide system specification into parts and define
protocol and messages needed for communication of
system components. In this place a lot of knowledge
about different platforms, programming languages is
expected. Work is really difficult and mistakes can be
done easily.

This article refers to earlier published synthesis
algorithm (“Synthesis of Object Interaction Diagrams
of Distributed Systems” [5]) which will be used for
the decomposition of the whole system specification
into separate parts and also here will be offered further
transformation of the state diagrams into the program
code.

requirements

analysis

low-level design

coding

testing

deployment

Code 1

Code 1

mostly text

PIM 1

PSM 1

full system testing
Code

low-level design

coding

testing

Code N

Code N

PIM N

PSM N

manual decomposition

PIMv&v

v&vv&v

v&vv&v

v&v v&v

Figure 5. Transformation algorithm under MDA development process

105

S. Drasutis, V. Pilkauskas, D. Rubliauskas

Login

Check login

Get modules

Start exam

Save results

No connection Send/connection alive

Student found Student not found

No connection

Use system

Send/connection aliveNo connection

Module not found

Send/connection alive

Modules found

Exam over

Test’s database Students database

Figure 6. Interaction diagram for the distributed system

Transformation takes PIM written in UML interac-
tion diagram as input and enables automatic model
decomposition of the system. The output of the first
step is platform independent models for each part of
the distributed system: PIM1, PIM2 to PIMn pre-
sented with UML state diagrams. Next, low level
design using user defined templates is applied and out-
put of the platform specific program code is generated
[6].

Transformation algorithm takes into account two
steps of MDA software developments process as
illustrated in Figure 5.

Notice, that validation and verification of product
after decomposition is not needed because applied
synthesis method ensures correctness of the algorithm
output.

The input data for the transformation are UML in-
teraction diagram of a desired service of the distri-
buted system. Using strips in the diagram is very con-
venient for separating functions of each part of the
system (see Figure 6).

The example shows a test system which communi-
cates with student’s database of whole university. On
one hand, there is independent software system for
students testing and university database on another. It
is simple to create an interaction diagram to illustrate
whole system work, but there may be some problems
to define specifications for each part and communica-
tions between them. PHP is software for test’s data-
base and university student’s database runs on Oracle.
<?xml-stylesheet type="text/xsl"
href="x.xsl"?>
<function>

<title>login</title>
<data>

<input>
<name>login</name>
<dtype>varchar2</dtype>
<length>10</length>
<type>text</type>

</input>
<input>

<name>password</name>
<dtype>varchar2</dtype>

<length>10</length>
<type>password</type>

</input>
<output>

<name>id</name>
<dtype>number</dtype>
<length>10</length>
<type>text</type>

</output>
</data>
<functionality>

<button>
<caption>Login</caption>
<type>submit</type>

</button>
<button>

<caption>Clear</caption>
<type>reset</type>

</button>
</functionality>
<style>

<body>
<background-

color>#669999</background-color>
<color>#ffffcc</color>

</body>
</style>

</function>

After all data are collected algorithm of synthesis
of object interaction diagrams of distributed systems
may by applied.

This interaction synthesis algorithm was proposed
using a synthesis procedure of a real-time system pro-
tocol created in University of Montreal. This protocol
allows a protocol specification for each component of
the distributed system and a specification of the com-
munication medium from the desired system’s service
specification and communication medium’s model.

The input data for our algorithm are Interaction
Diagram of a desired service of the distributed system
(see Figure 6). The output data are state diagrams for
each part of the distributed system service [8, 9, 10,
11].

The procedure consists of seven steps:
• First two steps are designed for transformation of

interaction diagram to Finite State Machine.

106

Transformation for Designing Distributed Internet Information Systems under Model Driven Architecture

• Steps from sixth to seventh separate functions of
the different system components.

The result of the synthesis method described above
shown in Figure 7 and Figure 8.

q1

Login

q3

Use system

q5

Start exam

r13

r7

r2

r1

r8

r14
send1

2(2)
send1

2(6)

get12(1)

get12(3)

get12(3) get12(3) get12(5)

send1
2(4)

Login

Use system
Start exam

Figure 7. Finite State Machine (FSM) for the first system component

q1

q2
Check
login q4

q6
Save

results

Get
modulesr5

r10

r15

r11

r4

r6 r12

r16

send1
2(2)

send2
1(1)

send2
1(3)

send2
1(3)

send2
1(3)

send2
1(5)

get2
1(2)

gets2
1(4)

get21(6)gets2
1(4)

get21(4)

Figure 8. Finite State Machine (FSM) for the second system component

Now it is time to define transformations for each
part of the distributed system. Using XSL language [7]
for the transformations relieves applying them later
because parameters are collected with XML. XSL also
is well defined and known language what makes
definition process easier because the developer does
not have to learn any new notation.

An example of transformation for Oracle PL/SQL
stored procedure is shown below:
<?xml version='1.0'?>
<xsl:stylesheet version="1.0" xmlns:xsl=

"http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
procedure fn_<xsl:value-of

select="function/title"/>(
<xsl:for-each select="function/data/input">
<xsl:value-of select="name"/> in
<xsl:value-of select="dtype"/>
(<xsl:value-of select="length"/>),

</xsl:for-each>
o_cursor out cursortype)
is
a_name varchar2(255);
s_select_statement varchar2(3000);
begin
a_name := 'fn_<xsl:value-of

select="function/title"/>';
s_select_statement := 'select
<xsl:for-each

select="function/data/output">
<xsl:value-of select="name"/>
<xsl:if test="position()!=last()">
<xsl:text>,</xsl:text>

</xsl:if>
</xsl:for-each>
from dual';
open o_cursor for s_select_statement;
exception
when no_data_found then

return;
when others then
raise_application_error(-

20001,'Exception:' || a_name);
end;

</xsl:template>
</xsl:stylesheet>

The transformation returns PL/SQL code:
procedure fn_login(

login in varchar2 (10),
password in varchar2 (10),
o_cursor out cursortype)

is
a_name varchar2(255);
s_select_statement varchar2(3000);

begin
a_name := 'fn_login';
s_select_statement :=

'select id from dual';
open o_cursor for s_select_statement;

exception
when no_data_found then

return;
when others then

raise_application_error
(-20001,'Exception:' || a_name);

end;

Also example of transformation for PHP file:
<?xml version='1.0'?>
<xsl:stylesheet version="1.0" xmlns:xsl=

"http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html xmlns="http://www.w3.org/1999/xhtml"
lang="en" xml:lang="en">
<head>
<title><xsl:value-of

select="function/title"/></title>
</head>
<body>

107

S. Drasutis, V. Pilkauskas, D. Rubliauskas

<form method="post" action="">
<table>
<xsl:for-each select="function/data/input">
<tr><td><xsl:value-of
select="name"/></td>

<td>
<xsl:element name="input">
<xsl:attribute name="type"><xsl:

value-of select="type"/></xsl:attribute>
<xsl:attribute

name="maxlength"><xsl:value-of
select="length"/></xsl:attribute>
</xsl:element>
</td></tr>

</xsl:for-each>
</table>
<xsl:for-each
select="function/functionality/button">
<xsl:element name="input">
<xsl:attribute name="type"><xsl:
value-of select="type"/></xsl:attribute>
<xsl:attribute name="value"><xsl:value-of

select="caption"/></xsl:attribute>
</xsl:element>

</xsl:for-each>
</form>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Once defined transformations could be used many
times and changes in main specification accompanied
with transformation will return program code without
any efforts.

This transformation is important because the pro-
posed algorithm relieves specifying big and complex
distributed information systems and helps to avoid
much iteration of system analysis and validation.

6. Conclusions

This algorithm was used to create a working inter-
net system for student testing in Kaunas University of
Technology. The potential contribution of this research
is the use of theoretical systems transformation algo-
rithm in practical way. Transformation algorithm
creates about 64% of the system code. For the reali-
zation of the research objectives the combination of
the different research methods was used, starting from
scientific literature analysis on the synthesis methods
and its application for the design of the information
systems to the specifics of the internet systems com-
paring to the common traditional software systems.
Based on the literature collected on the advantages
and disadvantages of the current transformation
methods, where some of them are already found and
eliminated during the research, some additional im-
provements still can be included in the transformation
algorithm (e.g., real-time criteria). Based on the input
data from the analysis, the transformation method was
used for designing of the internet information system.

References
 [1] A. Kleppe, J. Warmer, W. Bast. MDA Explained:

The Model Driven Architecture: Practice and Promise.
Addison Wesley, 2003, 5-25.

 [2] G. Booch and etc. The unified modeling language
user guide. G. Booch, J. Rumbaugh, I. Jacobson. Addi-
son Wesley Longman Inc, 1999, 218-225.

 [3] M. van Steen. Distributed Systems, Principles and Pa-
radigms. Vrije Universiteit Amsterdam, Holland, 2001,
1-2.

 [4] S.D. Kounev. Performance Prediction, Sizing and Ca-
pacity Planning for Distributed E-Commerce Applica-
tions. Information Technology Transfer Office, Ger-
many, 2001, 5-6.

 [5] S. Drasutis, V. Pilkauskas, D. Rubliauskas. Synthe-
sis of Object Interaction Diagrams of Distributed Sys-
tems. Information technology and control, Kaunas,
Lithuania, Vol.27, No.2, 2003, 7-11.

 [6] J.Ch. Park, R.E. Miller. Synthesizing Protocol Spe-
cifications from Service Specifications in Timed Ex-
tended Finite State Machines. University of Maryland,
College Park, 1996, 1-2.

 [7] E.T. Ray. Learning XML. Second Edition, O'Reilly,
Santa Clara, CA, 2003, 27-143

 [8] R.L. Probert, K. Saleh. Synthesis of Communication
Protocols. Survey and Assessment IEEE Trans. Com-
put., Vol.40, No.4, 1991, 468-476.

 [9] J. Rumbaugh. Object-Oriented Modeling and Design.
J. Rumbaugh, M. Baha, W. Premerlani, F. Eddy.
Englewood Cliffs, New Jersey, Prentice-Hall, 1991,
97-102.

[10] International workshop on graph-theoretic concepts in
computer science. Graph-theoretic conceps in compu-
ter science. Herrsching, Germany, 1995, 124 - 129.

[11] A. Khoumsi, G.V. Bochmann, R. Dssouli. On speci-
fying services and synthesizing protocols for real-time
applications. Universite de Monreal, 1994, 7-34.

108

