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Abstract. One of the most important data mining problems is mining association rules. In this paper we consider 
discovering association rules from large transaction databases. The problem of discovering association rules can be 
decomposed into two sub-problems: find large itemsets and generate association rules from large itemsets. The second 
sub-problem is easier one and the complexity of discovering association rules is determined by complexity of 
discovering large itemsets. In this paper, we suggest Apriori-based algorithm for discovering large itemsets. Actually, 
we suggest a new procedure for large itemsets generation which is more efficient than the appropriate procedure of the 
original Apriori algorithm. For its implementation, we suggest a modified sort-merge-join algorithm, which is more 
efficient than nested-loop-join algorithm, which is suggested in the original Apriori algorithm. Besides, we propose a 
way in which Apriori Multiple finishes in just two iterations. 
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1. Introduction 

The motivation for discovering association rules 
has come from the requirement to analyze large 
amounts of supermarket basket data. A record in such 
data typically consists of the transaction unique iden-
tifier and the items bought in that transaction. Items 
can be different products which one can buy in super-
markets or on-line shops, or car equipment, or tele-
communication companies’ services etc. 

The aim of association analysis for market basket 
data is to discover customer habits or patterns (to dis-
cover products which one buys together). For 
example, an association rule may state that “85% of 
customers who bought milk also bought bread”. Dis-
covering all such rules is important for planning 
marketing campaigns, designing catalogues, managing 
prices and stocks, customer relationships management 
etc. For example, a shop may decide to place bread 
close to milk because they are often bought together, 
to help shoppers finish their task faster. Or the shop 
may place them at opposite ends of a row, and place 
other associated items in between to tempt people to 
buy those items as well, as shoppers walk from one 
end of the row to the other. 

In association analysis for market basket data it is 
important if item is part of customer basket or not, so 
each item has a Boolean variable representing the pre-
sence or absence of that item. Then each basket can be 
represented by a Boolean vector. By association 
analysis of these vectors we can discover rules, which 
present customer habits. For example, the fact that 

shopper who purchases milk also tends to purchase 
bread at the same time can be represented by associa-
tion rule breadmilk ⇒   [support = 20%, confidence 
= 85%]. Support and confidence are measures of rule 
usefulness and certainty. A support of 20% for the 
previous association rule means that 20% of all 
transactions under analysis contain milk and bread. A 
confidence of 85% for the previous association rule 
means that 85% of the customers who purchased milk 
also purchased bread. The result of association ana-
lysis is strong association rules, which are rules 
satisfying a minimal support and a minimal confi-
dence threshold. The minimal support and the minimal 
confidence are input parameters for association 
analysis.    

The problem of association rules mining can be 
decomposed into two sub- problems [1]: 

  
• Discovering large itemsets. Large itemsets have 

support greater than the minimal support; 
• Generating rules. The aim of this step is to derive 

rules with high confidence (strong rules) from 
large itemsets. For each large itemset l one finds 
all not empty subsets of l; for each ∅≠∧⊂ ala  

one generates the rule ala −⇒ , if ≥
)(
)(

a
l

σ
σ  

minimal confidence. 
  
We do not consider the second sub-problem in 

this paper, because the overall performances of mining 
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association rules are determined by the first step. 
Efficient algorithms for solving the second sub-
problem are exposed in [23]. 

We will briefly expose basic ideas of the Apriori 
algorithm from [2], which is one of the most famous 
for discovering large itemsets and which will be re-
ferred to as the original Apriori algorithm in the 
following text. The original Apriori algorithm gene-
rates large itemsets iteratively: in iteration k 2≥ , large 
(k-1)-itemsets, from previous iteration, is used for 
generating large k-itemsets, where large k-itemset is a 
large itemset with k items. Large k-itemsets are gene-
rated in two steps: first we generate a set of candidate 
k-itemsets (possibly large k-itemsets) and then we 
identify those ones with support greater than the mini-
mal support among the set of candidates. The support 
of candidate itemset is the number of transactions, 
which contain that itemset, so it is necessary to read 
all transactions to determine support. The total number 
of iterations in the original Apriori algorithm is 

1+Maxk , where Maxk  is the maximum size of a large 
itemset. In each iteration the whole database is scan-
ned. 

From previous paragraph one can conclude that the 
efficiency of the original Apriori algorithm is mostly 
determined by the number of generated candidate 
itemsets and the number of iterations (in other words, 
the total number of I/O operations). In this paper we 
suggest the Apriori Multiple algorithm, which solves 
the problem of discovering large itemsets. It uses the 
new procedure for candidate generation, which is 
more efficient than the appropriate procedure from the 
original Apriori algorithm. The original Apriori algo-
rithm suggests the join procedure 11 −− ×= kkk LLC , 
which generates candidate k-itemset by joining two 
large (k-1)-itemsets if and only if they have k-2 first 
items in common. Because of that, each join operation 
requires at most k-2 equality comparisons. The pro-
cedure for candidate generation in our Apriori Mul-
tiple algorithm is named 21 −− ×= kkk LLC , and candi-
date k-itemset is generated by joining large (k-1)-
itemset and large (k-2)-itemset if and only if they have 
k-3 first items in common. According to that proce-
dure each join operation requires at most k-3 equality 
comparisons. In the paper we prove the correctness of 
the procedure 21 −− ×= kkk LLC . For its implementa-
tion we suggest a modified sort-merge-join algorithm, 
which is more efficient than nested-loop-join 
algorithm which is suggested in the original Apriori 
algorithm. This is fully expressed when the sets 1−kL  
and 2−kL  can not be read into main memory. Also, 
Apriori Multiple in the best case finishes in just two 
iterations. 

The remainder of this paper is organized as 
follows. Related works are described in section 2. In 
section 3 basic concepts from association analysis are 
defined. In sections 4, 5 and 6 the Apriori Multiple 
algorithm is exposed and we compare steps of this 

algorithm to the corresponding steps of the original 
Apriori algorithm. At the end, section 7 contains a 
comparison of our algorithm with other methods and 
experiment results. 

2. Related Work 

The problem of discovering association rules was 
first introduced in [1] and an algorithm called AIS was 
proposed for mining association rules. In [20], an 
algorithm called SETM was proposed to solve this 
problem using relational operations. These were the 
first algorithms for mining association rules. For last 
fifteen years many algorithms for rule mining have 
been proposed. All these algorithms can be classified 
into two categories: the candidate-generation-and-test 
approach and the pattern-growth approach. 

2.1. Candidate-generation-and-test algorithms 

The Apriori algorithm from [2] is the basic candi-
date-generation-and-test algorithm. It is based on the 
Apriori principle, which says that the itemset X’ 
containing itemset X is never large if itemset X is not 
large. Based on this principle, the Apriori algorithm 
generates a set of candidate large itemsets whose 
lengths are (k+1) from the large k-itemsets (for k≥1) 
and eliminates those candidates, which contain not 
large subset. Then, for the rest candidates, supports are 
counted and only those with support over minsup 
threshold are taken to be large (k+1)-itemsets. 

Many variations have been proposed that focus on 
improving the efficiency of the original Apriori 
algorithm. They are focused on reducing the number 
of candidates generated or on reducing the number of 
database scans. We will mention some of them. 

In [19], a hash-based technique was used to reduce 
the size of the candidate k-itemsets, for k>1. This is 
especially true for k=2. For example, when generating 

1L , we need to read all transactions from database in 
order to determine support for each candidate 1-
itemset from 1C . At the same time, we can generate 
all of the 2-itemsets for each transaction, hash them 
into different buckets of a hash table and increase cor-
responding bucket counts. A 2-itemset whose corres-
ponding buckets count in the hash table is less than the 
minimal support cannot be large and should be 
removed from the candidate set. 

In [2], [16] and [19] there were proposed ways 
how to reduce the number of transactions scanned in 
future iterations. The main idea is the following. A 
transaction that does not contain any large k-itemset 
can be removed from further considerations because 
such a transaction cannot contain any large (k+1)-
itemset. 

In [21], the partitioning technique was proposed. It 
requires just two database scans to mine large itemsets 
and consists of two phases. In phase I, the algorithm 
subdivides the database into n no overlapping 
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partitions which can fit into main memory. For all 
partitions, all large itemsets are found and they are to-
gether candidate itemsets for whole database (because 
any itemset that is large in database must be large in at 
least one partition). In phase II, the algorithm counts 
actual support of each candidate from phase I in order 
to determine large itemsets for whole database. 

In [24], the sampling approach is proposed. It 
requires just one database scan in the best case, and 
just two database scans in the worst case. The main 
idea is to randomly choose a sample from database, 
which can fit into main memory. The algorithm then 
searches for large itemsets in sample instead of data-
base. These large itemsets called potentially large (PL) 
itemsets and they are used as part of candidate item-
sets for whole database. The rest of candidate itemsets 
are found by applying function called negative border 
on set PL. Negative border is defined as minimal set 
of itemsets which are not in PL, but all their subsets 
are in PL. The second database scan is necessary only 
if some of large itemsets is from negative border (if all 
large itemsets are from PL, the second scan is not 
done).  

In [6], a dynamic itemset counting approach is 
given. In this approach, database is partitioned into 
blocks marked by start point and new candidate item-
sets can be added at any start point (unlike Apriori). 
New candidate itemset is added only if all of its 
subsets are estimated to be large so far. 

2.2. Pattern-growth algorithms 

Pattern-growth algorithms mine the complete set 
of large itemsets without candidate generation. The 
first pattern-growth algorithm was proposed in [17] 
and was called frequent-pattern growth or simply FP-
growth. FP-growth constructs an FP-tree structure and 
mines large itemsets by traversing the constructed FP-
tree.  

The FP-tree consists of a prefix-tree of large 1-
itemsets and an item header table. Each node in the 
prefix-tree has three fields: item-name, count and 
node-link. Item-name is the name of the item. Count is 
the number of transactions that consist of the large 1-
itemsets on the path from root to this node. Node-link 
is the link to the next same item-name node in the FP-
tree. Each entry in the item header table has two 
fields: item-name and head of node-link. Item-name is, 
as before, the name of the item. Head of node-link is 
the link to the first same item-name node in the prefix-
tree. 

FP-growth performs two database scans.  
The first scan of the database derives the set of 

large 1-itemsets and their supports. The set of large 1-
itemsets is sorted in the order of descending support 
count.   

The FP-tree is then constructed as follows. First, 
create the root of the tree, labelled with “null”. Scan 
the database a second time. The items in each trans-
action are processed according to descending support 

count and a branch is created for each transaction. In 
general, when considering the branch to be added for a 
transaction, the count of each node along a common 
prefix is incremented by 1, and nodes for the items 
following the prefix are created and linked accor-
dingly. 

The mining of the FP-tree proceeds as follows. 
Starting from each large 1-itemset construct its condi-
tional pattern base (a “sub database” which consists of 
the set of prefix paths in the FP-tree co-occurring with 
the suffix pattern), then construct its (conditional) FP-
tree, and perform mining recursively on such a tree. 
The pattern growth is achieved by the concatenation 
of the suffix pattern with the large patterns generated 
from a conditional FP-tree.  

The FP-growth algorithm transforms the problem 
of finding long large itemsets to looking for shorter 
ones recursively and then concatenating the suffix. It 
uses the least large items as suffix, offering good 
selectivity.  

Another well-known pattern-growth algorithm is 
Apriori-TFP [13]. The idea is to copy the input data-
base into a data structure called P-tree, which main-
tains all the relevant aspects of the input, and then 
mines this structure.  

When the database is large, it is unrealistic to 
construct a main memory-resident data structure to 
represent whole database. This is serious limit of 
pattern-growth approach. Because of this, we focused 
on candidate-generation-and-test approach, which 
previously mentioned limit does not exist for. 

3. Preliminaries 

In this section we define basic concepts of associa-
tion analysis and give its formal definition. 

Definition 1: Let },...,,{ 21 mIIII =  be a set of 
items in database of transactions },...,,{ 21 ntttD = , 
where },...,,{ )(21 iikiii IIIt =  and ,1 ( )ijI I j k i∈ ≤ ≤ , 
1 i n≤ ≤ . An association rule is an implication of the 
form YX ⇒ , where IX ⊆ , IY ⊆  and ∅=YX ∩  
[11]. 

The result of association analysis should be only 
“strong” association rules, or in other words those 
which are “expressive” and “confident”. Standard 
measures of association rules’ “strength” are support 
and confidence, and both of these are calculated in 
dependence on the support of corresponding itemset. 
For the rule YX ⇒ , the corresponding itemset is 

YX ∪ . 
Definition 2: Let },...,,{ 21 mIIII =  be a set of 

items in database of transactions },...,,{ 21 ntttD = , 
where },...,,{ )(21 iikiii IIIt =  and ,1 ( )ijI I j k i∈ ≤ ≤ ,  
1 i n≤ ≤  (each transaction is a subset of I). Arbitrary 
set IX ⊆  is termed as itemset. The support of the 
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itemset X, denoted by )(Xσ , is defined by the 
following formula: 

( ) | { |1 } |i i iX t i n X t t Dσ = ≤ ≤ ∧ ⊆ ∧ ∈ . 

The support of the itemset X is actually the number 
of transactions that contain X. For the transaction it , it 
can be stated that it contains itemset X  if itX ⊆  [11]. 

Definition 3: The support of association rule 
YX ⇒ , denoted by )( YX ⇒σ , is the ratio of the 

number of transactions in database which contain 
YX ∪  to the number of all transactions n. More 

formally: 

( )( ) X YX Y
n

σσ ⇒ =
∪   [11]. 

Definition 4: The confidence of association rule 
YX ⇒ , denoted by )( YX ⇒α , is the ratio of the 

number of transactions which contain YX ∪  to the 
number of transactions containing X. More formally: 

( )( )
( )

X YX Y
X

σα
σ

⇒ =
∪   [11].  

Having defined all necessary concepts, we intro-
duce the definition of association analysis problem. 

Definition 5: Let },...,,{ 21 mIIII =  be a set of 
items in transactional database },...,,{ 21 ntttD = , 
where },...,,{ )(21 iikiii IIIt =  and ,1 ( )ijI I j k i∈ ≤ ≤ ,  
1 i n≤ ≤ . Association analysis problem consists of 
discovering all association rules YX ⇒ , where 

≥⇒ )( YXσ minsup and ≥⇒ )( YXα minconf and 
values minsup and minconf are input parameters of the 
problem [11]. 

4. Apriori Multiple Algorithm 

Apriori Multiple algorithm generates large item-
sets starting with large 1-itemsets (itemsets consisted 
of just one item). Next, the algorithm iteratively 
generates large itemsets to the maximum size of large 
itemsets. Each iteration of the algorithm consists of 
two phases: candidate generation and support count-
ing. 

In the candidate generation phase potentially large 
itemsets or candidate itemsets are generated. The 
Apriori principle is used in this phase. It is based on 
anti-monotone property of the itemset support and 
provides elimination or pruning of some candidate 
itemsets without calculating its support (candidate 
containing at least one not large subset is pruned 
immediately, before support counting phase). 

The support counting phase consists of calculating 
support for all previously generated candidates (which 
are not pruned according to the Apriori principle in the 
preceding candidate generation phase). In the support 
counting phase, it is essential to efficient determine if 

the candidates are contained in particular transaction 
Dt ∈ , in order to increment their support. Because of 

that, the candidates are organized in hash tree [2]. The 
candidates, which have enough support, are termed as 
large itemsets. 

The Apriori Multiple algorithm terminates when 
none of the large itemsets can be generated. 

In the Apriori Multiple algorithm we have added 
new parameter named multiple_num, which deter-
mines the “length” of iteration. Actually, in the origi-
nal Apriori algorithm, in the iteration k, set kL  (con-
taining all large itemsets with k items) is generated, 
while our Apriori Multiple algorithm in the iteration k 
generates sets 1_0, −≤≤+ nummultipleiL ik .  

The Apriori Multiple can use any value for mul-
tiple_num parameter. If multiple_num=0, our Apriori 
Multiple “becomes” the original Apriori algorithm. If 
we want to ensure that Apriori Multiple finishes in just 
two database scans, we need to choose value for 
multiple_num parameter such that kMax < multiple_ 
num holds, where kMax is the maximal size of large 
itemsets. But we do not know kMax value in advance. 
As a solution, we can apply some statistical methods 
to estimate Maxk  value or we can use the following 
very simple approach. In the first scan, Apriori 
Multiple generates large 1-itemsets. During this scan 
Apriori Multiple can determine the length of the 
longest transaction in the database: tMax. It is clear that 
kMax < tMax, so the algorithm can set multiple_num 
parameter to tMax. Another approach is to set 
multiple_num parameter to average size of trans-
actions. This does not guarantee that the algorithm 
finishes in two database scans, but it will generate less 
number of candidates. Also, Apriori Multiple can start 
with some value for multiple_num parameter and 
change this value in the following iterations. The 
multiple_num parameter can also be defined by user, 
just like minsup threshold. It means that user, accord-
ing to domain knowledge or some other estimate, can 
specify the value for multiple_num parameter.  

In our implementation we set multiple_num para-
meter to the average size of transactions. 

In addition, all candidate k-itemsets (itemsets con-
taining k items) will be signed as kC , and all large k-
itemsets as kL . Pseudocode for our Apriori Multiple 
algorithm comes next. 
Apriori Multiple Algorithm 
Input: D - transactional database;  
  Min_Sup-minimal support; 
Output: L - large itemsets in D 
Method: 

1. L1 = all_large_1– itemset (D, 
Min_Sup) 

2. multiple_num = 
average_size_of_transactions  

3. FOR (k=2; Lk-1 ≠ ∅; 
k+=multiple_num) DO 
Ck = apriori_gen(Lk-1, Lk-1) 
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FOR i=1 TO multiple_num-1 
Ck = apriori_gen(Ck+i-1, Ck+i-1)   

 END FOR 
 FOR i=0 TO multiple_num-1 
  createCandidateHashtree(Ck+i) 
  END FOR 
  FOR EACH t ∈ D DO 
   FOR i=0 TO multiple_num-1 
      traverseHashtree(Ck+i, t)  
   END FOR 
  END FOR 
  FOR i=0 TO multiple_num-1 
   Lk+1 = {c ∈ Ck+1 |σ (c) ≥ Min_Sup} 
  END FOR 
 END FOR 
 4. L = UkLk+1 

Let us briefly outline the most important steps. Ge-
nerating large 1-itemsets can be done in the same way 
as in the original Apriori algorithm from [2]. During 
this step Apriori Multiple determines average size of 
transactions and sets multiple_num to this value. In 
iteration k 2≥ , the set Ck is generated by calling 
apriori_gen function (the first call of apriori_gen 
function in the upper algorithm), but this is not the end 
of candidate generation phase. The loop in which the 
candidate itemsets Ck+1, 1 ≤ multiple_num – 1 are 
generated comes next. It is done in the following way. 
According to the original Apriori algorithm from [2] 
candidate itemset Ck+1 (candidate itemsets containing 
k+1 items) is formed from the set kL  (large itemsets 
containing k items) in iteration k+1. However, we 
want to generate Ck+1 in iteration k (in order to reduce 
number of algorithm's iterations), but we do not have 
the necessary set kL . As the solution, the first argu-
ment of apriori_gen function is Ck, which is generated 
by the first call. The second argument is Ck–1, which is 
known from the previous iteration. For the next call of 
apriori_gen function, the arguments are Ck+1 and Ck, 
and in that way Ck+2 is generated, etc. Candidate 
generation phase, which is here briefly discussed, is 
more precisely described in Section 5. The support 
counting phase comes next. Candidate itemsets Ck+i, 0 
≤ i ≤  multiple_num – 1  are organized in hash tree in 
order to make support counting process efficient. 
Then, we scan database and calculate support for 
candidates Ck+i, 0 ≤ i ≤  multiple_num – 1 by 
traversing corresponding hash trees. At the end of 
support counting phase large itemsets Lk+i, 0 ≤ i ≤  
multiple_num – 1 are generated from candidate 
itemsets with large enough support. The support 
counting phase is described in Section 6. 

The algorithm from [2] performs 1+Maxk  itera-
tions, where Maxk  is the maximal size of large item-
sets, and in each iteration it scans whole database. Our 
Apriori Multiple algorithm finishes after 

⎡ ⎤nummultiplekMax _/1 +  iterations. 

5. Candidate Generation 

Both our Apriori Multiple algorithm and the 
original Apriori algorithm from [2] assume that any 
itemset I is kept sorted according to some relation “<”, 
where for all Iyx ∈, , x<y means that the object x is 
in front of the object y. Also, we assume that all 
transactions in database D and all subsets of I are kept 
sorted in lexicographic order according to the relation 
“<”. 

For candidate generation we suggest the original 
method by which 21 −− ×= kkk LLC  is calculated, for 

3≥k . Candidate k-itemset is created from one large 
(k-1)-itemset and one large (k-2)-itemset in the 
following way. Let 1121 },..,,{ −− ∈= kk LxxxX  and 

2221 },...,,{ −− ∈= kk LyyyY . Itemsets X and Y are joi-
ned if and only if the following condition is satisfied: 

21)3,...,2,1( −− <∧−== kkii yxkiyx . (1)  

Let us prove the correctness of this method. It is 
sufficient to show that kk CL ⊆  for all k, where kC  is 
generated by 21 −− × kk LL . Let kk LzzzZ ∈= },...,,{ 21  
be arbitrary chosen and let 3≥k . We will show that 

kCZ ∈ . Let us take 1 1 2 2 2{ , ,..., kX x z x z x −= = = =  

2 1 1, }k k kz x z Z− − −= ⊆  and 1 1 2 2{ , ,...Y y z y z= = = , 

3 3 2, }k k k ky z y z Z− − −= = ⊆ . Then, according to the 
Apriori principle, we have 1−∈ kLX  and 2−∈ kLY . 
Now we will check the condition (1) for itemsets X 
and Y: 1 1 1 3 3 3 1( ) ... ( )k k k kx y z x y z x− − − −= = ∧ ∧ = = ∧ <  

2 1( )k k ky z z− − < . It is directly checked that the 
previous formula is true, so that kCYXZ ∈×= . In 
this way we proved the correctness of the method 

21 −− ×= kkk LLC  for 3≥k . 
In the original Apriori algorithm from [2], the join-

ing procedure 11 −− ×= kkk LLC  is suggested. It gene-
rates candidate k-itemset by joining two large (k-1)-
itemsets, if and only if they have first (k-2) items in 
common. Because of that, each join operation requires 
(k-2) equality comparisons. If a candidate k-itemset is 
generated by the method 21 −− × kk LL  for 3≥k , it is 
enough (k-3) equality comparisons to process. 

Generation of 21 −− ×= kkk LLC  can be represen-
ted by the following SQL query: 

 INSERT INTO kC  

 SELECT 1 1 1 2 1 3. , . ,..., . ,kR item R item R item −  

     2 2 1 1. , .k kR item R item− −  

 FROM 1−kL  AS 1R , 2−kL AS 2R  

 WHERE 1211 .. itemRitemR =  AND 

      2221 .. itemRitemR =  AND … AND 

     3231 .. −− = kk itemRitemR   

      AND 2211 .. −− < kk itemRitemR . 
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In the previous query large (k-1)-itemsets are 
viewed as a relation with (k-1) attributes: item1, item2, 
..., itemk–1 (attributes are items from large itemset). It 
is similar to the large (k-2)-itemsets. Function 
apriori_gen from the original Apriori algorithm from 
[2] processes the upper query according to nested-
loop-join algorithm, which is the simplest and the 
most inefficient join algorithm. For the join 

21 −− × kk LL  we suggest a modification of the sort-

merge-join algorithm (note that 1−kL  and 2−kL  are 
sorted because of the way they are constructed and 
lexicographic order of itemsets).  

By the original sort-merge-join algorithm [22], it is 
possible to compute natural joins and equi-joins. Let 
r(R) and s(S) be the relations and SR ∩  denote their 
common attributes. The algorithm keeps one pointer 
on the current position in relation r(R) and another one 
pointer on the current position in relation s(S). As the 
algorithm proceeds, the pointers move through the 
relations. It is supposed that the relations are sorted 
according to joining attributes, so tuples with the same 
values on the joining attributes are in consecutive 
order. Thereby, each tuple needs to be read only once, 
and, as a result, each relation is also read only once. 
The nested-loop-join algorithm reads each tuple of 
inner relation for each tuple of outer relation, so that 
the number of considered tuple pairs is sr nn * , where 

rn  is the number of tuples in r(R) and sn  is the 
number of tuples in s(S).It is clear that sort-merge-join 
algorithm is more efficient. 

The modification of sort-merge-join algorithm we 
suggest refers to the elimination of restrictions that 
join must be natural or equi-join. First, we separated 
the condition (1): 

)3,...,2,1( −== kiyx ii  (2) 

and 21 −− < kk yx . (3)     

Joining kkk CLL =× −− 21  is calculated according 
to the condition (2), in other words we compute 
natural join. For this, the described sort-merge-join 
algorithm is used, and our modification is: before 

},...,,{ 121 −= kxxxX  and },..,,{ 221 −= kyyyY , for 
which 1−∈ kLX  and 2−∈ kLY  and ,1i ix y= ≤  

3i k≤ −  is true, are merged, we check if condition (3) 
is satisfied. 

 The pseudocode of apriori_gen function comes 
next. 
 FUNCTION apriori_gen( 21, −− kk LL ) 

 1. i = 1 //pointer for 1−kL  

 2. j = 1 //pointer for 2−kL  

 3. WHILE ( ().(). 21 CountLjCountLi kk −− ≤∧≤ )  

  ][11 iLiset k−=  
  i++ 
  }{ 1isetSs =  

  done = false 

  WHILE (NOT done ∧  ().1 CountLi k−≤ ) 

       ][1 11 iLiset k−=  

   IF ( 21],[1][ 11 −≤≤= kwwisetwiset ) THEN 

    }1{ 1isetSS ss ∪=  
    i++ 
   ELSE 
    done = true 
   END IF 
  END WHILE 
  ][22 jLiset k−=  

  WHILE ( ().2 CountLj k−<= ∧  

            ][][
2

1
1

2

1
2 wisetwiset

k

w

k

w

−

=

−

=
< ∪∪ ) 

       ][22 jLiset k−=  
   j++ 
  END WHILE 
  WHILE ( ().2 CountLj k−<= ∧  

            ][][ 21

2

1
wisetwiset

k

w
=∧

−

=

) 

   FOR EACH s IN sS  

   IF ( ]2[]1[ 21 −<− kisetkiset ) THEN 

            1 1{ [1],..., [ 2],c iset iset k= −  

          1 2[ 1], [ 2]}iset k iset k− −  

   IF )(ctelarge_subsins_notconta −   
    //pruning according to 
    //Apriori principle 
    )(celiminate   
    ELSE 
     }{cCC kk ∪=  
    END IF 
   END IF 
   NEXT 
   j++ 
   ][22 jLiset k−=  
  END WHILE 
     END WHILE 
END FUNCTION 

6. Support Counting 

Support counting process means counting the 
support for all candidates which are not eliminated in 
the candidate generation phase. Those candidates 
which have greater support than minsup parameter are 
termed as large itemsets. They are used for candidate 
generation in the next iteration, which we talked about 
in Section 5.  

Candidates from kC  are stored in a hash tree [2]. 
Nodes in the hash tree can be either leaves or interior 
nodes. The leaves contain a collection of candidate 
itemsets. The interior nodes contain a hash table where 
each row points to another node. The root of the hash 
tree is on the level 1. The interior node on the level d 
points to the node on the level d+1. When we add the 
candidate kc  in the hash tree, we start from the root 
and go down the tree until we reach a leaf. In the 
interior node on the level d we decide which branch to 
follow applying a hash function to the dth item of the 
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candidate kc . The hash tree for candidate k-itemsets 
has k levels. 

We need to scan whole database in order to cal-
culate supports of candidate itemsets. How can we use 
the hash tree to determine which candidates are 
contained in the transaction t? If we reach a leaf of the 
hash tree, it will be enough to check which candidates 
from the collection in that leaf are subsets of t and to 
increment their supports. If we reach an interior node 
by hashing to the ith item of the transaction t, then we 

do hashing on the all items of t which follow ith and 
recursively apply this procedure to the node from the 
corresponding bucket. In this way, itemsets from the 
transaction are compared only to the candidate 
itemsets from the same bucket (not with all possible 
ones). 

We suggest the structural pattern Composite for 
implementation of a candidate hash tree. In Figure 1 
the class diagram for hash tree implementation is 
shown. 

 
Figure 1. Composite pattern for hash tree implementation 

7. Experimental Results 
7.1. Comparison with the Original Apriori 

Algorithm 

We implemented the original Apriori algorithm 
from [2] to the best of our knowledge based on the 
published reports. Also, run time used here means the 
total execution time, i.e., the period between input and 
output instead of CPU time measured in the experi-
ments in some literature. We used programming 
language VB from Microsoft .NET framework. Expe-

riments are performed on a PC with a CPU Intel(R) 
Core(TM)2 clock rate of 2.66GHz and with 2GB of 
RAM.  

In experiments dataset which can be found at 
www.cs.uregina.ca is used. It contains 10000 binary 
transactions. The average length of transactions is 8. 

In the first experiment, we compared the methods 
for candidate generation. Figure 2 shows that the me-
thod 21 −− × kk LL  generates less number of candidates 
than the method 11 −− × kk LL  for the greater support. 

 
 

Figure 2. Number of generated candidates 
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In Figure 3, the results of comparing execution 
times for procedures for candidate generation are 
shown. 

In Figure 4, the results of comparing the number of 
I/O operations in Apriori Multiple and in the original 

Apriori algorithm from [2] are shown. The parameter 
multiple_num from Apriori Multiple algorithm is set 
to 2. This experiment confirms the expectations that 
Apriori Multiple requires less I/O operations. 

 
Figure 3. Execution times for different candidate generation methods 

 
 

Figure 4. Number of I/O operations for Apriori and Apriori Multiple algorithm 
 

 
Figure 5. Dependence of execution time for Apriori Multiple algorithm on multiple_num parameter 

 
Figure 6. Dependence of the number of generated candidates for Apriori Multiple algorithm on multiple_num parameter 
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7.2. Comparison with Pattern-Growth Algorithms 

Our Apriori Multiple algorithm is a candidate-
generation-and-test algorithm for mining frequent 
itemsets from database of transactions. Recently, 
much more papers have been written concerning 
another approach: pattern-growth approach. We will 
expose some limits of the pattern-growth approach 
which does not exist in the candidate-and-test ap-
proach, and because of that we decided to concentrate 
on improvements of classic candidate-generation-and-
test algorithm: the Apriori algorithm. 

The first pattern-growth algorithm was proposed in 
[17] and was called frequent-pattern growth or simply 
FP-growth. FP-growth constructs main-memory-resi-
dent FP-tree structure to represent database and mines 
large itemsets by traversing the constructed FP-tree. 
Many FP-tree based algorithms have been proposed 
during the last few years. These algorithms differ in 
tree-based structures they use for database projection 
into main memory. Some of proposed tree-based 
structures are: CFP tree [18], COFI tree [12], T-tree [8, 
9], P-tree [9, 10], PP-tree [4] etc., and they assume no 
limitation on main memory capacity. These structures 
differentiate slightly and all pattern-growth algorithms 
have common limits.  

FP-growth based algorithms work well for sparse 
datasets, but if transactions contain many distinct 
items it leads to large and bushy tree structure (reduc-
tion ratio is not high). Also, tree depth is maximal 
number of large 1-items in transactions and for large 
databases (in which we are most interested) this 
number can be greater than 100, so with sufficiently 
large datasets it will not be possible to construct the 
tree within primary memory. However, results presen-
ted for pattern-growth algorithms demonstrate its ef-
fectiveness in cases when the tree is memory resident, 
but the linkage between nodes of the tree makes it 
difficult to effect a comparable implementation when 
this is not the case. Apriori-based algorithm can mine 
database of any size and they show linear scalability 
with the number of transactions. 

The performance of pattern-growth algorithms will 
be affected if it is impossible to proceed entirely 
within primary memory. Many partitioning strategies 
have been proposed [3], [4], [5] and [8] to deal with 
these cases. The main idea behind these approaches is 
to subdivide database into segments and then separate-
ly process each segment. It means that algorithm 
creates tree representation for each segment and stores 
each tree in secondary memory. Then each pass of 
algorithm requires each of previously created trees to 
be read in turn from secondary memory as Apriori-
based algorithms do with transactions. Also, in some 
cases it is not possible to compute the support for a set 
by considering only the sub-tree in which it is located, 
so procedures for traversing trees are very expensive 
and complicated. These are especially expensive if the 
depth of tree is large, because of the greater depth of 

recursion required. Numerous experiments have 
shown that 80% of CPU time was used for traversing 
trees [14]. 

To sum up, pattern-growth algorithms require two 
database scans with assumption that database can be 
mapped into memory resident tree structure, while our 
Apriori Multiple algorithm requires two database 
scans and without limits on the database size. 

8. Conclusion  

In this paper the procedure of discovering associa-
tion rules in large transaction databases is exposed. 
Each transaction contains a unique identifier and the 
items bought in that transaction. Also, each transaction 
is sorted in lexicographic order. The aim of association 
analysis is to find association rules which satisfy the 
minimal support and the minimal confidence thre-
sholds. This task is solved in two steps: discovering 
large itemsets and generating rules from large item-
sets. The overall performance of mining association 
rules is determined by the first step. For solving the 
first step we suggested Apriori Multiple algorithm, 
which is a modification of the well known Apriori 
algorithm from [2]. Our Apriori Multiple algorithm 
uses the new procedure for candidate generation. We 
proved its correctness. It is more efficient than the 
appropriate one from the original Apriori algorithm. 
Also, our Apriori Multiple algorithm is able to finish 
in just two iterations. These considerations are con-
firmed by experimental results which are part of this 
paper. 

We plan to extend this paper to: 
• Apply concepts from association rule mining to 

classification problems, especially signal/back-
ground classification in HEP (High Energy 
Physics); 

• In the previous considerations we ignored quan-
tity of items sold or the price paid to purchase 
them, which can be really important for some 
practical applications. Discovering such rules re-
quires additional modifications of the Apriori 
Multiple algorithm and the Apriori algorithm 
from [2]; 

• Mining multilevel association rules from trans-
action databases (these rules involve items at dif-
ferent levels of abstraction); 

• Mining multidimensional association rules from 
relational databases and data warehouses (these 
rules involve more than one dimension or predi-
cate, e.g. rules relating what a customer shopper 
buy as well as shopper’s occupation). 
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