
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.4(33)

COMPOSITION OF TASK-DIALOG MODEL IN THE SPACE OF
PROCESSES

Diana Zobakiene, Tadas Zobakas, Saulius Gudas
Kaunas University of Technology, Information Systems Department

Studentu st. 50-309, LT-51368 Kaunas, Lithuania

Abstract. The paper presents the method of composition of task-dialog model used in the design process of user
interface. The task-dialog model is based on the process model and composed in the space of processes. The space of
processes specifies the knowledge of problem area and is described by hierarchical, non-hierarchical, and process time
constructs. This formal structure and the rules of usage define composition process of task-dialog model and ensure
fast and smooth user interface development.

1. Indroduction

With a growing interest in integrated modelling of
user interface (UI) and information system (IS) there
is an increasing need for methods and tools that can
control the whole modelling process. The most pers-
pective methods and tools are model-based user inter-
face development environments (MB-UIDEs). These
tools provide facilities for user interface designers to
describe the UI using a number of abstract models.
This means that MB-UIDEs are able to prototype the
entire interface of an application by interacting with
an appropriate set of tools that manipulate these
declarative models [10].

Different notations and tools that are used for the
UI design and their underlying software create a
problem of the usage of MB-UIDEs. As a consequen-
ce of these non-integrated design environments, the
same structures of information domain get modelled
twice. Moreover, these models may be composed in
slightly different ways due to different notations [10].

Unified Modelling Language (UML) [13] is the
standard language for object-oriented modelling of
software, but the UI, as an important part of most
software, should as well be modelled in one or another
way. However, UML has neither special diagrams nor
methodology for UI modelling. In some UI modelling
methods [11] the basic diagrams are UML use cases
and/or class, activity diagrams as additional diagrams.
Use case diagrams are “an architecture centric pro-
cessses", while Rational Unified Process (RUP) is
considered to be "Use Case Driven Process". There-
fore, the user is never considered important in
Rational's thinking about design and, in other words,

RUP is fundamentally not a user centred design me-
thodology [12].

User interfaces convey the output of applications
and the input from application users. For this reason,
UIs have to cope with the complexity of both the
applications and the users. Therefore, despite its not
user-centred design aspects, UML is the best choice in
object-oriented modelling of software and UI.

Separate application and UI development proces-
ses, different notations used and object-oriented UI
project are the main problems that are solved with the
new UI modelling method.

The aim of this paper is to present new principles
of task-dialog model composition using UML applica-
tions model in the space of processes. These principles
are part of the new UI modelling method.

This paper has introduction and 5 sections. An
overview of UI models and the relationship among
them is provided in Section 2. The space of processes
is presented and specified by the terms of category
theory in Section 3. The composition process of task-
dialog model is described in Section 4. A case study
of ordering system is presented in Section 5. Conclu-
sions are drawn in Section 6.

2. User Interface Models and Their
Interaction

The problem of conciliating application and user
interaction complexities is that MB-UIDEs usually
have several models describing different aspects of the
UI, that models are related to the application models
indirectly. UI development methods [9] have diverse
models (task, object, user, dialog, etc.), depending on

67

D. Zobakienė, T. Zobakas, S. Gudas

notation and methodology used. Table 1 presents 4
generalized models that describe various aspects of the
user interface [11].

Table 1. The component models of a user interface

Model Constructors Function

Application
model

Class, attribute,
operation,
relationship

Describes the
properties of the
application
relevant to the UI.

Task-dialogue
model

Task, goal,
action,
sequencing, task
pre-condition,
task post-
condition

Describes the tasks
that users are able
to perform using
the application, as
well as how the
tasks are related to
each other.

Abstract
presentation
model

View, abstract
interaction
object

Provides a
conceptual
description of the
structure and
behaviour of the
visual parts of the
user interface.
There the UI is
described by the
terms of abstract
objects.

Concrete
presentation
model

Window,
concrete
interaction
object, layout

Describes in
details the visual
parts of the user
interfaces. There is
explained how the
UI is composed in
terms of widgets.

Usually user interface modelling starts with the
analysis of information specified in the application
model. In software modelling process the application
model is separated into two models: business model

and process model. The business model is concerned
with value exchanges among business partners, while
the process model focuses on operational and pro-
cedural aspects of business communication [3]. The
business model is important in composition of user’s
model, which in some UI modelling methods and
tools describes users profiles and roles he is allowed
to perform.

In this paper presented UI modelling method the
process model is more important than the business
model, because UI is supposed to be more related to
procedural rather than personal aspects of a problem
area. The process model is specified in object oriented
UML notation and should have one class diagram and
at least one sequence diagram. These diagrams are the
main source of information for the TDM development.
The TDM is generated from the application model (in
our case it’s the process model only) as a set of UIs in
the space of processes.
UI knowledge base is a meta-model which is based on
the formal EMC (Elementary Management Cycle)
structure [4]. UI knowledge base structures UI model-
ling information that is applied to the generated TDM
and can produce a list of generation errors. Thus UI
developer is forced to return to application model and
correct it. The UI life cycle shown in figure 1, is partly
iterative (transitions from/to application model &
TDM) and partly consecutive (transitions from TDM
to abstract presentation model and from abstract to
concrete presentation model) [6].

Both abstract and concrete presentation models are
supposed to implement MDA (Model-Driven Archi-
tecture) principles [8]. These two models are out of
scope of this paper. Composition of the TDM from the
application model and UI knowledge-based correction
of TDM are the key processes for successful GUI
development. So this paper is focused on a TDM and
application models and EMC-based UI knowledge
structuring, as shown in Figure 2.

Application model

Task-dialogue model

Concrete presentation model

Abstract presentation model

UI knowledge base

Generation

Extension

Implementation

Is applied

C
or

re
ct

io
n

G
U

I l
ife

 c
yc

le

Figure 1. UI model interaction

68

Composition of Task-Dialog Model in The Space Of Processes

69

Subset of process model

A

EMC meta-
model

B

Task-dialog
model

Sequence diagram Class diagram

T

AG

GE j

j+1

 t+1 t+2 t+3

i+1

 i

 t

Figure 2. The basic principles of UI modeling

Implementer

Interpreter Applier

Formatted data2

Information*
Initiator

Information

Formatted data1

Attributes2 with valuesAttributes1 with values

Figure 3. Basic architecture of modified EMC

The composition process of the TDM consists of
preparation, generation and check phases. Arrow A in
Figure 2 represents the preparation phase, when pro-
cess model syntactic quality is assured (see Section
4.1 for details). The process model aggregates the ba-
sic information of a problem area, which is used in the
TDM generation.

 In the second phase, the TDM is generated as a set
of UIs in the space of processes using the process
model (arrow B in Figure 2). The Section 4.2 de-
scribes the rules and conditions of transformation
process.

The space of processes, its elements (EMCs) and
relationships among them are considered a predefined
information structure, which is stored in the know-
ledge base (EMC meta-model).

3. The Space of Processes

The space of processes is a formal structure con-
sisting of elementary management cycles (EMCs) and
relationships among them [4,5]. The EMC and the

space of processes [4] itself are described in the next
sections.

3.1. The Elementary Management Cycle

The main element of process control method is the
closed process control loop, which is called
elementary management cycle (EMC) [14]. First of all
EMC is dedicated to specify a control of material pro-
cesses in enterprise management [4]. Due to a diffe-
rent purposes of IS development, where representation
of information and human-computer interaction
processes is more important than material processes, a
slightly different terms and conception of EMC was
developed [15]. The basic architecture is shown in
Figure 3.

Both incoming and outcoming information flows
(Information and Information* in Figure 4) are trea-
ted as sets of attributes that are directly associated to
concrete presentation objects at GUI model level.

The whole process is initiated by incoming infor-
mation or stimulus (when there’s no incoming infor-
mation), which is put as a request to Initiator. The

D. Zobakienė, T. Zobakas, S. Gudas

Initiator has two functionally different parts. The first
one is the GUI, from which Initiator takes the values
(user enters or selects these values) and transfers them
to Interpreter as a formatted data flow. The second part
of Initiator is the Dispatcher, which takes formatted
data flow from Applier and transfers it to the next GUI
in a sequence.

The goal-driven process of the dataflow restructu-
ring to attributes is called Interpreter. The Interpreter
reads the dataflow coming from the Initiator and,
according to predefined rules, assigns each of data
value to the attribute value of the corresponding class.
Interpreter can be specified as a set of formal informa-
tion interpretation rules.

Class data engineering, decision and other proces-
ses are the execution process of an EMC, which is
called Implementer. The Implementer is treated as a

set of operation rules on the class attributes and their
values.

The goal-driven process of structuring values of
class attributes to dataflow is called Applier. The Ap-
plier takes the values of class attributes from Imple-
menter and, according to predefined rules, forms a
dataflow. The Applier can be specified as a set of for-
mal rules on the values of the class attributes.

i0j0t0 t1

By the terms of category theory [2], EMC is a
category, which has 4 objects, i.e. EMC(0) = {INI,
INT, IMP, APP}, where INI ≠ ∅, INT ≠ ∅, IMP ≠ ∅,
APP ≠ ∅. Arrows of category EMC are one-
directional arrows between neighbouring EMC
objects, i.e. EMC(R) = {INI_INT, INT_IMP, IMP_
APP, APP_INI} [14].

Implementer

Interpreter Applier

Formatted data2

Information*
Initiator

Information

Formatted data1

Attributes2 with valuesAttributes1 with values

 Figure 4. Basic architecture of modified EMC

T

AG

GE

Generalization
hierarchical

relationschip
Binary
association

Aggregation
hierarchical
relationschip

 j1

j2

 t2 t3 t4

i2

i1

i2,j2,t2

i2,j1,t1

i2,j2,t3

i1,j2,t4

i2,j1,t2 i2,j1,t3 i2,j1,t4

i1,j2,t3i1,j2,t2i1,j2,t1

i2,j2,t1 i2,j2,t4

i1,j1,t2i1,j1,t1 i1,j1,t4i1,j1,t3

Figure 5. The space of processes with the typical relationships

3.2. Specification of the Space of Processes

This paper presents the user interface modelling
method, when UI engineering is based on the EMC
and the space of processes. This space consists of

three planes built up by three semantically different
axes:
• Time axis (T) defines a sequence of UIs (screen

forms) in an execution time. All non-hierarchical
relationships (binary association, iteration and
multiply executions) are shown on this axis.

70

Composition of Task-Dialog Model in The Space Of Processes

Meanwhile, hierarchical relationships between
UIs are displayed on the two planes formed
between T and AG axes and T and GE axes,
respectively.

• Generalization axis (GE) specifies the correlation
between two objects by the terms of
generalization action. For instance, when some
properties of 2 problem area objects “Person” and
“Company” are generalized into another object
“Customer”, then the corresponding UIs are
generalized also.

• Aggregation axis (AG) specifies the correlation
between two objects by the terms of aggregation
action. For instance, when the problem area
object “Order rows” is aggregated into another
object “Order”, then the corresponding UIs are
aggregated also.

An example of the space of processes and typical
relationships is depicted in Figure 4.

The lack of some UI development methods is that
one class is treated as one UI [1]. This point of view is
incorrect in the space of processes, since in this space
each EMC cycle specifies one class activity or one
GUI in the implemented system. So, an abstract EMC
specifies a dynamic property of an object (one class
operation). Usually, one object has more than one dy-
namic property, which is complex. This results to
more than one EMC in order to describe the behaviour
of one object.

All UIs related to one problem area are treated as a
super-category TDM (task dialog model). The
sequences of user actions are the objects of the cate-
gory TDM, i.e. TDM . An abst-
ract TDM has unlimited number of user action
sequences, i.e. UASN and number UASN
shows the maximum number of sequences.

}Seq,...,{Seq UASN1=

}{1,..., ∞∈

An abstract sequence Seq , where X ∈X {1, …,
UASN}, has unlimited number of objects that are
EMCs. So, the sequence is treated as a set of EMCs
that specify an order of user actions, i.e. SeqX(0) =
{EMC1, …, EMCEMCN}, where }{1,...,∞∈EMCN .
The category Seq has one attribute: X

• Name – ∅≠)Name(SeqX .

In the space of processes each , where ZEMC
∈Z {1, …, EMCN}, is specified using 3 position

attributes:
• T dimension (index t in the Figure 5) specifies

 position in execution time, i.e. EMCZEMC Z(T)
∈ {1, …, ∞}.

• AG dimension (index i in the Figure 5) specifies
EMCZ position taking in account the aggregation
relationship with former EMC. The position can
change as follows EMCZ(AG) ∈ {–∞, …, ∞}.

• GE dimension (index j in the Figure 5) specifies
EMCZ position taking in account the generaliza-

tion relationship with former EMC. The position
can change as follows EMCZ(GE) ∈ {–∞, …, ∞}.

Depending on outcomming information or actions
performed by a user, some EMCs should be repeated
more than one time (e.g. mistake corrections). In this
case there exist two levels of abstraction, where one
EMC (higher abstraction level element) is represented
by the sequence of the same EMC with different
incoming information (lower abstraction level
elements). From this follows the conclusion, that the
execution time of higher abstraction level EMC (t
dimension) is a sum of the execution time of each ele-
ment of lower abstraction level EMCs. This two level
EMC structure should be understood as the terms of
dimension and a dimension member in OLAP
technology [7].

The set of the lower abstraction level EMCs is
represented as an iteration axis in the space of
processes. It’s treated as extension of time moment or
in another words the moment of execution time is
split into a set of execution times, i.e.
(see Figure 6).

1t
itn },...,{itt 11 =

T

AG

GE j1

i1
...

it1 it2 itn

ITER

i1j1t1

i0j0t0 t1

Figure 6. A set of EMCs in the iteration axis

So, iterated can consist of a set of the same
EMCs, i.e. EMC

ZEMC
Z = {EMCZ(IT1), …, EMCZ (ITITN)}.

This means that each has one additional
attribute, which specifies its position in the iteration
set, in the case it exists, i.e. EMC

ZEMC

Z(IT) ∈ {0, …, ∞}.
Both hierarchical and non-hierarchical relation-

ships among the objects of the problem area reflect on
user interface scenario. Therefore, they are important
part of the space of processes and are treated as arrows
between objects of category SeqX, i.e. SeqX(R) =
{Rel}, where Rel = {Rel1, …, RelRN} and RE ∈
{(EMCN – 1), …, (EMCN * 2 – 1)}. Each relation-
ship , where Y ∈ {1, …, RN}, has at least 6 attri-
butes:

YRel

• Type describes a nature of relationship in the
space of processes. Each relationship can be ag-
gregation, generalization, binary association,
iteration or multiple executions, i.e. RelY(Typ) ∈
{AG, GE, Bin, Iter, Multi}.

71

D. Zobakienė, T. Zobakas, S. Gudas

72

Table 2. Hierarchical relationships • The subject of relationship is an EMC from a set
of EMCs, i.e. RelY (Subject) ∈ {EMC1, …,
EMCEMCN}. Notation Specification

A. B.

Generalization (GE), when
GE (Typ)RelY = is vertically represented

bi-directional relationship. For this
relationship GE dimension of object EMC is
changed, i.e.
and AG dimension is kept the same

)GE(EMC)GE(ZX ≠

)AG(EMCZ

EMC

)AG(EMCX = .

A. The direction of child-parent relationship
is according to GE arrow, with positions
in the space of processes

 and

.

)t,(jT)(GE,EMC 11X =
)t,(jT)(GE,EMC 22Z =

B. The direction of parent–child
relationship is opposite to GE arrow,
with positions in the space of processes

 and

.

)t,(jT)(GE,EMC 12X =
)t,(jT)(GE,EMC 21Z =

Return direction is opposite to type arrow (A)
or direction arrow (B).

A. B.

Aggregation (AG), when AG (Typ)RelY =
is vertically represented bi-directional
relationship. For this relationship AG
dimension of object EMC is changed

)AG(EMC)AG(EMC ZX ≠ and GE
dimension is kept the same

)GE(EMC)GE(EMC ZX = .

A. The direction of child-parent relationship
is according to AG arrow, with positions
in the space of processes

 and

.

)t,i(T)(AG,EMC X 11=
)t,i(T)(AG,EMCZ 22=

B. The direction of parent–child
relationship is opposite to GE arrow,
with positions in the space of processes

 and

.

)t,i(T)(AG,EMC X 12=
)t,i(T)(AG,EMCZ 21=

Return direction is opposite to type arrow (A)
or direction arrow (B).

• Subject multiplicity describes the existence
conditions of subject elements, i.e. RelY

(Subject_multi) ∈ {0..1, * , 1..*}.
• The object of relationship is an EMC from a set of

EMCs, i.e. RelY (Object) ∈{EMC1, …, EMCEMCN}.
• Object multiplicity describes the existence

conditions of object elements, i.e. RelY

(Object_multi) ∈ {0..1, * , 1..*}.
• Direction shows type of action (forward, return or

both). The direction is supposed to have one of 3
values, i.e. RelY (Direction) ∈ {–1, 0, 1}. When
the transition is from relationship object to the
subject, it has the meaning ‘forward” and RelY
(Direction) = 1. In the case the type of action is
“return”, then RelY (Direction) = –1.

3.3. Types of Relationships in the Space of
Processes

All types of relationships in the space of processes
[15] must fit the following requirement – both subject
and object of relationship is an EMC, i.e. RelY(Subject)
= EMCX and RelY(Object) = EMCZ, where EMCX,
EMCZ ∈{EMC1, …, EMCEMCN}.

Hierarchical relationship, where RelY(Typ) ∈{AG,
GE}, in addition to 6 attributes (see Section 3.2) has 2
specific attributes. These additional attributes specify
hierarchical direction of relationship between subject
and object of the relationship:
• „Parent” is the object from higher hierarchical

level, which can be subject or object of the
relationship, i.e. RelY(Parent) ∈ RelY(Subject),
RelY(Object) and RelY(Parent) ≠ RelY(Child).

• „Child” is the object from lower hierarchical
level, which can also be subject or object of the
relationship, i.e. RelY(Child) ∈ {RelY(Subject,
RelY(Object)} and RelY(Child) ≠ RelY(Parent).

There exists only one restriction - the subject and
object of hierarchical relationship can’t be the same
EMC, i.e. RelY(Subject) ∈ RelY(Object) or EMCX ≠
EMCZ. While keeping in mind that an EMC has 4
objects, the hierarchical relationship is detailed as
follows: RelY(Subject) = EMCX(IMP) and RelY(Object)
= EMCZ(INI). Table 2 specifies hierarchical relation-
ships in the space of processes.

Non-hierarchical relationships, when RelY(Typ)

∈{Bin, Iter, Multi}, have only 6 attributes: type,
subject, subject multiplicity, object, object multiplicity
and direction (see Section 3.2). In comparison to
hierarchical relationships they can have the same
subject and object, i.e. it can be RelY(Subject) =
RelY(Object) or ZX EMCEMC = .

When the relationship is child-parent relationship
(case A in Table 2) RelY(Subject) = RelY(Child) =
EMCX and .
When the relationship is parent–child relationship
(case B in Table 2) Rel

ZYY EMC(Parent)Rel(Object)Rel ==

ZYY EMC(Child)Rel(Object) ==
Y(Subject) = RelY(Parent) =

EMCX and . Rel

There exist basic restrictions for all non-
hierarchical relationships, i.e. EMCX(GE) =
EMCZ(GE), EMCX(AG) = EMCZ(AG). The Table 3
specifies non-hierarchical relationships in the space of
processes.

Composition of Task-Dialog Model in The Space Of Processes

73

Table 3. Non-hierarchical relationships

Notation Specification

Binary association, when Bin(Typ)RelY =

and , is a bi-directional
relationship represented in the space of
processes horizontally (only T position is
changed).

ZX EMCEMC ≠

Iteration, when ,

 and
Iter (Typ)RelY =

)T(EMCZ)T(EMC X =

)IT(EMC)IT(EMC ZX ≠ , is one-
directional relationship represented in the
space of processes in the additional iteration
axis (T, AG and GE positions are not
changed). This relationship specifies multiply
execution of the same EMC with the different
pre-conditions (incoming information).

Multiply execution, when Rel

and
 Multi(Typ)Y =

)T(Z

)IT
EMC)T(EMC X =

(EMC)IT(ZXEMC = , is a one-
directional relationship represented in the
space of processes in the additional iteration
axis (T, AG and GE positions are not
changed). This relationship specifies multiply
execution of the same EMC with the same
pre-conditions (incoming information).

In this section the space of processes, its elements
and possible relationships among them are specified
by the terms of formal notation – category theory. This
formalism is used to describe object-oriented user
interface, which will be presented in the next section.

4. Composition of the Task-Dialog Model in
the Space of Processes

The task-dialog model is based on the process mo-
del, thus syntactic quality of the process model is an
important pre-condition in the process of task-dialog
model composition.

4.1. Syntactic Quality of Process Model

In this paper presented UI modelling method the
process model is treated as a combination of class and
sequence diagrams in UML notation. Class diagram
specifies static information of a problem area – data
structures (classes and their attributes) and actions
with them (class operations). Sequence diagram
specifies an order of system operations, which are
directly related to UIs [14].

Syntactic quality of process model means that mo-
del is consistent and all its elements are syntactically
related to each other. In the quality assurance process
the following requirements get proved. It results into
the list of missing or redundant parts of process
model, which should be necessary in UI development.

The category theory is used to specify these
requirements:
1. All sequence diagram objects (SO) are classes

(CO) from the class diagram, i.e. SO = {SO1, …,
SOSON}, }{1,...,CONSON ∈ ir . COSO ⊂

2. All sequence diagram messages (M) are calls of
appropriate class operations (O), i.e. =∀ ZM

, where , C = {1, …,
CON}, Y = {1, …, ON} and CO

)(YC OCO }...,,1{ MNZ =

{1,...,N =
C = SON =

MZ(Sec_object), where . }SON

3. The subject M and the object
 of each sequence diagram

message (

)_(subjectSeqZ

)object
}{1,..., MNZ

_(SeqM Z

ZM ∈) must have direct
relationship in the class diagram, i.e. ∃ , when XR

}{1,...,CRNX ∈ , then {RX(Rel_subject),
{RX(Rel_object) = { M),_(SeqM Z subject Z(Sec_
object).

The process of syntactic control is performed for
the each sequence diagram , where Y .
Then each message from the sequence diagram

, where

YS

}

}{1,..., SN∈

ZM
MNYS {1,...,Z ∈ , is verified against the 3rd

rule above – the relationship between appropriate
classes must exist, i.e. {RX(Rel_subject),
{RX(Rel_object) = { M),_Seq

}
(

{1,...,X
subjectM Z

CRN
Z(Sec_ob-

ject), where ∈ .
In the case the relationship is not found in the class

diagram, UI developer will be informed on this
syntactic error and forced to correct it (return arrow to
application model in Figure 1).

The all three rules of process model syntactic
quality find out missing or redundant relationships not
only in both types of diagrams, but also between the
diagrams. However, is the relationship missing in one
diagram, or redundant in another – UI developer must
decide himself.

4.3. Composition of Task-Dialog Model

When the task-dialog model composition pre-
conditions are satisfied (syntactic quality of process
model is sufficient) it is possible to proceed to the
TDM generation phase. The TDM is generated from
process model and placed into the space of processes.
By the terms of the category theory the transformation
rules are called the functor FTDM : PM → TDM (arrows
B and C in Figure 1).
The functor FTDM is a set of rules, which are applied to
the each sequence diagram SX, where X ∈ SN}.
• A separate sequence of user actions is composed

from the each sequence diagram in the same
space of processes, meanwhile the sequence dia-
gram name is assigned to user actions sequence
name, i.e. SX (Name) = SeqX(Name).

D. Zobakienė, T. Zobakas, S. Gudas

74

• Transformation to the TDM starts from the first
message in the sequence diagram, which has no
previous message, i.e. ∅=)_(prevSeqM Z .
Thanks to the attributes (Sequence_prev ir Se-
quence_next) of the each message it’s possible to
define the previous and the next messages. The
subject and object of each message are
transformed to abstract EMCs in the space of
processes. Each message of the sequence diagram
SX(MY), where Y ∈ {1, …, MN} and X ∈ {1, …,
SN} is transformed to the message RelZ (Z ∈ {1,
…, RN}) in the space of processes according the
following rules:

transformation to the task-dialog model. So, the task-
dialog model is composed in the space of processes
from the syntactic correct process model according the
predefined transformation rules.

The way of applying these transformation rules is
presented in the next section as a case study of an
ordering system.

5. Case Study: Ordering System

The case study of the ordering system is used to
show the composition process of task-dialog model
using process model.

• Appropriate relationship between classes in a
class diagram should be found, i.e.

={R),_({ subjectSeqM Z

XR

(EMCM

)}_(objectSeqM Z

)Parent

X (Rel
_subject), RX(Rel_object)}. If the type of rela-
tionship is hierarchical (AG or GE), then
“hierarchical direction” must be stored as the
attributes of the relationship between EMCs.
There exist additional relationship attributes, i.e.
“parent” () and “child” (EMCM
(Child)). Depending on the type of hierarchical
relationship (AG or GE) appropriate dimension (i
or j) of the object of relationship is corrected.

Suppose one UI function of ordering system (new
order from customer) should be modelled. The static
structure (class diagram) consists of 5 classes. General
information from class Person (it describes the infor-
mation of all private customers) and class Company (it
describes the information of all business customers)
are generalised in a class Customer. This class is asso-
ciated to class Order (it describes order information)
through binary relationship, when each order must
have a customer, who made it, but not each customer
must have order made. Each order must have at least
one order row (class OrderRow). An example of order
system class diagram is depicted in Figure 6.

• The attributes of the TDM objects (e.g.)
and relationships (e.g.) are assigned values
from class and sequence diagram elements:
EMC

MEMC

MRel

M = MZ, EMCM(AG) = I, EMCM(GE) = J,
EMCM(T) = M, RelM(Object) = EMCM,
RelM(Subject) = MZ(Seq_prev), RelM(Object_
multi) = RX(Object_multi), RelM(Subject_ multi)
= RX(Subject_multi), RelM(Type) = RelX(Type).

The new order-processing scenario starts from
Order.NewOrder function call. This function can’t be
completed without the customer’s data, so function
Customer.NewCustomer is called consequently. From
the class diagram (see Figure 7) follows that class
Customer is a parent class and the class instance
Customer must have either Person or Company
instance. That’s why either Person.NewPerson or
Company.NewCompany is called to collect customers’
information. The instance Order also is not complete
without order rows (it follows from the class
diagram), so the function OrderRow.NewRow is called
for all new order rows. An example of order system
sequence diagram is depicted in Figure 7.

In this section the conditions of syntactic quality of
process model and the composition process of the
task-dialog model were specified. The process model
should be consistent and complete against the rules
that specify sufficient conditions of the process model

+NewCustomer()
+EditCustomer()
+DeleteCustomer()

-CustomerID
-Address : char
-E-mail : char
-PhoneNumer : int

Customer

+NewOrder()
+EditOrder()
+DeleteOrder()

-OrderID : char
-CustomerID
-Date : Date

Order

1 0..*

+NewRow()
+EditRow()
+DeleteRow()

-ItemID : char
-Amount : int

OrderRow

1
1..*

+NewCompany()

-CompanyID : int
-Name : char

Company

+NewPerson()

-PersonID : int
-Surname : char
-Name : char

Person

Figure 7. Class diagram of ordering system

Composition of Task-Dialog Model in The Space Of Processes

Order Customer

Person

NewCustomer()

NewPerson()

{*for all: }

{OR}

OrderRow

NewRow()

CompanyNewOrder()

NewCompany()

Figure 8. Sequence diagram “new order and new customer”

The task-dialog model in the space of processes is
depicted in Figure 8.

The task-dialog model composition starts from the
first message in the sequence diagram, i.e
Order.NewOrder. This function becomes the first
EMC in the space of processes with the following
attributes: , EMC().1 NewOrderOrderEMC = 1(AG) =
1, EMC1(GE) = 1 and EMC1(T) = 1.

T

AG

GE

 t2 t3 t4

i2

i1

 j1

j2

New
Customer

New
OrderRow

New
Order

New
Person

New
Company

i2,j2,t2

i1,j2,t4

i2,j1,t3

i2,j2,t1

Function Customer.NewCustomer is transformed to
the second EMC in the space of processes with the
following attributes: EMC2 = Customer.NewCus-
tomer(), EMC2(AG) = 1, EMC2(GE) = 1 and EMC2(T)
= 2. Also the first relationship between EMC1 and
EMC2 is created with the following attributes:
Rel1(Object) = EMC2, Rel1(Subject) = EMC1,
Rel1(Object_multi) = {0..*}, Rel1(Subject_multi) = {1}
and Rel1(Type) = {Bin}.

i0j0t0 t1

The functions Person.NewPerson and Company.
NewCompany form a sequence of EMCs

 Company. New-
Company()},

wPerson(),{Person.NeEMC3 ∈
1(AG)EMC3 = , and

. Appropriate relationship is created
also: ,

2(GE)EMC3 =

2(Subject)
3(T)EMC3 =

32 EMC(Object)Rel = Rel 2EMC= ,
, {1}lti)(Object_muRel2 = Rel2 {1}ulti)(Subject_m =

and . {GE}(Type)Rel2 =

Figure 9. Task-dialog model of “new” order” function

Since the OrderRow.NewRow function can be re-
peated more then one time with the same incoming
data, there exist one more specific relationship –
multiply execution. It follows from the relationship
multiplicity between classes Order and OrderRow in
the class diagram (see Figure 7) and the type of
OrderRow.NewRow function call “for all” in the
sequence diagram (see Figure 8). The subject and
object of this relationship is the same : 4EMC

The last function in the sequence diagram is
OrderRow.NewRow, which can be repeated more then
one time, depending on the number of order rows in
the order. This function becomes the last EMC in the
space of processes with the following attributes:

44 EMC(Object)Rel = , , 44 EMC(Subject)Rel =
{1}lti)(Object_muRel4 = , {1}ulti)(Subject_mRel4 =

and {Multi}(Type)Rel4 = . ewRow()OrderRow.NEMC3 = , 2(AG)EMC4 = ,
 and . Appropriate rela-

tionship is created: ,
,

2(GE)EMC4 = (T)EMC4

3(Object)Rel

33 EMC(Subject)Rel = Rel3

3

4EMC=
{1..*}lti)(Object_mu

=

= ,
 and . {1}ulti)(Subject_mRel3 = {AG}(Type)Rel3 =

The further step is the TDM verification against
the rules that specify GUI specific information, e.g.
backward navigation in GUI hierarchy or error
correction logics. Then the TDM is transformed to the
abstract and then the concrete presentation models and
transferred to the software code generation.

75

D. Zobakienė, T. Zobakas, S. Gudas

76

6. Conclusions

This paper presented the composition process of
the task-dialog model. The task-dialog model is
composed from the process model while both get
developed in object-oriented notations. The process
model is specified in UML notation and task-dialog
model in the space of processes. The space of process
is designed to reflect hierarchical and non-hierarchical
relationships between the objects of problem area, in
our case, between user interface elements.

In comparison to other UI modelling methods, in
this paper presented UI modelling method provides
the rules of directly task-dialog model composition
from process model, while both models are object-
oriented. Object-oriented task-dialog model provides
the following benefits and solves the problems that
were defined in Section 1:
• The task-dialog model is directly associated to the

process model through its generation rules,
therefore the same problem area information is
not modelled twice, but is reused.

• The task-dialog model is object-oriented, as it
exists in the object-oriented space of processes,
which represents not only hierarchical, but also
non-hierarchical relations between problem area
objects. Hierarchical information is considered to
affect the sequence of UIs that is why it should be
modelled.

The work in this paper focuses on task-dialog mo-
del composition process and prerequisites to this
process. Future work includes specification of back-
ward navigation in GUI hierarchy and error correction
logics, which should enhance the quality of the task-
dialog model.

References
 [1] H. Balzert. From OOA to GUIs: The JANUS System.

Journal of Object-Oriented Programming. ISSN
0896-8438, SIGS Publications, Vol.8(1), 1995, 43-47.

 [2] M. Barr, Ch. Wells. Category Theory for Computing
Science. ASIN 0133238091, Prentice Hall, 1990, 1-84.

 [3] M. Bergholtz, P. Jayaweera, P. Johannesson, P.
Wohed. Process Models and Business Models – a
Unified Framework. Advanced Conceptual Modeling
Techniques. ISBN: 3-540-20255-2. Heidelberg: Sprin-
ger-Verlag, 2002, 364-377.

 [4] S. Gudas. The Space of Processes as a Framework for
Knowledge-Based Requirements Engineering.
Information Technology and control. ISSN 1392-
124X. Kaunas: Technologija, No.1(7), 1998 ,49-62.

 [5] S. Gudas. A framework for research of information
processing hierarchy in enterprise. Mathematics and
Computers in Simulation. ISSN 03784754. Elsevier,
No.33, 1991, 281-285.

 [6] S. Gudas, T. Zobakas. The models of lifecycles for
modeling activity process in organisations (in
lithuanian). Information sciences. ISSN 1392-0561.
Vilnius University Publishing House, Vol.10, 1999,
73-82.

 [7] C.A. Hurtado, A.O. Mendelzon, A.A. Vaisman.
Updating OLAP dimensions. Data Warehousing and
OLAP. ISBN:1-58113-220-4. New York: ACM Press,
1999, 60-66.

 [8] A. Kleppe, J. Warmer, W. Bast. MDA explained.
The model driven architecture: practice and promise.
ISBN 0-321-19442-X. Addison-Wesley, 2003, 1-54.

 [9] E. Schlungbaum, T. Elwert. Modellierung von
graphischen Benutzungsoberflächen im Rahmen des
TADEUS-Ansatzes. Berichte des German Chapter of
the ACM. ISBN 3-519-02686-4. Teubner, 1995, 331-
348.

[10] P.P. Silva. UMLi: Integrating User Interface and
Application Design. IEEE Software. ISSN:0740-7459.
Los Alamitos: IEEE Computer Society Press, Vol.20
(4), 2003, 62-69.

[11] P.P. Silva. User Interface Declarative Models and De-
velopment Environments: A Survey. Proceedings of
DSV-IS 2000. ISBN. 3-540-41663-3. Telos: Springer
Verlag, 2001, 204-226.

[12] UI RUPture, Editorial Comment. http:// www.
uidesign.net/2000/opinion/UIRupture.html, 2001.

[13] Unified modeling language (UML). Version 1.5.
http://www.omg.org/technology/documents/formal/uml
.htm, 2003.

[14] T. Zobakas, S. Gudas. The approach for object-
oriented model verification (in Lithuanian). Informa-
tion sciences. ISSN 1392-0561. Vilnius University
Publishing House, Vol.23, 2002, 103-112.

[15] D. Zobakiene. Object-oriented process modelling
using a process meta-model (in Lithuanian). Informa-
tion sciences. ISSN 1392-0561. Vilnius University
Publishing House, Vol.26, 2003, 212-217.

http:// www. uidesign.net/2000/opinion/UIRupture.html
http:// www. uidesign.net/2000/opinion/UIRupture.html
http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://www.omg.org/cgi-bin/doc?formal/01-09-67

