ON THE GRAPH COLORING POLYTOPE

Gintaras Palubeckis

Multimedia Engineering Department, Kaunas University of Technology
Studentu St. 50, LT-51368 Kaunas, Lithuania

Abstract

The graph coloring problem consists in assigning colors to the vertices of a given graph G such that no two adjacent vertices receive the same color and the number of used colors is as small as possible. In this paper, we investigate the graph coloring polytope $P(G)$ defined as the convex hull of feasible solutions to the binary programming formulation of the problem. We remark that $P(G)$ coincides with the stable set polytope of a graph constructed from the complement \bar{G} of G. We derive facet-defining inequalities for $P(G)$ from independent sets, odd holes, odd anti-holes and odd wheels in \bar{G}.

Key words: polyhedral combinatorics, graph coloring, polytopes, facets.

1. Introduction

Given a simple graph $G=(V, E)$ with vertex set V and edge set E, a vertex coloring is an assignment of colors to the vertices so that no two adjacent vertices receive the same color. The graph coloring problem is to find a vertex coloring with the number of used colors as small as possible. This minimum number $\chi(G)$ of colors is called the chromatic number of the graph G.

There exist many approaches for the graph coloring problem. These approaches include both exact [$2,4,10,16$] and heuristic [$1,7,8,9]$ solution methods. In the development of algorithms for graph coloring, various integer programming formulations of the problem could be used. Several such formulations, each involving binary variables, have been proposed: independent set formulation [10], an integer program with a variable for each possible color and vertex [5, 11], a model relating acyclic orientations of a graph to its chromatic number [6], a model with vertices representing colors [3], and a formulation based on star partitioning of the complement of a given graph [14].

Let $\bar{G}=(V, \bar{E})$ denote the complement of the graph $G=(V, E)$ of order $n=|V|$. Assume (which is not restrictive) that each connected component of \bar{G} has order greater than two. Letting V be a set of integers treated as unique identifiers assigned to the vertices of G, we define $T=\{(i, j, k) \mid i<$ $\min \{j, k\}$ and $\{i, j, k\}$ forms a triangle in $\bar{G}\}$ and $\Pi=\{(i, j, k) \mid(i, j),(j, k) \in \bar{E},(i, k) \notin \bar{E}\}$. The formulation proposed in [14] is as follows:

$$
\begin{equation*}
\chi(G)=\min \left(n-\sum_{(i, j) \in \bar{E}} x_{i j}\right) \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { s.t. } & x_{i j}+x_{j k} \leqslant 1 \quad \text { for all } \quad(i, j, k) \in T \cup \Pi \\
& x_{i j} \in\{0,1\} \quad \text { for all } \quad(i, j) \in \bar{E} . \tag{3}
\end{array}
$$

In [14], it is shown that

$$
\begin{equation*}
\chi(G)+\alpha\left(H_{G}\right)=n, \tag{4}
\end{equation*}
$$

where $\alpha\left(H_{G}\right)$ is the independence number of the graph $H_{G}=\left(V_{H}, E_{H}\right)$ with vertices $t_{i j} \in V_{H}$ corresponding to $(i, j) \in \bar{E}$ and edges $\left(t_{i j}, t_{j k}\right) \in E_{H}$ corresponding to $(i, j),(j, k) \in \bar{E}$ such that either $(i, j, k) \in \Pi$ or $(i, j, k) \in T$. From equation (4), it is evident that, using (1)-(3), the graph coloring problem can be reduced to that of finding a maximum independent set in a graph. In the current paper, we exploit this relationship between these two problems.

Given a graph G, we define the polytope $P(G)=$ conv $\left\{x=\left(x_{i j}\right),(i, j) \in \bar{E} \mid x\right.$ satisfies (2) and (3) $\}$. When dealing with polytopes, one of the main problems is to identify large classes of inequalities that are facet-defining for them. In the next section, we study the facetial structure of $P(G)$ and derive such inequalities from independent sets, odd holes, odd anti-holes and odd wheels in \bar{G}.

We end the introduction with a few basic definitions and notations. A star is a tree S with vertex set $V=\left\{v_{1}, \ldots, v_{l}\right\}, l \geqslant 1$, and edge set $E=$ $\left\{\left(v_{1}, v_{i}\right) \mid i=2, \ldots, l\right\}$ if $l>1$ and $E=\emptyset$ if $l=1$. The vertex v_{1} is called a centre vertex of the star and is denoted by $c(S)$. Given a graph $G=(V, E)$, we denote by $N_{i}(G), i \in V$ (or just N_{i}) the set of vertices adjacent to i. The subgraph of G induced by a vertex set $V^{\prime} \subset V$ is denoted by $G\left(V^{\prime}\right)$. The stable set polytope $P_{\text {stable }}(G)$ of a graph G is the convex hull of the incidence vectors of the independent (stable) sets
in G. The basic concepts of polyhedral theory can be found, for example, in [15].

2. Facets of the polytope

In this section, we exhibit a few classes of facetdefining inequalities for $P(G)$. We start by pointing out a one-to-one correspondence between colorings of G and admissible star partitions of \bar{G}. By a star partition we understand a collection s of stars $S_{i}=\left(V_{i}, E_{i}\right), i=1, \ldots, l$, in \bar{G} such that $V_{i} \cap V_{j}=\emptyset$ for each pair $i, j, i \neq j, \cup_{i=1}^{l} V_{i}=V$, and V_{i} for each $i \in\{1, \ldots, l\}$ induces a clique in \bar{G}. We will write $E(s)=\cup_{i=1}^{l} E_{i}$. We say that a star partition s is admissible if, for each $S_{i} \in s$, the centre vertex $c\left(S_{i}\right)=\min _{j \in V_{i}} j$. We denote the set of all admissible star partitions of \bar{G} by $\Psi(\bar{G})$. For $s \in \Psi(\bar{G})$, let $x(s)=\left(x_{i j}(s) \mid(i, j) \in \bar{E}\right)$ be the incidence vector of s, that is, $0-1$ vector with $x_{i j}(s)=1$ if and only if $(i, j) \in E_{k}$ for some star S_{k} in s. In [14], it is proved that the incidence vectors of star partitions in $\Psi(\bar{G})$ are the only integer points in $P(G)$.

In the rest of this section, we use the following fact, which, in particular, implies that $P(G)$ is fulldimensional $(\operatorname{dim} P(G)=|\bar{E}|)$.

$$
\text { Proposition 1. } P(G)=P_{\text {stable }}\left(H_{G}\right)
$$

The above equation easily follows from (1)-(4) and the definition of $P(G)$. The next assertion is obvious as well.

Proposition 2. For each $(i, j) \in \bar{E}$, the inequality $x_{i j} \geqslant 0$ defines a facet of $P(G)$.

In order to present the first class of nontrivial facet-defining inequalities we need some additional notations. Let $\bar{E}_{i}, i \in V$, denote the set of edges of \bar{G} incident to i. Define $\bar{E}_{i}^{\prime}=\left\{(i, j) \in \bar{E}_{i} \mid j<i\right\}$, $\bar{E}_{i}^{\prime \prime}=\bar{E}_{i} \backslash \bar{E}_{i}^{\prime}, N_{i}^{\prime \prime}=\left\{j \in N_{i} \mid(i, j) \in \bar{E}_{i}^{\prime \prime}\right\}$. Let I be an inclusion-wise maximal independent set in the graph $\bar{G}\left(N_{i}^{\prime \prime}\right)$ and $E_{i}(I)=\left\{(i, j) \in \bar{E}_{i}^{\prime \prime} \mid j \in I\right\}$. We are interested in the following inequality

$$
\begin{equation*}
\sum_{(i, j) \in \bar{E}_{i}^{\prime} \cup E_{i}(I)} x_{i j} \leqslant 1 . \tag{5}
\end{equation*}
$$

Theorem 1. For a non-isolated vertex $i \in V$ and any maximal independent set I in the graph $\bar{G}\left(N_{i}^{\prime \prime}\right)$, the inequality (5) is valid for $P(G)$. In the case where \bar{G} has no connected component of order two, (5) defines a facet of $P(G)$ if and only if $\left|\bar{E}_{i}^{\prime} \cup E_{i}(I)\right| \geqslant 2$.

Proof. It is easy to see that the edges of $\bar{E}_{i}^{\prime} \cup$ $E_{i}(I)$ define a clique K in the graph H_{G}. Therefore, (5) is valid for $P(G)$. Consider the case where $\left|\bar{E}_{i}^{\prime} \cup E_{i}(I)\right| \geqslant 2$. Assume that K is not maximal. This
means that there exists a vertex $t_{i k} \in V_{H}$ adjacent to all vertices in K. Clearly, $(i, k) \in \bar{E}_{i}^{\prime \prime}$. The maximality of I implies the existence of a vertex $j \in I$ such that $(j, k) \in \bar{E}$. However, $(i, j, k) \in T$ and hence $\left(t_{i j}, t_{i k}\right) \notin E_{H}$, a contradiction to the above assumption. As proved in [13], the inequality $\sum_{i \in V^{\prime}} x_{i} \leqslant 1$ for the vertex set V^{\prime} of an inclusion-wise maximal clique in a graph G defines a facet of $P_{\text {stable }}(G)$. Applying this result to H_{G} and using Proposition 1, we conclude that (5) is facet-defining for $P(G)$.

If $\bar{E}_{i}^{\prime} \cup E_{i}(I)=\{(i, j)\}$, then, since i belongs to a component of order greater than two, it follows that $t_{i j}$ in H_{G} is adjacent to at least one other vertex and, therefore, (5) does not define a facet of $P(G)$.

Notice that (5) can be viewed as a generalization of (2). Indeed, the latter coincides with (5) and thus is facet-defining for $P(G)$ only in the most simple cases. More specifically, (2) for $(i, j, k) \in T$ defines a facet of $P(G)$ if and only if either $N_{j}=\{i, k\}$ or $\bar{E}_{j}^{\prime}=\{(j, i)\}$ and $(k, l) \in \bar{E}$ for each $l \in N_{j}^{\prime \prime} \backslash\{k\}$. For $(i, j, k) \in \Pi$, (2) defines a facet of $P(G)$ if and only if either the same condition as for $(i, j, k) \in T$ is satisfied or $\bar{E}_{j}^{\prime}=\emptyset$ and $\{i, k\}$ is a maximal independent set in $\bar{G}\left(N_{j}\right)$.

We will now display three classes of inequalities for $P(G)$ with the right-hand side coefficient greater than one. Perhaps, the most simple such inequalities are derived from odd holes, that is, graphs $C=\left(V_{C}, E_{C}\right)$ having vertex set $V_{C}=\left\{v_{1}, \ldots, v_{h}\right\}$ of odd cardinality $h \geqslant 5$ and edge set $E_{C}=$ $\left\{\left(v_{i}, v_{i+1}\right) \mid i=1, \ldots, h-1\right\} \cup\left\{\left(v_{1}, v_{h}\right)\right\}$.

Theorem 2. For an odd hole C in \bar{G}, the inequality

$$
\begin{equation*}
\sum_{(i, j) \in E_{C}} x_{i j} \leqslant(h-1) / 2 \tag{6}
\end{equation*}
$$

defines a facet of $P(G)$.
Proof. The vertices $t_{v_{1} v_{h}}, t_{v_{i} v_{i+1}}, i=1, \ldots, h-$ 1 , induce an odd hole $C^{\prime}=\left(V_{C^{\prime}}, E_{C^{\prime}}\right)$ in the graph H_{G}. It is well-known [13] that the odd hole inequality

$$
\begin{equation*}
\sum_{t_{i j} \in V_{C^{\prime}}} x_{t_{i j}} \leqslant(h-1) / 2 \tag{7}
\end{equation*}
$$

defines a facet of the stable set polytope $P_{\text {stable }}\left(C^{\prime}\right)$. It remains to show that this inequality is facetdefining for the polytope $P_{\text {stable }}\left(H_{G}\right)$ too. Let $\left(v_{i}, v_{j}\right)$ be any edge of $\bar{E} \backslash E_{C}$. Suppose that $v_{i} \in V_{C}$ and $v_{j} \notin$ V_{C}. Assume for simplicity that $i \in\{2, \ldots, h-1\}$. Then the vertex $t_{v_{i} v_{j}}$ is adjacent to at most two vertices of C^{\prime}, namely, $t_{v_{i-1} v_{i}}$ and $t_{v_{i} v_{i+1}}$. We form an independent set U by taking $(h-1) / 2$ vertices on the path obtained by removing vertices $t_{v_{i-1} v_{i}}$ and
$t_{v_{i} v_{i+1}}$ from C^{\prime}. If $v_{i}, v_{j} \notin V_{C}$, then U is any independent set of size $(h-1) / 2$ in C^{\prime}. The incidence vector of the set $U \cup\left\{t_{v_{i} v_{j}}\right\}$ satisfies (7) with equality. Considering each $\left(v_{i}, v_{j}\right) \in \bar{E} \backslash E_{C}$, we obtain a collection of such vectors, which, obviously, are linearly independent. Consequently, (7) defines a facet of $P_{\text {stable }}\left(H_{G}\right)$. Hence, due to Proposition 1, (6) defines a facet of $P(G)$.

Let $W=\left(V_{W}, E_{W}\right)$ denote an odd wheel - a graph consisting of an odd hole, called the rim, and a vertex connected to all vertices of the rim, called the hub. The latter is denoted by c. The complement of an odd hole is called an odd anti-hole.

Theorem 3. For an odd wheel W in \bar{G} with $c=$ $\min _{v \in V_{W}} v$, the inequality

$$
\begin{equation*}
\sum_{i \in N_{c}(W)} x_{c i} \leqslant 2 \tag{8}
\end{equation*}
$$

is valid for $P(G)$. Furthermore, it is facet-defining if the following two conditions are satisfied:
(a) $\bar{E}_{c}^{\prime}=\emptyset$, that is, $i>c$ for each $(i, c) \in \bar{E}_{c}$;
(b) for each $i \notin V_{W}$ adjacent to c, there exists a pair of vertices $j, k \in N_{c}(W)$ such that $(j, k) \in E_{W}$ and $(i, j),(i, k) \in \bar{E}$.
Proof. Since, for an edge (i, j) of the rim, i, j and c induce a triangle, it follows that the vertices $t_{c i}$ and $t_{c j}$ are not adjacent in H_{G}. On the other hand, the vertex $t_{c i}, i \in N_{c}(W)$, is connected by an edge to each vertex $t_{c k}, k \in N_{c}(W),(i, k) \notin E_{W}$. Therefore, the subgraph of H_{G} induced by the vertices $t_{c i}, i \in$ $N_{c}(W)$, is an odd anti-hole $A=\left(V_{A}, E_{A}\right)$. For its vertex set V_{A}, the inequality

$$
\begin{equation*}
\sum_{t_{c i} \in V_{A}} x_{t_{c i}} \leqslant 2 \tag{9}
\end{equation*}
$$

defines a facet of the stable set polytope $P_{\text {stable }}(A)$ [12]. This fact establishes the validity of (8).

Now suppose that the stated conditions hold for W. Similarly to the proof of Theorem 2 , we construct the required collection of linearly independent incidence vectors. If (i, j) is an edge of the rim, we include in this collection the incidence vector of the independent set $U=\left\{t_{i j}, t_{c k}, t_{c l}\right\}$, where $\{k, l\} \cap\{i, j\}=\emptyset, k, l \in N_{c}(W)$ and $(k, l) \in E_{W}$. If $(i, c) \in \bar{E}, i \notin V_{W}$, then the conditions (a) and (b) allow us to argue that the set $U=\left\{t_{c i}, t_{c j}, t_{c k}\right\}$ is independent in H_{G} and we can use it to represent (i, c); here the meaning of j and k is as in (b). Finally, if $(i, j) \in \bar{E}, i \notin V_{W}, j \neq c$, then we can take the set $U=\left\{t_{i j}, t_{c k}, t_{c l}\right\}$, where k and l are adjacent vertices of the rim and both k and l differ from j if
$j \in N_{c}(W)$. Since the incidence vectors of the selected sets are linearly independent, it follows that (9) defines a facet of the polytope $P_{\text {stable }}\left(H_{G}\right)$. By virtue of Proposition 1, (8) is facet-defining for $P(G)$.

A result similar to the above theorems can also be stated for the odd anti-hole $A=\left(V_{A}, E_{A}\right),\left|V_{A}\right|=$ $h \geqslant 5$.

Theorem 4. For an odd anti-hole A in \bar{G}, the inequality

$$
\begin{equation*}
\sum_{(i, j) \in E_{A}} x_{i j} \leqslant h-3 \tag{10}
\end{equation*}
$$

defines a facet of $P(G)$.
Proof. The validity of (10) for $P(G)$ is obvious. We can assume that $h \geqslant 7$ because if $h=5$, then A coincides with its complement - the odd hole C. Let $a^{T} x \leqslant a_{0}$ denote the inequality (10) and let $b^{T} x \leqslant b_{0}$ be a facet-defining inequality for $P(G)$ such that $F_{a}:=\left\{x \in P(G) \mid a^{T} x=a_{0}\right\} \subseteq$ $F_{b}:=\left\{x \in P(G) \mid b^{T} x=b_{0}\right\}$. For $u \in V_{A}$, let $u, v_{1}, w_{1}, v_{2}, w_{2}, \ldots, v_{q}, w_{q}, q=(h-1) / 2$, be the list of vertices of A ordered in such a manner that $\left(u, v_{1}\right),\left(u, w_{q}\right),\left(v_{i}, w_{i}\right), i=1, \ldots, q,\left(w_{i}, v_{i+1}\right)$, $i=1, \ldots, q-1$, are the edges of C (or, equivalently, non-edges of A). We consider cliques in A defined by the vertex sets of the form $K_{r}=\{u\} \cup\left\{w_{i} \mid\right.$ $i=1, \ldots, r-1\} \cup\left\{v_{i} \mid i=r+1, \ldots, q\right\}$, where $r \in\{1, \ldots, q\}$. We define $\bar{K}_{r}^{\prime}=V_{A} \backslash$ $\left(K_{r} \cup\left\{v_{r}\right\}\right), \bar{K}_{r}^{\prime \prime}=V_{A} \backslash\left(K_{r} \cup\left\{w_{r}\right\}\right)$. We denote by $S\left(K_{r}\right)=\left(K_{r}, E\left(K_{r}\right)\right), r \in\{1, \ldots, q\}$ (similarly, $S\left(\bar{K}_{r}^{\prime}\right), S\left(\bar{K}_{r}^{\prime \prime}\right)$) the star with the vertex set K_{r} and centre vertex $c_{r}=\min _{v \in K_{r}} v$. Suppose $\left(v_{r}, j\right) \in \bar{E} \backslash E_{A}$ and $v_{r} \in V_{A}$. For star partition s with $E(s)=E\left(K_{r}\right) \cup E\left(\bar{K}_{r}^{\prime}\right)$ and star partition s^{\prime} with $E\left(s^{\prime}\right)=E(s) \cup\left\{\left(v_{r}, j\right)\right\}$, we have that $x(s), x\left(s^{\prime}\right) \in F_{a}$ and hence $x(s), x\left(s^{\prime}\right) \in F_{b}$ implying $b_{v_{r} j}=0$. Similarly, $b_{i j}=0$ for an edge $(i, j) \in \bar{E}, i, j \notin V_{A}$.

Therefore, it remains to evaluate $b_{i j}$ only for the edges $(i, j) \in E_{A}$. Our goal is to show for each $z \in$ V_{A} that

$$
\begin{equation*}
b_{z i}=b_{z j} \quad \text { for each pair } \quad i, j \in N_{z}(A) . \tag{11}
\end{equation*}
$$

For $u \in V_{A}$, define $\bar{E}(u)=\{(u, i) \mid i \in$ $\left.N_{u}(A)\right\}$. Given $u \in V_{A}$, we construct a graph G_{u} with vertices $t_{u i}$ corresponding to edges in $\bar{E}(u)$ and with edges added during a process to be described below. An edge $\left(t_{u i}, t_{u j}\right)$ appears in G_{u} upon establishing the fact that $b_{u i}=b_{u j}$. Throughout this process, all edges will belong to only one connected component of G_{u}. We denote it by G_{u}^{*}. Upon termination of the process, G_{u} will appear to be connected. This fact will imply (11) for $z=u$.

To show (11) for all vertices in V_{A}, we use mathematical induction. We can assume w.l.o.g. that $V_{A}=$ $\{1, \ldots, h\}$. First consider a vertex u for which $c_{r} \neq$ $u, r=1, \ldots, q$ (at least vertices $h, h-1, \ldots, h-q+2$ are of such type). The fact that G_{u} is connected will be established again by applying induction. We iteratively examine vertex sets $K_{r}, r=1, \ldots, q$. We denote by $V_{u}^{*}(r), u \in V_{A}, r \in\{1, \ldots, q\}$, the vertex set of G_{u}^{*} upon termination of the first r iterations. The statement to be proved inductively is the following: for $r \in\{1, \ldots, q\}$, the vertices $t_{u c_{i}}, i=1, \ldots, r$, $t_{u v_{i}}, i=2, \ldots, r, t_{u w_{i}}, i=1, \ldots, r-1$, and, if $r<q$, also $t_{u w_{r}}$ belong to $V_{u}^{*}(r)$.

In the first iteration, we consider K_{1}. Clearly, $c_{1} \in\left\{v_{i} \mid i=2, \ldots, q\right\}$. Comparing $E(s)=$ $E\left(K_{1}\right) \cup E\left(\bar{K}_{1}^{\prime \prime}\right)$ and $E(s) \cup\left\{\left(u, w_{1}\right)\right\} \backslash\left\{\left(u, c_{1}\right)\right\}$ we find that $b_{u c_{1}}=b_{u w_{1}}$. The edge $\left(t_{u c_{1}}, t_{u w_{1}}\right)$ defines initial G_{u}^{*}.

Suppose that $1<r \leqslant q$. By the induction hypothesis, at the beginning of the r th iteration, G_{u} consists of the component induced by $V_{u}^{*}(r-1)$ and a cloud of vertices. Comparing $E(s)=E\left(K_{r}\right) \cup$ $E\left(\bar{K}_{r}^{\prime}\right)$ and $E(s) \cup\left\{\left(u, v_{r}\right)\right\} \backslash\left\{\left(u, c_{r}\right)\right\}$ we conclude that $b_{u c_{r}}=b_{u v_{r}}$. If $r<q$, then similarly $b_{u c_{r}}=$ $b_{u w_{r}}$. We add to G_{u} the edge $\left(t_{u c_{r}}, t_{u v_{r}}\right)$ and, if $r<$ q, also the edge $\left(t_{u c_{r}}, t_{u w_{r}}\right)$. We can see that (at least) one of the vertices in $V_{u}^{r}:=\left\{t_{u c_{r}}, t_{u v_{r}}, t_{u w_{r}}\right\}\left(V_{u}^{r}\right.$ is without $t_{u w_{r}}$ if $r=q$) already belongs to $V_{u}^{*}(r-1)$. Indeed, if $c_{r} \in\left\{w_{i} \mid i=1, \ldots, r-1\right\}$, then $t_{u c_{r}} \in$ $V_{u}^{*}(r-1)$. Suppose $c_{r} \in\left\{v_{i} \mid i=r+1, \ldots, q\right\}$. Then $c_{r-1}=c_{r}$ if $v_{r}>c_{r}$ and $c_{r-1}=v_{r}$ if $v_{r}<c_{r}$. In the first case, $t_{u c_{r}}=t_{u c_{r-1}} \in V_{u}^{*}(r-1)$ and, in the second case, $t_{u v_{r}} \in V_{u}^{*}(r-1)$. The fact that $V_{u}^{r} \cap V_{u}^{*}(r-1)$ is nonempty implies that $V_{u}^{r} \subseteq V_{u}^{*}(r)$.

At the end of the described iterative process, G_{u} coincides with G_{u}^{*} and therefore is connected. Thus (11) for $z=u$ is proved.

Suppose that (11) holds for $z=u+1, u+$ $2, \ldots, h$, and now the vertex u is such that $c_{r}=u$ for at least one $r \in\{1, \ldots, q\}$. In this case, the above described process shall be modified. If, for $r \in\{1, \ldots, q\}, c_{r} \neq u$, then, at the r th iteration, the same arguments as before are used. So assume $r \in\{1, \ldots, q\}$ is such that $c_{r}=u$. For v_{r}, the following two cases are possible.

Case 1. $v_{r}>u, r>1$. Since $c_{r}=u$ it follows that $w_{i}>u, i=1, \ldots, r-1$, and $v_{j}>u, j=$ $r+1, \ldots, q$. Suppose $r>2$. According to the induction hypothesis, (11) holds for $w_{1}>u$ and $v_{r}>u$. Therefore, $b_{w_{1} u}=b_{w_{1} v_{r}}$ and $b_{v_{r} u}=b_{v_{r} w_{1}}$. Consequently, $b_{w_{1} u}=b_{v_{r} u}$ and $t_{u v_{r}} \in V_{u}^{*}(r)$. If $r=2$, then the same conclusion is drawn from the equations $b_{v_{3} v_{2}}=b_{v_{3} w_{1}}, b_{w_{1} u}=b_{w_{1} v_{3}}$ and $b_{v_{2} u}=b_{v_{2} v_{3}}\left(v_{3}\right.$ exists when $h \geqslant 7$).

Case 2. $v_{r}<u, r>1$. Then $c_{r-1}=v_{r}$ and, exactly as in the case of u for which $c_{i} \neq u, i=$ $1, \ldots, q$, we have $b_{u v_{r}}=b_{u v_{r-1}}=b_{u w_{r-1}}$. Hence $t_{u v_{r}} \in V_{u}^{*}(r-1) \subseteq V_{u}^{*}(r)$.

Notice that Case 2 can occur at most once. Indeed, $c_{r}=u$ implies that $v_{j}>u, j=r+1, \ldots, q$.

Similarly, for w_{r}, we consider the following two cases.

Case 1. $w_{r}>u, r<q$. Suppose $r>1$. Then, applying (11) to $w_{1}>u$ and w_{r}, we have $b_{w_{1} w_{r}}=$ $b_{w_{1} u}$ and $b_{w_{r} w_{1}}=b_{w_{r} u}$. Consequently, $b_{w_{1} u}=b_{w_{r} u}$ and $t_{u w_{r}} \in V_{u}^{*}(r)$. If $r=1$, then $V_{u}^{*}(1)=\left\{t_{u w_{1}}\right\}$.

Case 2. $w_{r}<u, r<q$. Then $c_{r+1}=w_{r}$. By comparing $E(s)=E\left(K_{r+1}\right) \cup E\left(\bar{K}_{r+1}^{\prime}\right)$ and $E(s) \cup$ $\left\{\left(u, v_{r+1}\right)\right\} \backslash\left\{\left(u, w_{r}\right)\right\}$ we find that $b_{u v_{r+1}}=b_{u w_{r}}$. Suppose $r>1$ (otherwise $V_{u}^{*}(1)=\left\{t_{u w_{1}}\right\}$). Then $w_{1}>u, v_{r+1}>u$ and, analogously as in the aboveconsidered cases, from (11) it follows that $b_{u v_{r+1}}=$ $b_{u w_{1}}$. Thus $t_{u w_{r}} \in V_{u}^{*}(r)$.

Again, Case 2 can be encountered at most once. Indeed, for $j>r$, the requirement $w_{i}>u, i=$ $1, \ldots, j-1$, for u to be the centre vertex of the star $S\left(K_{j}\right)$ cannot be met.

Thus, we have proved that (11) holds for each $z \in V_{A}$. Since A is connected it follows that $b_{i j}=\lambda$ for all $(i, j) \in E_{A}$ and some $\lambda \in \mathbb{R}$. This means that $b^{T} x \leqslant b_{0}$ is a multiple of (10). Therefore, the inequality (10) is facet-defining for $P(G)$.

3. Concluding remarks

In this paper, we presented several classes of facet-defining inequalities for the graph coloring polytope. Most of the proofs were based on the fact that this polytope coincides with the stable set polytope of the graph derived from the complement of a given graph. This relationship can be used to discover new classes of valid or even facet-defining inequalities. Another possible direction of further work is to devise efficient separation algorithms for such inequalities. We are hopeful that the results obtained will be of value in the development of new graph coloring algorithms.

References

[1] C. Avanthay, A. Hertz, N. Zufferey. A variable neighborhood search for graph coloring. European Journal of Operational Research, 2003, Vol.151, 379388.
[2] D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 1979, Vol.22, 251-256.
[3] M. Campêlo, R. Corrêa, Y. Frota. Cliques, holes and the vertex coloring polytope. Information Processing Letters, 2004, Vol.89, 159-164.
[4] M. Caramia, P. Dell'Olmo. Iterative coloring extension of a maximum clique. Naval Research Logistics, 2001, Vol.48, 518-550.
[5] P. Coll, J. Marenco, I. Méndez Díaz, P. Zabala. Facets of the graph coloring polytope. Annals of $O p$ erations Research, 2002, Vol.116, 79-90.
[6] R.M.V. Figueiredo, V.C. Barbosa, N. Maculan, C.C. de Souza. New $0-1$ integer formulations of the graph coloring problem. In: Proceedings of XI CLAIO, 2002.
[7] P. Galinier, J.-K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, 1999, Vol.3, 379-397.
[8] A. Hertz, D. de Werra. Using tabu search techniques for graph coloring. Computing, 1987, Vol.39, 345351.
[9] D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon. Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Operations Research, 1991, Vol.39, 378-406.
[10] A. Mehrotra, M.A. Trick. A column generation approach for graph coloring. INFORMS Journal on Computing, 1996, Vol.8, 344-354.
[11] I. Méndez Díaz, P. Zabala. A polyhedral approach for graph coloring. Electronic Notes in Discrete Mathematics, 2001, Vol.7, 178-181.
[12] G.L. Nemhauser, L.E. Trotter. Properties of vertex packing and independence system polyhedra. Mathematical Programming, 1974, Vol.6, 48-61.
[13] M.W. Padberg. On the facial structure of set packing polyhedra. Mathematical Programming, 1973, Vol.5, 199-215.
[14] G. Palubeckis. On the recursive largest first algorithm for graph colouring. International Journal of Computer Mathematics, to appear.
[15] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, Berlin, 2003.
[16] E.C. Sewell. An improved algorithm for exact graph coloring. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1996, Vol.26, 359-373.

