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Abstract. We present a new algorithm that follows “divide and conquer” machine learning approach and exhibits a 
few interesting cognitive properties. The algorithm aims at building the decision tree with only one terminal node per 
class. Splits of tree nodes are constrained to functions that take identical values (true or false) for every instance within 
the same class. Appropriate splits are found through an exhaustive search in the attribute-value-based function space. 
Simple single-attribute functions are considered before complex multi-attribute k-DNF type ones. Redundant functions 
are also being incorporated into the decision tree. The unique structure of the decision tree results in that semantic 
interpretation can be attached to both terminal and non-terminal nodes, the task-specific set of classes is structured 
within a hierarchy of similarity relationships, and sources of recognition errors can be traced back (localized) to some 
particular function/split in the decision tree. The new algorithm was implemented, experimentally evaluated and 
compared with the well-known machine learning techniques Ripper and C4.5. Though limited in scope the experiments 
showed that the new algorithm can perform at least as well as Ripper and C4.5. Redundant knowledge incorporated 
into the decision tree helped to improve the recognition accuracy. 

 
 

1. Introduction 2. Related work 

The classification problem1 is the problem of 
assigning one of the pre-defined class labels to some 
instance, the decision being based on the training set, 
i.e. on the set of other related instances with pre-
assigned class labels. There are a lot of machine lear-
ning (ML) techniques that address the classification 
problem. The majority of ML techniques are operating 
in two phases: learning phase and recognition phase. 
During the learning phase, computational efforts are 
spent on inductive reasoning, i.e. on generalizing and 
discovering regularities within the training set. During 
the recognition phase, regularities are exploited for 
making decisions about unknown instances. Machine 
learning techniques are based on statistical, neural/ 
distributed or symbolic approaches [8][6]. Symbolic 
machine learning techniques have the advantage of 
inducing knowledge that can be understood and inter-
preted by humans. We believe that symbolic know-
ledge might be more appropriate for computer-based 
manipulations as well. Thus we concentrate on sym-
bolic machine learning methods in this paper.  

This paper describes the initial phase of our re-
search, which has the ultimate objective of construc-
ting adaptive computer-based system that behaves 
rationally in an artificial grid-world environment. The 
ability of learning, generalizing, recognizing repeated 
patterns in this environment are of crucial importance 
to any adaptive system. Under the architectural as-
sumptions of the "classical AI", learning abilities may 
be thought of as constituting independent learning 
subsystem that interacts with the subsystems of 
planning, execution, and monitoring. Though learning 
subsystem must be of incremental nature, we are 
addressing the simplified non-incremental version of it 
in this paper. Though the algorithm presented in this 
paper is designed to solve the standard supervised 
learning/classification problem, it is different from 
analogous approaches in two respects. First, it is 
biased for detecting reliable regularities in the data. 
Second, it learns knowledge structures that are easily 
amenable to error localization, which means that the 
incremental version of the proposed algorithm would 
have the ability of finding and modifying inconsistent 
parts of its knowledge without need to invalidate the 
entirety of knowledge it has. 

Symbolic machine learning methods can be divi-
ded in two broad categories: those resulting in a rule 
set and those resulting in a decision tree/list (top-down 
induction methods). Rule induction algorithms 

                                                           
1 This problem is also called "instance based learning" or 
"supervised learning". 
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(Charade proposed by Ganascia [4]) do not eliminate 
covered instances in the training process. Therefore 
created rules can cover the same instances repeatedly. 
Charade results in a set of conjunctive if-then rules. 
Rules are discovered through an exhaustive search by 
trial-and-error starting from the simplest rules and 
gradually going to more complex. The method is 
based on the formalism of two distributive lattices: 
one for the set of training instances, and another for 
the description space. Properties of these lattices are 
used for limiting the search scope.  

Top-down induction methods recursively split trai-
ning set into disjoint subsets until some stopping con-
dition is achieved. Usually stopping condition means 
that every subset contains instances belonging to the 
same class. Every subset can be associated to a node, 
thus the whole recursive process can be associated to 
the hierarchical structure called decision tree/list. Tree 
nodes associated to a single class and having no des-
cendants are usually called terminal nodes. Decision 
tree/list can be also rewritten as a set of rules such that 
every instance is covered by a single rule. Top-down 
induction techniques differ on the criterion for the 
"optimum" split and on the search strategies how to 
find it in the description space.  

Some methods allow splits into more than two 
constituent subsets and consider optimality to be 
related to the decrease in average class "impurity" of 
all the constituent subsets with respect to the original 
set. ID3 (the precursor to C4.5) proposed by Quin-
lan[12] is one of such algorithms. The split is found 
through an exhaustive search in the space of possible 
tests of a single attribute value using class entropy as 
an optimality criterion. GID3 proposed by Cheng et al. 
[1] can build more general trees than ID3. Instead of 
creating one branch per each possible value of a no-
minal attribute, GID3 generates branches only for 
those outcomes that are relevant to the classification 
depending on the information entropy and a tolerance 
level, determined by the user. LFC algorithm proposed 
by Ragavan and Rendell [10] replaces exhaustive 
search for a single attribute with the beam search for 
multi-attribute functions. Therefore it is better adjus-
ted to overcome the problems associated with greedi-
ness of decision tree building approach. Methods of 
this group result in a knowledge structure known as a 
decision tree. 

Some other methods allow just binary splits that 
separate a small subset of instances belonging to the 
same class from the rest of the training set. Thus 
optimality is measured on a single subset instead of all 
subsets. Test for such a split usually takes the form of 
a rule having multi-attribute conjunctions. Such rules 
can be sought using two alternative techniques: “spe-
cific-to-general” and “general-to-specific”. “Specific-
to-general” training process starts from the most 
specific rule having many conjuncts and covering only 
one positive instance. It ends with the most general 
rule that covers no negative instances (AQ proposed 
by Michalski et al. [7] [5]). “General-to-specific” 

technique (CN2 proposed by Clark and Niblett [2] and 
Ripper proposed by Cohen [3]) is opposite to “spe-
cific-to-general”. CN2 algorithm uses depth-first 
search together performing beam search of k best 
candidates while working with the full set of ins-
tances. Whereas Ripper algorithm randomly divides 
the training data into rule growing and pruning sets. 
Using these two sets, Ripper builds up a rule set by 
repeatedly adding rules to an empty rule set. The 
single rule-growing algorithm is based on a hill-
climbing search. It begins with an empty "rule", and 
greedily adds conjuncts until the rule no longer makes 
incorrect prediction on the growing set. Next, the 
learned rule is simplified by deleting conjuncts so as 
to improve performance of the rule on the pruning set. 
Methods of this group result in a knowledge structure 
known as a decision list. 

3. Motivation for a new approach  

The k-DNF learning problem may be considered 
out of the focus of the mainstream ML research. In-
deed, many solutions have been proposed and develo-
ped during the last 20 years in this domain. Never-
theless, we consider our proposal important, as it 
addresses the question of what the generalization (in-
duction) mechanism could be if we have perfect attri-
butes. This question has not received much attention 
as it is usually implicitly assumed that the feature 
space is hard-fixed to the task and cannot be changed. 
Thus, any good induction algorithm must cope with 
noisy parameter spaces. 

In fact, majority of the most popular symbolic ma-
chine learning techniques were designed with the real-
world tasks in mind. Real-world tasks are hard in the 
sense that attributes are not perfect and instances of 
different classes occupy overlapping areas in the attri-
bute space. Imperfect attributes and the necessity of 
returning some classification decision (albeit imper-
fect but better than a random guess), has biased sym-
bolic learning techniques towards weak constraints 
imposed on the top-down splitting process. Top-down 
splitting based on continuous "impurity" measures 
does not discard any single split but assigns every 
possible split a rating. This way, existing symbolic ML 
approaches can adapt to the wide continuum of tasks 
ranging from hard to easy.  

As a consequence of weakly constrained top-down 
splitting process symbolic ML techniques have the 
potential of discovering "regularities" in randomly 
generated training sets2 whereas humans are expected 
to find no regularities in similar cases. Error locali-
zation, i.e. the ability of a system to find and modify 
inconsistent parts of its knowledge without a need to 

                                                           
2 This is true given that contradictory labeling, i.e. instances 
having the same description but assigned to different clas-
ses, is avoided. Pruning of the decision tree on the held out 
instances may limit the discovery of "regularities" in random 
training sets. 
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invalidate the entirety of knowledge it has, is another 
cognitive property missed by the decision trees/lists 
constructed by the widespread ML techniques3. Error 
localization is very important to incremental ML 
techniques if they are considered for usage within 
adaptive systems. 

Let cl be the mapping F→C, where F is the space 
of all possible functions and C is the space of all 
subsets of class attribute values from D(C), such that 
for any function f ∈ F the mapping cl returns the 
subset of classes covered by f:  

cl(f) ≡ {ci such that ci ∈ D(C) and f(ci) = true}. (2) The idea underlying our approach is that ML tech-
niques could benefit from separately addressing two 
different problems they currently address a la fois: the 
problem of finding good attribute space in which any 
particular ML task becomes "easy", and the problem 
of finding good generalizations/regularities in that 
space. This paper is addressing just the second prob-
lem. It focuses on the questions of how generalized 
class descriptions have to be induced in order to avoid 
discovering random "regularities", and on how 
multiple-class descriptions have to be organized and 
structured in order to be error-localization-friendly. 
The symbolic machine learning technique named Hie-
rarchical Classifier (HL) is presented in this paper. It 
represents the implementation of the ideas originally 
developed by Raškinis [9][11]. 

The function f will be called stable with respect to 
the training set if  

cl(f) ∩ cl(¬f)=∅.       (3) 

Otherwise f will be called unstable (Figure 1).  

 ⊗ ⊗ ⊗ ⊗  ∇ ∇ ∇ ∇  ⊕ ⊕ ⊗ ⊕ 
 

    low        medium           high         A1 

Figure 1. Stable and unstable functions. The function f1 ≡ 
(A1=low) is unstable because of cl(f1)∩cl(¬f1) = 
cl(A1=low)∩cl(A1≠low) = {⊗}∩{⊗,⊕,∇} = {⊗} ≠ ∅. The 
function f2≡(A1=medium) is stable because of cl(f2)∩cl(¬f2) 
= cl(A1=medium)∩cl(A1≠medium) = {∇}∩{⊗,⊕} = ∅ 

Let F = asp(A') refer to the Attribute Subspace 
Partition (ASP) over A', A'⊆A, i.e. to the largest 
possible set of stable, class discriminating, and 
pairwise exclusive functions that could be constructed 
over A': 

4. Method 

Any supervised symbolic machine learning algo-
rithm takes the set of training instances as an input and 
outputs class descriptions consistent with the training 
instances and stated in the form of logical functions. |cl(fi)| > 0, for all fi ∈F     (4) 

cl(fi)∩cl(¬fi) = ∅, for all fi ∈F    (5) Let {S1, S2, ..., SN} be the set of training instances 
described by the same set of attributes A = {A1, A2,… 
AM} and the class attribute C. Let D(Aj) be the finite 
domain of the attribute Aj and D(C) be the finite 
domain of the class attribute C.  

fi ∧ fj = false, for all fi, fj ∈F, given i≠j  (6) 

The definition above implies that for an arbitrary 
subset of attributes A'⊆A, if there exists an ASP it 
must be unique (Figure 2). 

Let the term function refer to any statement of 
prepositional logic based on one or more attribute 
value tests over A. Single-variable function would 
have the form Aj = ζ, where Aj ∈ A and ζ ∈ D(Aj). 
Multi-variable functions could be constructed by 
combining single-variable functions using logical 
connectives (negation, conjunction and disjunction). 

Let two attribute subspace partitions Fa and Fb be 
constructed over different subsets of A. Fa and Fb will 
be called alternative ASPs if for every fi ∈ Fa there 
exists fj ∈ Fb such that cl(fi) = cl(fj) (fig. 3). Alternative 
ASPs may be imagined as forming clusters. Let 
altset(F) denote the cluster of alternative ASPs 
comprising the ASP F. 

Let f(S) = true denote the statement that the func-
tion f covers the instance S. 

Composite partitions can be formed by combining 
two or more attribute subspace partitions. Let Fa and 
Fb be two ASPs (or clusters of alternative ASPs). Then 
the composite ASP Fa ⊗ Fb is defined as:  

Let f(c) = true denote the statement that the func-
tion f covers the class c, i.e. it covers at least one 
instance belonging to the class c: Fa ⊗ Fb ={fi ∧ fj, for every fi ∈ Fa and fj ∈ Fb such 

that cl(fi ∧ fj) ≠ ∅}. (9) f(c) = true ⇔ ∃ S such that S ∈ c and f(S) = true (1) 
For instance, asp({A1}) ⊗ asp({A2}) = {f1 ∧ f2, f1 ∧ 

¬f2, ¬f1 ∧ ¬f2} in the case shown in fig. 4. The term 
¬f1 ∧ f2 is not included to this composite partition as 
cl(¬f1 ∧ f2) = ∅. 

                                                           
3 Suppose the system is facing the fact that its decision tree/ 
list has misclassified some instance. In this case, any section 
(attribute value test) of the entire classification path from the 
root node to the wrong terminal node may be held respon-
sible for the error. In addition, all paths leading to the termi-
nal nodes labeled with the correct class may be held 
responsible for not covering the instance in question, i.e. for 
being collectively too specific. In practice, this means that 
the whole decision tree needs to be erased and entirely re-
constructed. 

Composite partitions of more than two ASPs can 
be constructed incrementally in the same way defined 
by (9). 
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 asp({A1, A2})≡{f1, f2, f3}, where: 

   f1 ≡ (A1=a ∧ A2=t) ∨ (A1=b ∧ A2=f) 
   f2 ≡ (A1=a ∧ A2=f) ∨ (A1=c ∧ A2 =t) 
   f3 ≡ (A1 =c ∧ A2=f) 

 
 
 

 
Figure 2. The attribute subspace partition. There exists an ASP {f1, f2, f3} for the subspace {A1, A2} ⊆ A (picture to the left). The 
functions in {f1, f2, f3} are stable and pairwise exclusive. The members of the set {f1, f2 ∨ f3} are stable and pairwise exclusive as 
well. However {f1, f2 ∨ f3} is not an ASP because it is not as large as the set {f1, f2, f3}. It could be noticed that f1 ∨ f2 ∨ f3 ≠ true. 

There exists no ASP for the subspace {A3, A4} (picture to the right) 
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 asp({A1, A2})≡{f1, ¬f1}, where 

   f1 ≡ (A1=thin ∧ A2=low) 
asp({A3, A4})≡{f2, ¬f2}, where 
   f2 ≡ (A3=angry ∧ A4=quiet) ∨
          (A3=nice ∧ A4 =loud) 

 
 
 

Figure 3. The alternative ASPs. Attribute subspace partitions {f1, ¬f1} and {f2, ¬f2} are alternative ASPs  
as cl(f1)=cl(¬f2)={ ,∇} and cl(¬f1)=cl(f2)={⊗,⊕} 
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asp({A1})≡{f1, ¬f1}, where 
   f1 ≡ (A1=empty) 
inf({f1, ¬f1}) = 2 

 
asp({A2})≡{f2, ¬f2}, where 
   f2 ≡ (A1=educated) 
inf({f2, ¬f2}) = 1

 
 

 
 

Figure 4. The informativity of an attribute subspace partition 
inf({f1,¬ f1}) = |D(C)|-max(|cl(f1)|, |cl(¬f1)|) = 4 - max(|{∇, }|, |{⊕,⊗}|) = 4-max(2,2) = 2 (left). 
inf({f2,¬ f2}) = |D(C)|-max(|cl(f2)|, |cl(¬f2)|) = 4 - max(|{∇}|, |{⊕,⊗, }|) = 4-max(1,3) = 1 (right) 

 
5.Algorithm description 

The symbolic machine learning technique addres-
sing cognitive challenges described in section 4 was 
implemented and entitled Hierarchical Classifier 
(HC). 

During the phase of training, HC builds a decision 
tree according to the “divide and conquer” strategy. It 

recursively splits the set of training instances into two 
or more subsets and stops when all instances in all 
subsets belong to the single class. HC algorithm uses 
no pruning. Therefore, the resulting decision tree is 
consistent with all training instances. Though, the 
standard top-down induction scheme is used for dis-
covering class descriptions, strongly constraining top-
down splitting criterion (stable function) is used as a 
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replacement to continuous "impurity" measure proper 
to the family of decision-tree inducing algorithms. The 
stability criterion discards splits that result in instances 
of the same class being divided among different 
subsets of the split. If this criterion is consistently 

applied, the decision tree with one terminal node per 
class is obtained.  

The scheme of decision tree building by HC algo-
rithm is presented below. 

PROCEDURE BuildSubTree(Node)  // Node is the current node 
IF |Classes(Node)| = 1        // Instances(Node) belong to the single class 
THEN RETURN(success) 
ELSE  
   F←SearchForASP(Classes(Node)) 
   IF F=∅                    // There's no Attribute Subspace Partition 
   THEN RETURN(failure) 
   ELSE 
      FOR every fk∈F DO      
         Nodek←CreateNewNode(Node)   
         Classes(Nodek) ← Classes(Node) ∩ cl(fk) 
         BuildSubTree(Nodek) 
END PROCEDURE  

This recursive procedure is invoked by the call to 
BuildSubTree(RootNode), where RootNode is the 
initial node associated with the entire training set.  

The requirement of stability of a function is very 
constraining. Thus, simple ASPs corresponding to 
single attribute value tests, which are so common to 
other decision tree builders, would rarely pass this re-
quirement. The number of ASPs corresponding to 
complex multi-variable splits grows exponentially 
with the growing dimensionality of the subspace. This 
increases chances of discovering stable partitions but 
suffers from combinatorial explosion. SearchForASP 

is the core procedure of HC that performs an 
exhaustive search in the space of subsets of A che-
cking each subset for the presence of an attribute sub-
space partition. Simpler ASPs (functions having fewer 
variables) are preferred over complex ones (Occam’s 
razor). This procedure clusters alternative ASPs, 
performs ASP ranking with respect to their infor-
mativity and redundancy, and selects top ranked ASPs 
to combine them into a composite ASP. The scheme of 
the SearchForASP procedure is given below 

PROCEDURE SearchForASP(C)  // C is the set of classes to be discriminated 
ASPs=∅                    // Let ASPs be the initially empty set of ASPs  
FOR λ*=1..n** DO 
   FOR all subsets A′⊆A such that |A′|=λ 
      Let F={fi} be the set of all possible conjunctions over A′ having  
         exactly λ conjuncts  
      FOR all pairs fi,fj∈F DO  
         IF cl(fi)∩cl(fj)∩C ≠ ∅      // Does fi and fj cover the same class? 
         THEN F ← F / fi / fj        // Join fi and fj together 
              F ← F ∪ (fi ∨ fj)       
      UNTIL F remained unchanged 
      IF |F|>1                       // Is F an ASP? 
      THEN ASPs ← ASPs ∪ F          // Remember it 
   IF ASPs≠∅  
   THEN BREAK                        // Don't look for more complex ASPs 
Rank elements of ASPs according to their informativity and redundancy 
RETURN(F1⊗...⊗Fz) where Fi are top ranked members of ASPs***  
END PROCEDURE 

                                                           
* λ is a subspace dimensionality. 
** n=3 is used in all our experiments. 
*** Maximum number of members is 3 used in all our experiments. 

During the phase of recognition, HC exploits the 
decision tree built in the training phase. Any instance 
S that needs to be classified is examined at the root 
node. It is passed to the descendant of the root code 

Nodek for which Function(Nodek) covers S. Such a 
recursive process continues until S reaches some ter-
minal node. Then, S is assigned the same class as the 
terminal node. 
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In case where current node is associated with a 
non-composite set of alternative ASPs, the voting 
approach is taken. Every function in the set of alter-
native ASPs vote for some descendant of the node in 
question. The instance S is passed to the descendant 
node receiving maximum number of votes. If several 
descendant nodes receive equal number of votes, S is 
transferred to the descendant node covering the largest 
number of training instances.  

In case where current node is associated with 
composite ASP, the voting approach is taken too. 
Every component of composite ASP votes for some 
descendant node in question. The decision of each 
component is taken in the way described above. The 
instance S is passed to the descendant node receiving 
maximum number of votes. If several descendant 
nodes receive equal number of votes, S is transferred 
to the descendant node covering the largest number of 
training instances.  

If instance S have unseen attributes or their 
combinations, the algorithm eliminates ASPs that do 
not cover those attributes, further manipulating with 
remaining in the way described above. 

5.1. Complexity 

Let: N be the number of instances in the training set,  
M be the number of attributes, 
V be the average number of different discrete 
values per attribute, 
n be the maximum dimensionality (number of 
attributes) of the ASP (n=3 in all our 
experiments).  

Then the upper bound on the number of ASPs that 
are tested for a node split is 

)2()2(
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! nn
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M

⋅=⋅
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 and the time complexity 

of HC is Thus, HC is more costly in 
computation time than Charade or C4.5 which have 
node splitting time complexity O  and 

 respectively.  
)( NVM nn ⋅⋅

6. An experimental evaluation 

The HC algorithm was compared with two other 
algorithms belonging to the same family of symbolic 
machine learning techniques: Ripper and C4.5. Two 
aspects were considered during this comparison: re-
cognition error rate and inductive bias. Comparisons 
were based on the ZOO dataset from the UCI4 
machine-learning repository [13]. This dataset consists 
of 101 instances distributed among 7 classes and des-
cribed by 17 attributes. It should be noted that our 
choice of a dataset was very limited even though UCI 
machine learning repository contained many datasets. 

ZOO dataset was probably the only one that had ins-
tances distributed among more than two classes, de-
scribed by nominal attributes without missing attribute 
values and had instances belonging to the same class 
compactly distributed in the parameter space. 

                                                           
4 University of California Irvine. 

6.1. Recognition error rate 

The recognition error rate was measured by the 
leave-one-out cross validation technique (100 instan-
ces were used for training, the remaining 1 instance 
was used for recognition; error rate estimate represen-
ted an average over 101 runs, each run with the dif-
ferent instance to recognize). Average recognition 
error rate ER is defined by:  

∑ ⋅
⋅

=
=

Runs

i
iErr

AllRuns
ER

1
%1001 , 

where Runs denotes the total number of runs, All de-
notes the number of instances recognized in one run, 
and Erri denotes erroneously classified instances in 
the ith run5. Average recognition error rates thus ob-
tained are presented in Table 1.  

Table 1. Recognition error rates of HC, Ripper and C4.5 
estimated by means of the leave-one-out cross validation 
technique and shown with the 95% confidence intervals. 

Average recognition error rate, % 
HC 

Without 
redundancy 

With 
redundancy  

 
Ripper 

 
C4.5 

3.96±0 1.98±0 2.97±0 1.98±0 

All three algorithms had their settings adjusted in 
order to yield the lowest recognition error rates. Both 
Ripper and C4.5 were informed they are working with 
the noise-free training dataset. Both algorithms were 
allowed to cover any single training instance; their 
decision trees were not pruned. In addition, Ripper 
used MDL class ordering and had coding cost of the 
theory set to zero. HC was tested in two operational 
modes: standard mode exploiting redundancy of the 
cluster of alternative ASPs as explained in the pre-
vious section and simplified mode, in which the re-
dundancy was ignored by arbitrary choosing one ASP 
from the cluster of alternative ASPs. 

Inductive bias represents the "preferences" of a gi-
ven machine learning algorithm to induce certain 
knowledge structures over others when multiple gene-
ralizations are possible. As quantitative comparisons 
of inductive bias are not feasible we limited ourselves 
to showing and comparing different decision trees 
induced by HC (Figure 5), Ripper (Figure 6) and C4.5 
(Figure 7) for the entire Zoo dataset. Decision trees 
correspond to the training of the abovementioned 
algorithms with their best settings in the sense of the 
lowest recognition error rate. 

                                                           
5 Leave-one-out cross validation technique meant Runs = 
101, All = 1 and Erri ∈ {0, 1} in case of ZOO dataset. 
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Figure 5. Decision list built by Ripper algorithm. Nodes are represented by circles. Terminal nodes are labeled  
with class names (in brackets). ASPs are shown as function sets resulting in branching of non-terminal nodes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Decision tree built by C4.5 algorithm. Nodes are represented by circles. Terminal nodes are labeled  
with class names (in brackets). ASPs are shown as function sets resulting in branching of non-terminal nodes 

The comments of the process of HC (Figure 7) are 
presented below.  

The algorithm described in section 5 was trained 
on the entire set of instances S taken from the database 
ZOO and started in the root node number 0.  

For λ=1 (λ is a subspace dimensionality, defined 
in section 5) three ASPs were found: 

asp(feathers)≡{f2,¬f2}, asp(backbone)≡{f10,¬f10}, 
asp(milk)≡{f1,¬f1}. These three ASPs were combined 
into the composite partition {f2,¬f2}⊗{f10,¬f10}⊗ 
{f1,¬f1}, which divided the entire set of classes into 
four subgroups. 

Thereafter, the algorithm attempted to partition the 
subgroup associated to node "2". For λ=1 only one 
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 [crustacean] [mammal]  
 legs>2 legs≤2 fins=false fins=true 

[crustacean] [insect]  [fish]  
  

tail=false tail=true 

[reptile]    

aquatic=false aquatic=true 

 [reptile]  
 eggs=true eggs=false  

 [amphibian] [reptile]  
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ASP was found asp(fins)≡{f3, ¬f3} that separated class 
"fish" from other classes. The subgroup associated to 
the node "1" was skipped because it contained a single 
class "bird".  

Thereafter, the algorithm attempted to partition the 
subgroup associated to the node "5". For λ=1 no ASPs 
were found, for λ=2 three ASPs were found: 
asp(aquatic,legs)≡{f16,¬f16}, asp(eggs,aquatic)≡{f17,¬ 
f17} and asp(aquatic,breath)≡{f18,¬f18}. As {f17, ¬f17}, 
{f18,¬f18} appeared to be alternative partitions, the 
composite partition {f16,¬f16 } ⊗ ({f17,¬f17}, {f18,¬ 
f18}) was constructed. It separated "amphibian" and 
"reptile" classes. 

Finally, the algorithm selected the subgroup asso-
ciated to the last “impure” node "4". For λ=2 two 

ASPs were found: asp(aquatic,legs)≡{f19,¬f19}  and 
asp(breath,legs)≡{f20,¬f20}, which separated "crusta-
cean" and "insect" classes. ASPs {f19,¬f19}, {f20,¬f20} 
appeared to be alternatives so they were included into 
the same set of alternatives.  

During recognition phase, error localization is easy 
with the decision tree shown in Figure 7. Suppose that 
some instance S was recognized as "amphibian", but 
actually it belongs to the class "fish". The reason of 
choosing the incorrect path can be clearly identified in 
the tree, which is the the ASP {¬f3,f3} in case of our 
example.  

 
 0  

 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  

Figure 7. Decision tree built by HC algorithm. Nodes are represented by circles. Terminal nodes are labeled with class names  
(in brackets). ASPs are shown as function sets resulting in branching of non-terminal nodes.  

Sets of Alternative ASPs are enclosed within doted rectangles 

Figure 7. Decision tree built by HC algorithm. Nodes are represented by circles. Terminal nodes are labeled with class names  
(in brackets). ASPs are shown as function sets resulting in branching of non-terminal nodes.  

Sets of Alternative ASPs are enclosed within doted rectangles 

The results of all decision trees are summarized in 
Table 2. 

The results of all decision trees are summarized in 
Table 2. 

Table 2. Knowledge structure comparison considering given 
features. 
Table 2. Knowledge structure comparison considering given 
features. 

                   
Method 
                   
Method 

Feature Feature 

  
HC HC 

  
Ripper Ripper 

  
C4.5 C4.5 

Nodes 11 19 21 
Terminal nodes 7 11 9 
ASPs 9 9 10 
Number of different clauses 19 15 20 

7 Conclusions 

The new symbolic machine learning technique 
named Hierarchical Classifier (HC) belonging to the 
family of top-down decision tree induction methods is 
presented in this paper. HC is based on the strongly 

constraining node splitting criterion (stability) which 
discards splits that result in instances of the same class 
being divided among the descendant nodes. An ex-
haustive search for multi-attribute functions in the 
attribute space is performed for splitting tree nodes. 
This results in higher time complexity of HC with 
respect to other ML techniques. It was shown that if 
stability criterion is consistently applied, the decision 
tree with one terminal node per class is obtained. The 
decision tree built by HC has an important property of 
error localization, i.e. the ability of a system to find 
inconsistent parts of its knowledge and possibly 
correct them without a need to invalidate the entirety 
of knowledge. Error localization is very important to 
incremental ML which is envisioned for our future 
research. It was experimentally shown that HC 
achieves the same or better recognition accuracy than 
other state-of-the-art symbolic ML techniques, such as 
Ripper and C4.5, for ML tasks that are “easy” in the 
sense of good attribute space. It was also shown that 
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the redundant knowledge improved HC recognition 
accuracy by ~2%. 
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