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Abstract. The influence of used norm and corresponding Lipschitz constant to the speed of branch and bound 
algorithm for multidimensional global optimization has been investigated. Lipschitz constants of different test 
functions for global optimization corresponding to different norms have been estimated. The test functions have been 
optimized using branch and bound algorithm for Lipschitz optimization with different norms. Experiments have shown 
that the best results are achieved when the combination of extreme (infinite and first) and Euclidean norms is used. 
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1. Introduction 

Global optimization is considered in this paper. 
Mathematically the problem is formulated as 

)(max* xff
Dx∈

= , 

where an objective function f(x), f : Rn →R, is a 
nonlinear function of continuous variables, D  R⊆ n is 
a feasible region, n is the number of variables. Besides 
of the global optimum f* one or all global optimizers 
x*:f(x*)=f* should be found. 

Branch and bound is a technique to solve global 
optimization problems. Branch and bound algorithms 
divide the feasible region into sub-regions and detect 
sub-regions, which cannot contain global optimizer, 
by evaluating bounds for the optimum over considered 
sub-regions. Optimization stops when global optimi-
zers are bracketed in small sub-regions guaranteeing 
the required accuracy. 

Lipschitz optimization is one of the most deeply 
investigated subjects of global optimization. It is 
based on the assumption that the slope of an objective 
function is bounded [2]. The advantages and dis-
advantages of Lipschitz global optimization methods 
are discussed in [1], [2]. A function f : D →R, D⊆  Rn, 
is said to be Lipschitz if it satisfies the condition 

DyxyxLyfxf ∈∀−≤− ,,)()( ,     (1) 
where L > 0 is a constant called Lipschitz constant, D 
is compact and ⋅  denotes the norm. Euclidean norm 

is used most often in Lipschitz optimization, but other 
norms can be also considered. In [5], we showed that 
for dimension (n = 2) combination of two extreme 
(infinite and first) norms gives the number of function 
evaluations 22% smaller than in the case when 
Euclidean norm is used, and for dimension (n = 3) 
combination of two extreme (infinite and first) and 
Euclidean norms gives the number of function eva-
luations 39% smaller than in the case when Euclidean 
norm is used alone.  

In this paper, we investigate how the used norm 
and corresponding Lipschitz constant influence the 
speed of algorithms for global optimization in 
multidimensional case. 

2. Branch and bound with simplicial 
partitions for Lipschitz optimization 

A general n-dimensional simplex-based branch and 
bound algorithm for Lipschitz optimization has been 
proposed in [6]. The rules of selection, covering, bran-
ching and bounding have been justified by results of 
experimental investigations. 

An n-dimensional simplex is the convex hull of a 
set of n+1 affinely independent points in the n-
dimensional space. In one-dimensional space, a simp-
lex is a segment of line, in two-dimensional space it is 
a triangle, in three-dimensional space it is a tetrahed-
ron. A simplex is a polyhedron in n-dimensional 
space, which has the minimal number of vertices 
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(n+1). Therefore, if bounds on the optimum over a 
sub-region defined by polyhedron are estimated using 
function values at all vertices of the polyhedron, a 
simplex sub-region requires the smallest number of 
function evaluations to estimate bounds.  

3. Multidimensional face to face vertex 
triangulation of the feasible region into n! 
simplices 

In our previous work [5], a 3-dimensional hyper-
rectangle was face-to-face vertex triangulated into 3-
dimensional simplices as it is shown in Figure 1. But 
such a face to face covering is not known in general 
case. 

Usually, a feasible region in Lipschitz optimization 
is defined by a hyper-rectangle – intervals of vari-
ables. To use simplicial partitions, the feasible region 
should be covered by simplices. Experiments in [6] 
have shown that the most preferable initial covering is 
face to face vertex triangulation – partitioning of the 
feasible region into finitely many n-dimensional simp-
lices, whose vertices are also the vertices of the feas-
ible region.  

  

There are several ways to divide the simplex into 
sub-simplices. Experiments in [6] have shown that the 
most preferable partitioning is subdivision of simplex 
into two by a hyper-plane passing through the middle 
point of the longest edge and the vertices whose do 
not belong to the longest edge. 

In Lipschitz optimization the upper bound for the 
optimum is evaluated exploiting Lipschitz condition 
(1): 

Figure 1. Old version of face to face vertex triangulation  
of a hyper-rectangle 

( ) ( )f x f y L x y≤ + − . 
Therefore we propose to use a new triangulation 

into n! simplices. An example of triangulation in 
dimension (n = 3) is shown in Figure 2. This covering 
is general and in such a way we can partition every 
dimensional hyper-rectangle. 

It has been suggested in [6] to estimate the bounds 
for the optimum over the simplex using function 
values at one or more vertices. The lower bound for 
the optimum is the largest value of the function at the 
vertex: 

 

)(max)( vIx
xfILB

v∈
= , 

where xv is a vertex of the simplex I. The upper bound 
for the optimum 

( )vIxvx
xxLxfIUB

v
−+=

∈
max)(min)( .   (2) 

In this paper the values of the function at all 
vertices of the simplex are used. The branch and 
bound algorithm may be represented by the following 
pseudo-code: 

Figure 2. New version of face to face vertex triangulation  
of a hyper-rectangle (n = 3) An n-dimensional hyper-rectangle D is face-to-face 

vertex triangulated into set of n-dimensional simplices 
Ik, k=1,…,n! 

 

LB = -∞ 

4. Norms and corresponding Lipschitz 
constants 

UB = ∞ 
While (UB - LB > ε) 
 Take a simplex Ij from the set of nonsolved 
simplices 
 UB= ∞ 

 LB = max (LB, ) ( )max
v j

vx I
f x

∈

 UB(Ij)=min(UB, ( )min
v j j

v vx I x I
f x L x x

∈ ∈

 
+ − 

 
max ) 

 Efficient algorithms for Lipschitz optimization 
exist for one-dimensional case. In one-dimensional 
case, all norms are equal. But in multidimensional 
case evaluated bounds depend on the norm used. It has 
been shown in [5] that 

( ) ( ) p q
f x f y L x y− ≤ − ,        (3) 

where ( ){ }sup :p p
L f x x= ∇ ∈

( )

D  is Lipschitz cons-

tant, 
1
, ,

n

f ff x
x x

 ∂ ∂
∇ =  

∂ ∂ 
K  is gradient of the func-

tion f(x), and 1/p+1/q=1, 1≤p, q≤∞. 

 If (UB(Ij)-LB > ε)  
  divide simplex Ij into two new 
  simplices and add them to the set 
 UB =UB(Ij) 
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The combination of two extreme and Euclidean 
norms is denoted by: 

( )
{

1 2 1 21 2

1 21 2min   

v

v v

L x x UB

L x x L x x L x x

∞ ∞∞

∞∞

− =

= − − −

, , , ,, ,

, , }v

. (4) 

Various test functions for global optimization from 
[1] and [4] have been used in our experiments for (n = 
3) and from [3] and [4] for (n > 3) dimensional func-

tions. Lipschitz constants have been estimated using 
Theorem 1 in [5]. The extreme (first and infinite) and 
Euclidean Lipschitz constants for (n > 3) dimensional 
functions are shown in Table 1. For (n > 3) function 
names and numbers from [3] and [4] are used. Test 
functions with (n = 3) are numbered according to [1], 
[4]. 

Table 1. Test functions and estimated Lipschitz constants for multivariate Lipschitz optimization 

Function 
number Lipschitz function Domain L1 2L  L∞ 

1. Shekel 5 [3] [0,10]4 204.1 102.4 56.1 
2. Shekel 7 [3] [0,10]4 300.1 151.5 86.1 
3. Shekel 10 [3] [0,10]4 408.2 204.5 110.8 
4. Levy No. 9 [3] [-10,10]4 26.1 14.4 8.3 
5. Levy No. 15 [3] [-10,10]4 1273.2 1196.4 1195.5 
6. Schwefel No. 1.2 [3] [-5,10]4 311.3 170.1 120.1 
7. Powell [3] [-4,5]4 11338.3 7245.8 5150.1 
8. Generalized Rosenbrock [4] [-4,4]4 72224.5 60401.7 36026.0 
9. Levy No. 16 [3] [-5,5]5 422.9 370.7 369.7 

10. Generalized Rosenbrock [4] [-5,5]5 264567 130914 66214 
11. Levy No. 10 [3] [-10,10]5 34.4 16.6 8.25 
12. Schwefel No. 3.7 [3] [-0.5,0.4]5 0.976 0.044 0.019 
13. Levy No. 17 [3] [-5,5]6 421.7 358.6 357.4 
14. Generalized Rosenbrock [4] [-6,6]6 548484 241742 109334 
15. Levy No. 18 [3] [-5,5]7 433.1 358.9 357.5 
16. Levy No. 12 [3] [-10,10]10 75.6 24.8 8.25 

Table 2. Numbers of function evaluations for n=3 

  Old covering New covering 
Test 

function 
ε  1 2 1 2L x y∞ ∞

−, , , ,  1 2 1 2L x y∞ ∞−, , , ,  1L x y∞ −  2 2L x y−  1L x y
∞

−  

20. [1] 10.6 75163 49411 49411 71800 84938 
21. [1] 0.369 8866 2248 24143 7488 2248 
23. [1] 41.65 96673 22065 274625 145381 22065 
24. [1] 3.36 61492 28451 33848 29347 56613 
25. [1] 0.0506 20335 9629 23361 10065 19161 
26. [1] 4.51 18679 12023 12271 24137 28265 
5. [4]. 5000.0 103694 58163 72323 60472 64464 

 

5. Results of experiments 5.2. Optimization of multidimensional test 
functions 5.1. Comparison of three -dimensional test 

functions with different partitions Let us compare bounds evaluated using combina-
tion of norms (4) with bounds evaluated using single 
different norm. Let us start with n=4. Let us assume 
that the feasible region is unit cube 
D=[0,1]×[0,1]×[0,1] ×[0,1], test function is Shekel 5 
and simplex IABCDE: A(0,0,0,0), B(0,0,0,1), C(0,0,1,1), 
D(0,1,1,1), E(1,1,1,1).  

The speed of global optimization has been esti-
mated using the number of function evaluations. For 
three-dimensional functions, the influence of covering 
(either new or old) has been investigated. The results 
are shown in Table 2. The number of function evalua-
tions with new covering is smaller from 34% to 75%. 
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It has been shown in [5] that  

( ){sup :p p
L f x x= ∇ ∈ }D , therefore, points of the 

feasible region, where the norm of gradient of the 
objective function is the largest, have been found, see 
Table 3. For Shekel 5 function:  

1 2 3 4
56 1 52 52 44x x x xf f f f′ ′ ′ ′= = =. , , , = . 

Therefore: 
1 56 1 52 52 44 204 1L = + + + =. . , 

{ }56 1 52 52 44 56 1L∞ = =max . , , , . , 

( )1 22 2 2 2
2 56 1 52 52 44 102 4L = + + + =

/
. . . 

Table 3. The largest values of derivatives for n=4 and n=5 

Function 
number Lipschitz function 1x

f ′  
2xf ′  

3xf ′  
4xf ′  5xf ′  

1. Shekel 5 [3] 56.1 52.0 52.0 44.0 –  
2. Shekel 7 [3] 58.0 80.0 86.14 76.0 – 
3. Shekel 10 [3] 100.0 93.2 104.2 110.8 – 
4. Levy No. 9 [3] 8.25 8.25 8.25 1.375 – 
5. Levy No. 15 [3] 1195.5 22.0 22.0 33.7 – 
6. Schwefel No. 1.2 [3] 120.08 100.6 60.4 30.2 – 
7. Powell [3] 5150.1 4970.0 1126.2 92.0 – 
8. Generalized Rosenbrock [4] 36026.0 36010.0 32214.5 4000.0 – 
9. Levy No. 16 [3] 369.68 17.25 12.0 12.0 12.0 

10. Generalized Rosenbrock [4] 66214 66012 66012 60328 6000 
11. Levy No. 10 [3] 8.25 8.25 8.25 8.25 1.375 
12. Schwefel No. 3.7 [3] 0.0195 0.0195 0.0195 0.0195 0.0195 

 
Now we can evaluate different UB in all vertices 

of simplex IABCDE : 

( ) ( ) ( )1 1 204 1 1UB A f A L A E f A∞ ∞
= + − = + . ,

( ) ( )
⋅

( )1 1 204 1 1UB B f B L B E f B∞ ∞
= + − = + . ,

( ) ( )
⋅

( )1 1 204 1 1UB C f C L C E f C∞ ∞
= + − = + . ,

( ) ( )
⋅

( )1 1 204 1 1UB D f D L D A f D∞ ∞
= + − = + . ,

( ) ( )
⋅

( )1 1 204 1 1UB E f E L E A f E∞ ∞
= + − = + . ,

( ) ( )
⋅

( )22 2 2 102 4 2UB A f A L A E f A= + − = + . ,

( ) ( )
⋅

( )22 2 2 102 4 3UB B f B L B E f B= + − = +

( ) ( )
⋅. ,

( )22 2 2 102 4UB C f C L C E f C= + − = + .

( ) ( )
2⋅ ,

( )22 2 2 102 4UB D f D L D A f D= + − = +

( ) ( )
3⋅. ,

( )22 2 2 102 4 2UB E f E L E A f E= + − = + . ,

( ) ( )
⋅

( )1 1 56 1 4UB A f A L A E f A∞ ∞= + − = + ⋅. ,

( ) ( ) ( )1 1 56 1 3UB B f B L B E f B∞ ∞= + − = + ⋅. ,

( ) ( ) ( )1 1 56 1 2UB C f C L C E f C∞ ∞= + − = + ⋅. ,

( ) ( ) ( )1 1 56 1 3UB D f D L D A f D∞ ∞= + − = + . ,

( ) ( )
⋅

( )1 1 56 1 4UB E f E L E A f E∞ ∞= + − = + ⋅. .  

Suppose function values at all vertices are similar: 
( ) ( ) ( )vf A f E f≈ ≈ =... x . 

Because 
( )vIxvx

xxLxfIUB
v

−+=
∈

max)(min)(  

we get: 
( ) ( ) ( )1 204 1 1 204 1ABCDE v vUB I f x f x∞ = + ⋅ = +. . ,

( ) ( ) ( )22 102 4 2 144 82ABCDE v vUB I f x f x= + ⋅ = +. . ,

( ) ( ) ( )1 56 1 2 112 2ABCDE v vUB I f x f x∞ = + ⋅ = +. . . 

Therefore the best results for this function are got 
when 1UB∞ is used. But it depends on the values of 
function derivatives. If all derivatives are aproxima-
tely equal (Schwefel No. 3.7, Shekel 5, Shekel 7, 
Shekel 10), then the best UB is got, when UB 1∞ is 
used. If the value of one derivative is much larger than 
others (Levy No. 15, Levy No. 16), then the best UB is 
got when UB1∞ is used. In others cases, UB or UB  
got the best upper bound. 

1∞ 22

The results of experiments for n=4,…,10 are 
shown in Table 4. The results for n=4 functions, with 
better precision are shown in Table 5.  

None of the single norm and corresponding Lip-
schitz constant is the best for all test functions. The 
best results have been achieved using the combination 
of two extreme norms and Euclidean norm.  

6. Conclusions 

In this paper a general algorithm for multidimen-
sional Lipschitz global optimization is tested. Test 
functions of different dimensionality (n = 4, 5, …, 10) 
have been used for experimental investigation of the 
algorithm.  
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The combination of two extreme (infinite and first) 
and Euclidean norms gives the best results for Lip-
schitz optimization. When n = 4, the number of func-
tion evaluations on the average is by 13% smaller 
when the combination is used than when Euclidean 

norm is used. When n = 5, the number of function eva-
luations on the average is by 37% smaller that when 
Euclidean norm is used. For n –dimensional functions, 
where n = 6, …, 10, functions we got about 60% smal-
ler number of function evaluations. 

Table 4. Number of function evaluations for n > 3  

Test 
function Precision 1 2 1 2L x y∞ ∞

−, , , ,  
 

1L x y∞ −  2 2L x y−  1L x y ∞−  

1. 2L2 29212 29212 29212 30956 227107 
2. 2L2 29212 29212 29212 30956 227107 
3. 2L2 29212 29212 29212 30956 227107 
4. 2L2 30515 34650 35346 40530 180168 
5. 2L2 227107 227107 >4000000 440381 227107 
6. 2L2 50161 94752 99737 51049 202409 
7. 2L2 2786 5717 7040 3016 9930 
8. 2L2 1917 9689 138108 1958 36816 
9. 2L2 296147 296998 >4000000 877589 296998 

10. 2L2 271676 281459 281547 537788 >2500000 
11. 2L2 606470 679873 680855 885330 >2500000 
12. 2L2 33 33 33 33 33 
13. 3L2 208904 208904 >1200000 >1200000 208904 
14. 3L2 479673 498411 499683 >1200000 >1200000 
15. 5L2 78124 78124 >1200000 305034 78124 
16. 8 L2 79744 89314 89443 116411 >1200000 

1 1
L x y∞ ∞

−, ,

Table 5. Number of function evaluations for n=4 with precision L2 

Test 
function 1 2 1 2L x y∞ ∞

−, , , ,  
 

1L x y∞ −  2 2L x y−  1L x y
∞

−  

1. 293786 293786 293786 527231 3839611 
2. 537243 537243 537243 563667 3839611 
3. 293848 293848 293848 563667 3839611 
4. 193057 225503 231271 264649 1252493 
5. 3432907 3432907 >4000000 >4000000 3432907 
6. 509388 934936 995994 517490 2001558 
7. 39393 87288 104410 40349 151266 
8. 95391 135662 138108 116939 468363 

1 1
L x y∞ ∞

−, ,
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