
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.3

CHECKING OF CONCEPTUAL MODELS WITH INTEGRITY
CONSTRAINTS

Elita Pakalnickiene, Lina Nemuraite
Kaunas University of Technology

Studentu 50-308, LT 51368 Kaunas, Lithuania

Abstract. Due to the raising level of abstraction in information systems development many activities of this
process are migrating to its early phases. The same is true for testing – modern CASE tools are undertaking validation
of software models. In this paper the methodology for checking of conceptual models is proposed as the step-wise pro-
cess during which model elements including integrity constraints are progressively checked for their adequacy to
values of objects, their relationships and constraints of the corresponding problem domain. The checking process is
associated with the particular methodology for development of ordered and precise conceptual models (OPCM), which
brings improvements to their quality: conformity to normal forms and ontological foundations, and to the observed
reality. The rules for checking of integrity constraints are proposed on the base of taxonomy created in the result of
analysis of the most promising methods for conceptual modelling.

Keywords: checking, conceptual model, integrity constraint, ordering, entity, UML, OCL.

1. Introduction1

Validation and verification of UML class diagrams
constrained by OCL invariants is still an open question
of research and the topic of the great interest. It be-
comes more and more important because of increasing
complexity of today software systems and highly
competitive software market requirement to develop
software systems of high quality at a reasonable cost
and time. The software quality can be significantly
improved by integration of checking of conceptual
models into the development process. We sustain the
idea that model and its constraints should be validated
and verified before the start of its implementation,
because many design mistakes and implementation
faults can thus be avoided [1]. Especially for critical
systems, identification of errors in modelling can
prevent from failures that may result in serious da-
mages. Easy-to-use checking technique and tool sup-
port for them are the real necessities. We have a great
number of CASE tools that facilitate modelling, docu-
mentation and even code generation, but there are rare
cases of support for checking conceptual models
during design. The advanced CASE tools are already
supporting augmenting of conceptual models with
constraints that are intended to ensure correctness of
data in the implementation in database or program

code, but a few of them offer their consistency support
and checking.

In this paper, we present ideas for checking of
Ordered and Precise Conceptual Model (OPCM),
which principles were presented in [2]. The pre-
ciseness means that conceptual model (represented by
UML class diagram for entities − persistent objects
whose states are stored in database) is complemented
with integrity constraints (OCL invariants), and it is
capable to precisely describe states of the problem do-
main under consideration. The orderliness means that
the partial order relation exists between entities, which
are arranged on n levels where entities on the level i
are dependent on entities of the levels j<i,i=2,…,
n; j=1,…n-1; entities of level 1 are indepen-
dent. The OPCM development process consists of
three steps: creation of ordered conceptual model;
adding integrity constraints; and checking constraints
with instances of domain objects. The goal of this
paper is focused to the third step, when conceptual
models are investigated for ensuring constraints (inva-
riants) that must be satisfied in every state of the
system, abstracting from state transition constraints
that should be satisfied for application-specific state
transitions. Checking of OPCM adhere the same prin-
ciples as its construction: the sequential procedure
starting from the top level. However, elements brought
for checking are of the finer granularity as every con-
straint is checked separately: constraints on model ele-
ments (attribute, entity, relationship) and their groups,
and, finally, on the overall schema. The gradual

1 This work is supported by High Technology Development

Program Project "Business Rules Solutions for Information
Systems Development (VeTIS)" Reg.No. B-07042

285

E. Pakalnickiene, L. Nemuraite

checking may be integrated with the creation of mo-
del; however, it is not a good practise to elaborate
precisely a part of a model without viewing a sketch
of its whole.

In [2] paper we have demonstrated that the institu-
ted ordering in the development of conceptual models
has many advantages: it results in an ordered, well-
formed, easy readable model that conforms to normal
forms and ontological foundations of conceptual mo-
dels. Extending of ordered conceptual model with
integrity constraints makes model precise and capable
to ensure that domain semantics is rightly expressed
[3]. In this paper we propose the process for checking
of conceptual model supporting its conformance to the
observed reality and assurance that model is syntacti-
cally, type- and semantically correct. In overall, the
proposed methodology consisting of earlier mentioned
three steps brings significantly more quality to con-
ceptual models.

The rest of the paper is organized as follows. In
sections 2 and 3 the existing concepts and techniques
for verifying, validating and testing of data models
with integrity constrains are investigated in relation
with the proposed “checking” concept and methodo-
logy. In section 4 rules for checking integrity at the
model and meta-model level are described. In section
5 the process for checking of ordered and precise con-

ceptual models is presented. Finally, section 6 con-
cludes paper and discusses the future work.

2. What is checking of conceptual model?

Traditionally, the database design process may be
defined as made up of sequences of schema trans-
formations between conceptual, logical and physical
models [4], where logical design includes transforma-
tions for schema simplification, optimization and
translation into structures compliant to database
management systems. It is worth to mention that seve-
ral equivalent representations of the same problem
domain may exist on every of these levels as several
logical models may be obtained from the same
conceptual model, and vice versa [5]. Hence, several
paths are available for going from the higher to the
lower levels (Figure 1). Though it is impossible to
discover the best and unique representation of the
particular problem domain, all representations on dif-
ferent abstraction levels should adequately describe
the same objects of the real world and their semantics.
Another important requirement is that these transfor-
mations should not lose information between layers.
Consequently, the base criterion of the quality of con-
ceptual model should be its capability to represent
precisely semantics of the real world, and the purpose
of checking is to examine this.

Real world objects

Conceptual models

Logical models

Physical models

T1
Tn

T2

CIM
DIM
PIM

PSM
(Object-

Relational
platform)

PSM
(Oracle,

MS SQL,
…)

Figure 1. Transformations from the real world to a physical database

For constructing and checking the conceptual mo-
del we should have some set of real life instances and
known set of actual business rules that we want to
implement in our software system. These instances
and rules may be obtained from the expert of the prob-
lem domain or constructed specially for this purpose.
Furthermore, we argue as in [6] that checking of
conceptual model should combine validation and
verification. In practice, terms “validation” and “veri-
fication” are often incorrectly used as interchangeable.

Verification and validation definitions used in this
paper are adopted from the 1998 AIAA Guide [7],
though the similar definitions are met in other sources
as well:
• Verification is the process of determining that a

model implementation accurately represents the
designer’s conceptual description of the model
and the solution to the model.

286

Checking of Conceptual Models with Integrity Constraints

• Validation is the process of determining the de-
gree to which the model is an accurate represen-
tation of the real world from the perspective of
the intended uses of the model.

In short, verification addresses the question "Have
we built the model right?", and validation considers
the question "Have we built the right model?". These
two steps must be taken if we have ascertained whe-
ther the model implements the assumptions correctly
(model verification) and whether the assumptions
which have been made are reasonable with respect to
the real system (model validation).

Verification and validation do not replace or in-
clude testing, but may be used to determine if testing
has been performed correctly [8]. The goal of veri-
fication and validation of conceptual models is to
assure model correctness and to test conformance of
model semantics to the real world from the perspec-
tive of the intended uses of the model. Therefore
verification and validation cannot prove that a model
is correct and accurate for all possible conditions and
scenarios; the verification and validation process is
completed when the required sufficiency is reached.

In our proposed methodology we define the con-
cept “checking of conceptual model” as a process that
determines if the conceptual model is syntactically and
type- correct, well formed, and adequate to the obser-
ved reality. The syntax check verifies a specification
against the grammar of the specification language (in
our case, UML and OCL). The type-check makes sure
that every OCL expression is described correctly using
only types that exist in the conceptual model. Well-
formedness check examines if rules of the conceptual
data model (defined similarly as UML well-formed-
ness rules) are satisfied. The adequacy check consi-
ders if model is one enabling to correctly represent all
feasible states of problem domain (i.e. sets of data
objects of problem domain), and forbidding to repre-
sent unfeasible states.

Different verification and validation techniques
address slightly different quality criteria. Structured
reviews assure correctness arguments such as comp-
leteness, robustness, and optimality of design deci-
sions. Cook and Skinner [9] consider the following six
correctness arguments: validity, traceability, optimali-
ty, robustness, well formedness, and consistency. In
overall, we give priority for the following elements of
quality criterion that are covering the most important
concerns raised with respect to the quality of
conceptual models:
• Well-formedness is mainly concerned with a cor-

rect use of notations to describe conceptual mo-
dels and satisfy additional rules (specified as OCL
constraints). The part of well-formedness rules is
defined in UML meta-model specification, but
there are additional rules for precise conceptual
data models. For example, it is required for mar-
king the primary identifier for every entity; other-
wise an independent identifier is accepted as the

primary identifier by default. Such requirements
are not raised in “imprecise” conceptual model-
ling techniques.

• Robustness deals with handling of abnormal or
exceptional situations. It deals with questions that
should focus on detecting omissions and gaps in
the model: what are the normal conditions under
which the system operates? What are the excep-
tional and abnormal conditions related to the
system operation? Are they handled correctly?
Robustness is addressed during creation of OPCM
when use cases and their steps are analyzed and
all objects required as inputs and outputs are iden-
tified. Robustness is checked by applying model
to describe collections of correct and incorrect
instances of data objects.

• Adequacy deals with checking of obtained arte-
facts to ensure their conformance to data of the
observed reality. This kind of checking requires
the sufficient amount of model instances enabling
to evaluate model capability to correctly represent
them. The model instance is a snapshot of the
state of the problem domain at the particular mo-
ment of time (a particular set of object instances
and links between them); it is presented with
object diagram. Instances of models can be comp-
lete, incomplete and inconsistent. A complete
model instance is one in which at least one
instance of each model element is included. In-
complete model instance includes instances of
part of model elements, but in either case it must
be consistent. A consistent model instance repre-
sents the consistent state in which all constraints
intended and specified by designer are obeyed
[10]. It is enough to obtain one complete model
instance to evaluate the feasibility of the con-
ceptual model, but it is possible to determine its
suitability for various situations only having a
sufficient amount of model instances. In general,
there is a problem of having this set of required
model instances. One possibility is to rely on
assumption that the expert of the problem domain
can provide it. The other choice is to use empi-
rical methods for creation of model instances that
are offered by methods for testing data models or
databases. Such methods are described, for
example, in [11], implemented by USE tool,
Alloy Analyzer, AGENDA etc.

In our methodology, the concept “checking of con-
ceptual model” is used, which includes verification
and validation, and is very similar to testing, because
we are using “checking cases” − sets of domain ins-
tances for validation of models; we are making che-
cking plans where sufficient number of “successful”
and “unsuccessful” cases are introduced; we are using
“checking units” – model elements, which are com-
bined into larger units; model walkthroughs, inspec-
tions and other testing techniques should be used
before checking, and so on. Moreover, the goals of
checking are the same as of testing: to assure that

287

E. Pakalnickiene, L. Nemuraite

288

conceptual model operates correctly according to its
purpose. The same process and instances of problem
domain may be used for checking conceptual model
and testing its implementation in a database or prog-
ram code.

However, we are not willing to relate to “testing”
because testing is defined as “assurance that software
performs correctly” and term “model testing” is not
defined anywhere. “Model-based testing”, a known
term, has a different meaning referring to software
testing where test cases are automatically generated on
the base of models and usually is used for confor-
mance testing [12].

“Incremental testing” should be mentioned here
also as it can lead to confusion in relation with our
method. The method presented in [13] is associated
with increasing effectiveness of methods, implemen-
ted in database for checking constraints at run-time, by
checking only part of constraints, which are potential
for causing violations of database states. Our method
is “incremental” in another sense as it is making che-
cking of part of constraints starting from the top level.
However, the purpose of our method is to check the
conceptual model in the requirement analysis phase.
Also, “checking of conceptual model” should not be
confused with “model checking” – state machine-
based verification techniques.

3. Related work

Many of different techniques have been developed
for model checking, but we would like to focus on
approaches that analyze UML class diagrams with
OCL invariants and are supported by tools. Currently
there are only a few tools specifically designed for
analyzing UML models and OCL constraints. Prob-
ably, this is mostly due to the lack of a precise standar-
dized formal semantics of UML and OCL. A well-
defined semantics is a prerequisite for building tools
offering sophisticated analysis features [1].

One of the first tools dedicated to check UML
class models together with OCL invariants is USE
(UML Specification Environment) tool [14]. The tool
takes UML class diagram with OCL expressions and
makes them machine-analyzable. The model is veri-
fied performing syntax, type and semantic checking.
Validation is performed with user-provided test cases
by means of object diagrams. The tool enables crea-
ting and changing object diagrams and automatically
gives responses about their validity against the inva-
riants and pre- and post conditions specified in the
model. USE system has snapshot generator that allows
manipulation in more flexible way not only by crea-
ting and destroying objects, inserting and removing
links between objects and setting attributes values of
objects.

This approach requires less efforts from designer
since models can be directly used as input for analysis,
but creating of procedures for automation of snapshot

generation requires the special training in ASSL (A
Snapshot Sequence Language); manual production of
test cases is the time-consuming work that has to be
done by domain expert. The technique is quite intui-
tive and no rules are defined for selecting data struc-
tures for verification and validation.

Another approach for automating analysis of UML
class diagram is to use formal specifications with pre-
cise semantics based on Alloy (a formal object-orien-
ted modelling language founded on first-order logic)
[15]. In ref. [16] rules are presented for mapping
between UML&OCL and Alloy elements. Alloy
models are analyzed with the Alloy Analyzer, which
allows automatic generation of all valid snapshots and
counterexamples within a given scope, satisfying mo-
del constraints. The scope for validation can be gra-
dually increased by the user enlarging the number of
elements for each basic type. Besides, this analysis
supports checking of assertions by searching a snap-
shot that refuses the asserted property.

The validation processes in USE and Alloy Ana-
lyzer differ in that USE tool offers the evaluation of
user-provided snapshots of models while Alloy
Analyzer offers the automatic simulation by searching
for instances satisfying given constraints. However,
Alloy is a light-weight formal language and is not able
to reflect all semantics of UML and OCL. So the
priority should be given for tools like USE.

In the sources [17], [18] an approach for testing
database applications is developed and AGENDA
tool-set is implemented to facilitate this approach.
AGENDA performs testing at physical database
schema level and takes as input the database schema
of the database on which the application runs, the
application source code, and ‘sample-value files’ con-
taining suggested values for attributes. The tester can
select test heuristics and provide information about
expected behaviour of test cases. Differently from
USE and Alloy Analyzer, AGENDA performs valida-
tion of model implementation populating the database
with meaningful data satisfying constraints (currently
AGENDA can handle just uniqueness, not-null and
referential constraints, and semantic constraints invol-
ving simple expressions). Generating inputs to the
application and executing the application for those
inputs AGENDA performs checking if the resulting
database state and application output is valid accor-
ding to the expected behaviour indicated by the tester.

Integration of informal and formal methods is one
of the corner stones of the KeY approach [19], [20].
The KeY tool provides automatic support for creating
formal specifications. It has a uniform user interface
for modelling, specification, implementation, and veri-
fication of software and may be used for the entire
development process. Formal specifications can be
introduced and verified incrementally. However, the
KeY tool is devoted for checking Java implementation
and does not have capabilities for validating models.

The most promising methodologies for checking
UML models are implemented in OCLE [21] and

Checking of Conceptual Models with Integrity Constraints

289

MagicDraw tools. Differently from analyzed earlier,
they allow users to define rules at model and meta-
model level and use them for validating chosen mo-
dels. In OCLE, OCL specifications are defined in
separate files; in MagicDraw – in stereotyped vali-
dation packages. These tools will analyze the loaded
model and evaluate the corresponding OCL expres-
sions on each model element. Thus, if a rule is defined
for a class in the model, it will be evaluated for all its
instances and all the instances of any of its child
classes. If a rule is defined in the context of meta-class
Class, it will be evaluated for each class and associa-
tion class in the model. If such a rule evaluates to false
or if it cannot be evaluated for some reason, the model
is considered faulty − either the model contains errors
or it is not adequate.

OCLE also helps in debugging models and OCL
specifications. Both tools perform syntax and type
checking – OCLE during typing OCL expression, and
MagicDraw – during validation (only partial syntax
checking is done in MagicDraw during writing ex-
pressions). Besides the capabilities to create class ins-
tances provided by the model browser and snapshot
diagrams, OCLE allows to import instances from files
generated by other tools. Currently, two state-of-the-
art tools are supported: the USE open-source project
and the ModelRUN commercial tool. This functionali-
ty is very useful for evaluation of business constraints,
because it requires concrete objects (instances) to set
the context for certain rules.

To reveal the presence of errors in the OPCM and
to check its conformance to the observed reality, we
will embrace verification and validation capabilities
offered by MagicDraw and check models using the
representative collection of domain objects. The main
difference of our proposal from aforementioned me-
thods is that we institute the order of checking by
adhering the same principles as model construction:
the sequential procedure starting from model elements
of the top level. Validation of model elements against
valid states of problem domain described by object
diagrams containing instances of validated elements
and elements under validation is performed in a gra-
dual way, by the order arising from a problem domain.
Object diagrams with validated instances are incre-
mentally complemented with new instances for vali-
dation in a natural way understandable for users. In
addition, the gradual checking has performance advan-
tages against other model verification and validation
techniques. Another important point of the proposed
method for checking conceptual models is in that we
are giving taxonomy and recommendations what types
of integrity constraints and under what circumstances
should be analyzed and applied [22], [23].

4. Rules for Checking Conceptual Models

In our previous work [22] the taxonomy of integ-
rity constraints relevant for making semantically mea-
ningful model was proposed on the base of analysis of

types of constraints adressed in the most promising
conceptual modelling methods (ER, Extended ER
(EER), UML, eXexutable UML (xUML), and ORM).
We have applied these types of constraints for creation
of ordered and precise conceptual models. The ca-
pabilities of UML to accurately express all important
types of constraints in terms of UML metamodel and
its extension mechanisms of stereotypes, tagged
values and constraints were presented in the paper
[23]. There are alternative options for representation
of constraints using UML: natural language or OCL
expressions in notes, but stereotypes are useful as
patterns not only for discovering constraints, but also
for succeeding generation of implementation code as
properties and constraints of stereotypes may be
mapped to the functionality of database management
systems. Hence, there are several possibilities to de-
fine integrity constraints in UML:
• Specify constraints on model elements;
• Specify constraints on model elements using

constraint patterns;
• Specify constraints on stereotypes;
• Specify constraints on elements of UML meta-

model.
The first possibility is the simplest one, but in such

case every modeller must directly create constraints on
each element requiring for constraints. Specification
of constraints using patterns defined for stereotypes of
constraints, releases modellers from repetitive efforts
for defining typical constraints. Predefined constraint
patterns can be instantiated for constrained elements
without having deep knowledge about OCL syntax.
Specification of constraints on stereotypes is even
more effective way because stereotypes may be re-
used. Applying stereotype for model element the
modeller wouldn’t have to worry about writing
constraints because they will be defined in advance on
meta-model elements. However, the possibilities to
validate constraints on stereotypes are much more
restrictive in current implementations of CASE tools.
Only simple constraints may be validated in the mean-
time. And there are some kinds of constraints that
should not be specified using stereotypes, for
example, association between entities A and B with
multiplicities “0..*” and “1” means that instances of
class A always must have values for an attribute
referring to class B. Seeking for reusability these
constraints should be specified on elements of UML
meta-model. By all means, modelling of domain-spe-
cific integrity constraints may require for specifying
constraints inherent only for that domain. For
example, such are constraints on derived values. How-
ever, stereotypes and patterns are capable to conside-
rably reducing of these efforts.

Let’s consider rules for checking constraints spe-
cified directly on model elements, stereotypes and
meta-model elements using example in Figure 2. Here
the part of OPCM-type model is given with

E. Pakalnickiene, L. Nemuraite

290

 not self.department.oclIsUndefined() constraints of different complexity represented by
appropriate stereotypes.

Primary identifier constraint. The stereotype
<<P>> is used for representation of primary identifiers
(analogous to primary keys in relational databases) for
data objects. An attribute or a group of attributes with
stereotype <<P>> comprise the primary identifier for
unique identification of instances of the class. It
requires that the identifying attribute or the group of
attributes always should have values and these values
should be unique.

The model-level constraint for Department pri-
mary identifier denoted with stereotype <<P>> is
simply expressed as OCL invariant: Figure 3. Primary identifier constraint specified on

stereotype Context Department inv unique:

 self.allInstances()->
The corresponding meta-model level constraint

will check all properties representing association ends
and having multiplicities “1” or “1..*”:

 isUnique(d:Department|d.code)

context Property inv meta_mandat_assoc:

 if not self.association.oclIsUndefined()

 and self.association.lowerValue=1 then

 let r:String=self.association.name in

 self.classifier.allInstances().slot->

 select(s|s.definingFeature.name =

 self.name)->forAll

 (p|p.concat(‘.‘).concat(r).value=p.value)

 else false endif
Fragment of UML meta-model on which this

constraint was defined is represented in Figure 4,
where upperValue and lowerValue elements are
inherited by StructuralFeature element from
MultiplicityElement:

Slot

InstanceSpecification

1

*

+owningInstance
1

+slot*

FeatureClassifier

0..*
+classifier

0..*

0..
+/feature

*
+/featuringClassifier

0..*

AssociationProperty
0..12..*

+association

0..1
+memberEnd

2..*

0..1

*

+classifier
0..1

+/attribute
*

ValueSpecification

StructuralFeature
1

+definingFeature

1

0..1

0..1

+lowerValue
0..1

0..10..1

0..1

+owningUpper
0..1

+upperValue
0..1

+owningLower

Figure 2. Example of stereotypes for representation of
integrity constraints

However, such simple constraints must be speci-
fied for every attribute having the stereotype <<P>>,
while the same constraint specified for stereotype will
check the uniqueness of slots of all attributes having
the stereotype <<P>> (Figure 3):
context P inv meta_unique:

 self.classifier.allInstances().slot->

 select(

 s|s.definingFeature.name=self.name)->

 isUnique(s|s.value)

Mandatory association constraint. Mandatory con-
straint on an attribute representing link to the asso-
ciated object (association end) is used to indicate that
this attribute must have a value. In UML mandatory
constraint on association is denoted by multiplicities
“1” or “1..*”. The model-level mandatory constraint
on the property (attribute) representing association end
is defined by a simple invariant expression:

Figure 4. UML meta-model elements on which constraint
for mandatory association is specified

Context Manager inv mandatory_association:

Checking of Conceptual Models with Integrity Constraints

291

context GeneralizationSet inv meta_complete: Generalization constraints. Generalization in
UML may have several generalization sets, where
every set means the particular specialization of the
same super-type. For example, all animals may have
generalization set G1, in which they are specialized to
flying and cursorial according to their motion, and
generalization set G2, in which they are specialized to
mammals, reptilians, etc., according to their feed.
Generalization constraints are defined on generali-
zation sets. {complete} means that a set of in-
stances of the super-type in a given generalization set
is fully covered by instances of its subtypes.
{disjoint} constraint means that sets of instances
of subtypes in a given generalization set do not over-
lap. In general, four types of generalization are pos-
sible: complete, disjoint; incomplete, dis-
joint; complete, overlapping; incomp-
lete, overlapping (default is {incomplete,
disjoint}). However, such constraints are not en-
forced in UML CASE tools. {incomplete} and
{overlapping} generalizations do not require
constraints. For ensuring {complete} and {dis-
joint} constraints on generalization relationship in
Figure 2 having generalization set GenSet1 with
{complete} and {disjoint} constraints, the
model-level checking rules may be specified:

 if self.isCovering = true then

self.generalization.specific->

 collect(p|p.allInstances())->includesAll

(self.generalization.general.allInstances())

 else false endif

context GeneralizationSet inv meta_disjoint:

if self.isDisjoint = true then

 self.generalization.specific->

collect(p|p.allInstances()).asSet()->size()=

self.generalization.general.allInstances()->

size())else false endif

context Person inv complete:

not self.oclAsType(Manager).oclIsUndefined()
or

not self.oclAsType(Worker).oclIsUndefined()

context Person inv disjoint:

if (not
self.oclAsType(Manager).oclIsUndefined())
then

Equal set constraint on path of relationships.
Equal set and subset constraints on path of relation-
ships comprising loops are the most complicated
constraints and are not considered in most popular
conceptual modelling methods [24]. These constraints
indicate that not all instances of object type can parti-
cipate in appropriate relationship but just instances
participating in set of constrained relationships. For
example, in Figure 2 the equal set constraint denoted
by stereotype <<equ>> is defined for property of class
Worker representing association with Manager and
means that the set of instances selected by traversing a
loop in one direction (Worker.Department) must be
the same as the set of instances selected by traversing
the loop in the opposite direction (Worker.
Manager.Department), according to the rules and
policies of the domain. Model-level equality con-
straint on relationship loop:
context Worker inv loop:

 department = manager.department
self.oclAsType(Worker).oclIsUndefined() else For definition of this constraint on meta-model

level, the property of stereotype (tag) should be used.
Like a class, a stereotype may have properties, which
may be referred to as tag definitions (Figure 6). When
a stereotype is applied to the model element, the
properties of stereotype are referred to as tags, and the
values of these properties are referred to as tagged
values. For example, in Figure 2 the aforementioned
equal set constraint is marked with stereotype
<<equ>> having tags “left_side” and
“right_side” of type String used for the definition
of the loop: department = manager.department.
For defining the equal set constraints on the meta-
model level the following constraint on stereotype
<<equ>> should be used:

not (self.oclAsType(Worker).oclIsUndefined())
endif

As it can be seen, the dependence to a generaliza-
tion set is not reflected on model-level generalization
constraints. Reusable {complete} and {disjoint}
constraints should be defined on meta-model level
(Figure 5); it is considerable to define them on UML
meta-model element GeneralizationSet, because
the constraint expression is the simplest in this case.

GeneralizationSet
isCovering : Boolean
isDisjoint : Boolean

PackageableElement
(from Kernel)

general

Classifier

0..*

0..1

+powertypeExtent

0..*

+powertype
0..1

Generalization

*

*

+generalizationSet

*

+generalization
*

1
*+specific

1 +generalization
*

11

context Property inv meta_loop:

 if self.classifier.allInstances()->

 forAll(p|p.concat(left_side).value=

 p.concat(right_side).value)

 then true else false endif

In the similar way meta-model-level constraints
and/or constraints on stereotypes were created for all
integrity constraints from taxonomy [22], [23], com-
prising the <<OPCM profile>> that was proposed

Figure 5. UML meta-model elements on which
generalization constraints are defined

E. Pakalnickiene, L. Nemuraite

292

5. Checking Process for development and checking of conceptual models.
Besides aforementioned constraints, we have consi-
dered constraints on values of attributes; disjunctive
mandatory, coexistence, exclusion, subset, uniqueness
constraints restricting groups of optional attributes or
relationships; acyclic, ireflexive, symmetric, intransi-
tive, antisymetric constraints for reflexive relation-
ship, and others. This profile may be applied on the
top of existing facilities of UML CASE tools, for
example, MagicDraw. MagicDraw tool provides vali-
dation profile for validating UML models: stereotypes
<<validationRule>> for turning constraints into
validation rules and supplementing them with error
messages; stereotype <<validationSuite>> for
creation of validation rule sets, and supports automatic
validation of sets of constraints against UML models
and instances. There are even validation rule suites in-
cluding a part of UML meta-model constraints, how-
ever, these rule suites are still incomplete with regards
to UML models, and they are rather unforeseen for
checking of conceptual models.

The methodology for creating conceptual models
presented in [2] institutes the sequence of analysis
steps and results in the ordered conceptual schema,
where classes are arranged to levels starting from in-
dependent (top level) ones. Classes on the next levels
are dependent on the classes of the higher levels. For
example, the fragment of conceptual model presented
in Figure 2 is ordered because partial order relation-
ship exists between its elements, which are arranged
on three levels: Department and Person are inde-
pendent entities, Manager on the second level is
dependent on these independent entities, and the third
level contains the Worker entity dependent on
Manager from the second level and Department
from the first level.

The algorithm for checking of ordered and precise
conceptual models (OPCM) is presented in Figure 7.
It is based on the iterative process similar to its
construction. The procedure starts from checking the
object diagram composed of objects of the top level
elements. In the next steps objects are gradually
added for entities of lower levels dependent on already
analyzed ones.

Figure 6. Stereotype with tag definitions and constraint

Using MagicDraw tool, OPCM rule sets are ap-
plied to conceptual models complemented with object
diagrams presented by the domain expert. The domain
expert should create object diagrams that represent
adequate and not-adequate states of problem domain.
MagicDraw tool, using these rule sets, will check ob-
jects diagrams helping to find out if there are reason-
able object diagrams that do not satisfy checking
rules, or if there are undesirable system states that
satisfy them. The first case may indicate that const-
raints are too strong or the model is not adequate in
general. The second case may indicate possibility that
constraints may be too weak. Therefore, in both cases
the model must be revised, e.g., by relaxing or making
more restrictive constraints. The revised model having
refined object types, relationships and constraints is
checked again until an appropriate assumption is
reached about the correctness of the model with res-
pect to the analyzed states of the problem domain
represented in object diagrams.

Figure 7. The algorithm for checking of ordered and precise
conceptual models

Firstly, constraints on independent elements and
associations between them are checked. For this pur-
pose an object diagram must be created with desirable
and undesirable objects of independent entities.
Checking of OPCM, presented in Figure 2, will start
from the object diagram shown in Figure 8 having
valid and invalid objects of entity Department. The
result of MagicDraw validation of entity Department
is presented in Figure 9 where invalid objects viola-
ting primary identifier constraint on department code
or mandatory constraint on department name are
presented in the red rectangular shapes with thickened

Checking of Conceptual Models with Integrity Constraints

293

borders. Continuing procedure the accepted elements
are included as valid and not analyzable in the next
steps of checking process. In our case checked
Department object with department code “1”
satisfies all requirements of problem domain and will
be used in further checking. In the same way the entity
Person is checked and two different objects satis-
fying all constraints on Person are picked for further
checking of generalization subtypes.

Figure 8. The object diagram for checking the entity

“Department”

Figure 9. The resulting object diagram after the first

step

The next step of the algorithm validates objects of
entities dependent upon checked entities and associa-
tions between entities of currently analyzed level and
the previous one. These steps are repeated till any un-
studied level or entity exists. In our example, during
the second step of the algorithm we have to check if
model accepts only objects of Manager entity (sub-
typed from Person) related with the existing depart-
ment and not violating primary identifier constraint on
the attribute code. Finally, the Worker entity is
checked using object diagram presented in Figure 10
where valid object of Person entity sub-typed into
Worker object is rejected because it is associated with
the Manager object having link with a different de-
partment than Worker object (and violates the equa-
lity constraint). The generalization constraints also are
checked; they are satisfied in the current object diag-
ram because the manager and the worker are different
persons.

Figure 10. Object diagram for checking Worker entity

 In our little example at least three instances (of
Department, Manager and Worker) are needed for
checking; they comprise one complete instance of the
overall model (Figure 11). One complete instance of a
model obeying all integrity constraints can confirm

the feasibility of that model (the absence of syntax and
type errors, well-formedness and adequacy to problem
domain). However, much more instances are required
to check the relevance of models for all intended
scenarios of their usage.

Figure 11. The complete instance tested for the adequacy to

the problem domain

In [2] it is shown that the same structure of comp-
lete instances of conceptual model would be obtained
applying methods of Formal Concept Analysis (FCA)
[25], [26].

6. Conclusion and Further Work

Many activities of information systems develop-
ment including checking of their correctness and
adequacy to the problem domain may be made on the
conceptual level. Currently it seems that checking of
conceptual models is the much more difficult problem
than their development and cannot be done without
automation. The real possibilities to check conceptual
models already exist in advanced UML&OCL CASE
tools like OCLE and MagicDraw, but comprehensive
methods offering practical checking rules and che-
cking processes are not elaborated. In the current
paper we have discussed the rules required for che-
cking of conceptual data models and investigated the
possibilities to define them using elements of such
models, stereotypes and meta-model elements.

We have proposed reusable checking rules for
taxonomical integrity constraints inherent for precise
conceptual models, and tried the incremental checking
process executing it on the top of facilities of existing
CASE tool. The orderliness of conceptual models, as
well as processes of their development and checking,
have demonstrated their additional quality and perfor-
mance advantages and may be easily applied by mo-
dellers without training in formal methods. However,
the problem of generating instances for investigation
of the sufficient set of cases of intended usages of mo-
dels still remains under the responsibility of domain
experts. This task may be only partially automated −
as well as creation of conceptual models.

Our future work is addressed to looking for possi-
bilities to using the OPCM profile, containing intro-
duced stereotypes and integrity constraints, in genera-
tion of the full-fledged database schema when the
consistent conceptual model created and checked

E. Pakalnickiene, L. Nemuraite

294

using OPCM profile should be automatically trans-
formed into statements of structured query language
and/or program code containing data structures and
constraints, therefore reducing time and avoiding addi-
tional errors in model implementation.

References
 [1] M. Richters, M. Gogolla. Validating UML Models

and OCL Constraints. Proc. 3rd International Con-
ference on the Unified Modeling Language (UML),
2000.

 [2] E. Pakalnickiene, L. Nemuraite, B. Paradauskas.
The Orderliness and Precision in Conceptual Mo-
delling. 11th Panhellenic Conference on Informatics
(PCI 2007), 18-20 May 2007, Patras, Greece, ISBN:
978-960-89784-1-6, 341-350.

 [3] T. Halpin. UML Data Models from an ORM Pers-
pective: Part 1 − 10. Journal of Conceptual Modeling,
2003, Available at: http://www.orm.net/uml_orm.html.

 [4] J.L. Hainaut, C. Tonneau, M. Joris, M. Chandelon.
Transformation-based Database Reverse Engineering.
Proceedings of the 12th international conference on
entity relationship approach held in Texas, USA, De-
cember, 1993, edited by R. Elmasri, V. Kouramajian,
and B. Thalheim, 364−375.

 [5] M. Gogolla, M. Richters. Expressing UML class dia-
grams properties with OCL. Lecture Notes in
Computer Science, Vol. 2263, 2002, 85-114.

 [6] J. Dietrich, A. Paschke. On the Test-Driven Develop-
ment and Validation of Business Rules. 4th Interna-
tional Conference on Information Systems Technology
and its Applications (ISTA 2005), New Zealand, May
2005, 31-48.

 [7] American Institute of Aeronautics and Astronautics,
Guide for the Verification and Validation of Compu-
tational Fluid Dynamics Simulations. AIAA-G-077-
1998, Reston, VA, 1998.

 [8] I. Traore, D.B. Aredo. Enhancing Structured Review
with Model-Based Verification. Software Engineering,
IEEE Transactions on Vol.30, Issue 11, Nov. 2004,
736 – 753.

 [9] A.D. Cook, M.J. Skinner. How to Perform Credible
Verification, Validation, and Accreditation for Mode-
ling and Simulation. The Journal of Defense Software
Engineering, May 2005, http://www.stsc.hill.af.mil/
crosstalk/2005/05/0505Cook.html.

[10] H. Garcia-Molina, J.D. Ullman, J. Widom. Data-
base System Implementation. Prentice-Hall: Engle-
wood Cliffs, NJ, 2000.

[11] I. Burnstein. Practical Software testing. Springer,
2002.

[12] I.K. El-Far, J.A. Whittaker. Model-based Software
Testing. Encyclopedia on Software Engineering (edi-
ted by J.J. Marciniak), Wiley, 2001.

[13] J. Cabot, E. Teniente. Incremental Evaluation of
OCL Constraints. Proc. 18th Int. Conf. on Advanced
Information Systems Engineering (CAiSE'06), LNCS,
Vol. 4001, 2006, 81-95.

[14] P. Ziemann, M. Gogolla. Validating OCL Specifica-
tions with the USE Tool – An Example Based on the
BART Case Study. Electronic Notes in Theoretical
Computer Science, Vol.80, August 2003, 157-169.

[15] C. Wallace. Using Alloy in process modeling.
Information and software technology, ISSN 0950-
5849, Vol.45, No.15, 2003, 1031-1043

[16] T. Massoni, R. Gheyi, P. Borba. A UML Class Dia-
gram Analyzer. Proceedings of the Third International
Workshop on Critical Systems Development with
UML, 2004.

[17] D. Chays, Y. Deng. Demonstration of AGENDA tool
set for testing relational database applications. Procee-
dings of the 25th International Conference on Soft-
ware Engineering, May 03-10, 2003, Portland,
Oregon.

[18] D. Chays, Y. Deng, G.P. Frankl, S. Dan, I.F. Voko-
los, J.E. Weyuker. An AGENDA for testing relatio-
nal database applications. Journal of Software Testing,
Verification and Reliability, Mar. 2004.

[19] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M.
Giese, R. Hähnle, W. Menzel, W. Mostowski. The
KeY Tool. Software and Systems Modeling. Springer,
2005.

[20] B. Beckert, U. Keller, H.P. Schmitt. Translating the
Object Constraint Language into the Java Modelling
Language. Proceedings of the 2004 ACM symposium
on Applied computing, ISBN:1-58113-812-1, Cyprus,
2004, 1531 – 1535.

[21] Object Constraint Language Environment (OCLE).
http://lci.cs.ubbcluj.ro/ocle/index.htm.

[22] E. Miliauskaite, L. Nemuraite L. Taxonomy of inte-
grity constraints in conceptual models. P.Isaias et all.
(Eds.): Proceedings of the IADIS Virtual Multi Con-
ference On Computer Science and Information Sys-
tems, IADIS Press, ISBN: 972-8939-00-0, 2005, 247-
254.

[23] E. Miliauskaite, L. Nemuraite. Representation of
integrity constraints in conceptual models. Information
technology and control, Kauno technologijos univer-
sitetas, ISSN 1392-124X. Vol. 34-4, 2005, 355-365.

[24] L. Starr. Executable UML. How to build class
models. Prentice Hall, Upper Saddle River, 2002.

[25] H.A. Priestley. Ordered Sets and Complete Lattices.
International Summer School and Workshop: Algeb-
raic and Coalgebraic Methods in the Mathematics of
Program Construction, Lecture Notes in Computer
Science, Vol. 2297/2002, Springer Berlin / Heidelberg
Publishers, 2002, 21-78.

[26] R. Godin, P. Valtchev. Formal concept analysis-
based class hierarchy design in object-oriented soft-
ware development. Lecture Notes in Computer
Science, Springer Berlin/Heidelberg Publishers, ISBN
978-3-540-27891-7, 2005, 304-323.

Received July 2007.

