
ISSN 1392 – 124X  INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.3  

COMPOSITION OF AUGMENTED MARKED GRAPHS AND 
ITS APPLICATION TO COMPONENT-BASED SYSTEM DESIGN 

K.S. Cheung 
Hong Kong Baptist University 

Kowloon Tong, Hong Kong 

Abstract. Augmented marked graphs possess some structural characteristics which are especially desirable for 
modelling systems with common resources. This paper first investigates the composition of augmented marked graphs 
via common resource places. Special focus is placed on preservation of four properties, namely, liveness, boundedness, 
reversibility and conservativeness. It is then applied to component-based system design, where the system components 
are specified as augmented marked graphs and composed via their common resource places. Based on the preservation 
of properties of this composition, the liveness, boundedness, reversibility and conservativeness of the integrated system 
can be readily derived. Examples of manufacturing system integration are used for illustration. 
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1. Introduction 

A subclass of Petri nets, augmented marked graphs 
possess a structure especially for modelling systems 
with common resources. They also exhibit a number 
of desirable properties pertaining to deadlock-free-
ness, liveness, boundedness, reversibility and conser-
vativeness. Chu and Xie first investigated their dead-
lock-freeness, liveness and reversibility using siphons 
and mathematical programming [1]. The author earlier 
proposed some siphon-based and cycle-based charac-
terisations for live and reversible augmented marked 
graphs, and transform-based characterisations for 
bounded and conservative augmented marked graphs 
[2, 3, 4]. Besides, Huang investigated the property-
preserving composition for augmented marked graphs 
[5]. 

This paper first investigates the composition of 
augmented marked graphs via common resource pla-
ces, with a focus on preservation of properties. These 
properties include liveness, boundedness, reversibility 
and conservativeness. Liveness implies deadlock-free-
ness. Boundedness implies absence of capacity over-
flow. Reversibility refers to the capability of being 
reinitialised. They collectively characterise a robust or 
well-behaved system. Next, we show how this compo-
sition of augmented marked graphs can be effectively 
applied to component-based system design. 

Typically in component-based system design, a 
system is synthesised from a set of components 
through composition. By modelling the components as 
augmented marked graphs and composing them via 
their common resource places, which represent 

common resources, an integrated system is obtained. 
Then, based on the property-preservation of this com-
position, the liveness, boundedness, reversibility and 
conservativeness of the integrated system can be 
readily derived. 

After a brief review of augmented marked graphs, 
this paper describes the composition of augmented 
marked graphs via common resource places, and spe-
cifically show that this composition preserves boun-
dedness and conservativeness whereas liveness and 
reversibility can be preserved under a pretty simple 
condition. The results are then applied to component-
based system design and illustrated with examples of 
manufacturing system integration. 

The rest of this paper is organised as follows. Sec-
tion 2 provides the preliminaries to be used. Section 3 
introduces augmented marked graphs and summarises 
their properties. Section 4 describes the composition 
of augmented marked graphs and study the preserva-
tion of properties in the composition process. Section 
5 shows its application to the component-based 
system design and illustrates with examples. Section 6 
briefly concludes this paper. 

2. Preliminaries 

This section provides the preliminaries to be used 
in this paper for readers who are not familiar with 
Petri nets [7, 8, 9]. 

A place-transition net (PT-net) is a directed graph 
consisting of two sorts of nodes called places and 
transitions, such that no arcs connect two nodes of the 
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Definition 2.10. A marked graph is an ordinary PT-net 
N = 〈 P, T, F, W 〉 such that ∀ p ∈ P : | •p | = | p• | = 1. 
Definition 2.10. A marked graph is an ordinary PT-net 
N = 〈 P, T, F, W 〉 such that ∀ p ∈ P : | •p | = | p• | = 1. 

same sort. Graphically, a place is denoted by a circle, a 
transition by a box or a bar, and an arc by a directed 
line. A Petri net is a PT-net with tokens assigned to its 
places, and the token distribution over its places is 
denoted by a marking function. 

Liveness, boundedness, reversibility and conser-
vat-iveness are four well-known properties of Petri 
nets, used for describing a robust or well-behaved 
system. Liveness implies deadlock freeness. Bounded-
ness refers to the property that the system is free from 
any capacity overflow. Conservativeness is a special 
case of boundedness. Reversibility refers to the capa-
bility of being reinitialised from any reachable state. 

Liveness, boundedness, reversibility and conser-
vat-iveness are four well-known properties of Petri 
nets, used for describing a robust or well-behaved 
system. Liveness implies deadlock freeness. Bounded-
ness refers to the property that the system is free from 
any capacity overflow. Conservativeness is a special 
case of boundedness. Reversibility refers to the capa-
bility of being reinitialised from any reachable state. 

Definition 2.1. A place-transition net (PT-net) is a 4-
tuple N = 〈 P, T, F, W 〉, where P is a set of places, T is 
a set of transitions, F ⊆ (P × T) ∪ (T × P) is a flow 
relation and W : F → { 1, 2, ... } is a weight function. 
N is said to be an ordinary PT-net if and only if W : F 
→ { 1 }. Definition 2.11. For a PT-net (N, M0), a transition t is 

said to be live if and only if ∀ M ∈ [M0〉, ∃ M' : M [∗〉 
M' [t〉. (N, M0) is said to be live if and only if every 
transition is live. 

Definition 2.11. For a PT-net (N, M0), a transition t is 
said to be live if and only if ∀ M ∈ [M0〉, ∃ M' : M [∗〉 
M' [t〉. (N, M0) is said to be live if and only if every 
transition is live. 

An ordinary PT-net can be written as 〈 P, T, F 〉. In 
the rest of this paper, unless specified otherwise, all 
PT-nets are ordinary. 

Definition 2.12. For a PT-net (N, M0), a place p is said 
to be k-bounded (or bounded) if and only if ∀ M ∈ 
[M0〉 : M(p) ≤ k, where k > 0. (N, M0) is said to be k-
bounded (or bounded) if and only if every place is k-
bounded (or bounded). 

Definition 2.12. For a PT-net (N, M0), a place p is said 
to be k-bounded (or bounded) if and only if ∀ M ∈ 
[M0〉 : M(p) ≤ k, where k > 0. (N, M0) is said to be k-
bounded (or bounded) if and only if every place is k-
bounded (or bounded). 

Definition 2.2. Let N = 〈 P, T, F, W 〉 be a PT-net. For 
x ∈ (P ∪ T), •x = { y | (y, x) ∈ F } and x• = { y | (x, y) 
∈ F } are called the pre-set and post-set of x, 
respectively. For X = { x1, x2, …, xn } ⊆ (P ∪ T), •X = 
•x1 ∪ •x2 ∪ … ∪ •xn and X• = x1

• ∪ x2
• ∪ … ∪ xn

• are 
called the pre-set and post-set of X, respectively. Definition 2.13. A PT-net (N, M0) is said to be safe if 

and only if every place is 1-bounded. 
Definition 2.13. A PT-net (N, M0) is said to be safe if 
and only if every place is 1-bounded. Definition 2.3. For a PT-net N = 〈 P, T, F, W 〉, a path 

is a sequence of nodes ρ = 〈 x1, x2, ..., xn 〉, where (xi, 
xi+1) ∈ F for i = 1, 2, ..., n-1. ρ is said to be elementary 
if and only if it does not contain the same node more 
than once. 

Definition 2.14. A PT-net (N, M0) is said to be 
reversible if and only if ∀ M ∈ [M0〉 : M [∗〉 M0. 
Definition 2.14. A PT-net (N, M0) is said to be 
reversible if and only if ∀ M ∈ [M0〉 : M [∗〉 M0. 

Definition 2.15. A PT-net N = 〈 P, T, F, W 〉 is said to 
be conservative if and only if there exists a m-vector α 
> 0 such that αV = 0, where m = | P | and V is the 
incidence matrix of N. 

Definition 2.15. A PT-net N = 〈 P, T, F, W 〉 is said to 
be conservative if and only if there exists a m-vector α 
> 0 such that αV = 0, where m = | P | and V is the 
incidence matrix of N. 

Definition 2.4. For a PT-net N = 〈 P, T, F, W 〉, a cycle 
is a sequence of places 〈 p1, p2, ..., pn 〉 such that ∃ t1, 
t2, ..., tn ∈ T : 〈 p1, t1, p2, t2, ..., pn, tn 〉 forms an 
elementary path and (tn, p1) ∈ F. 

Definition 2.4. For a PT-net N = 〈 P, T, F, W 〉, a cycle 
is a sequence of places 〈 p1, p2, ..., pn 〉 such that ∃ t1, 
t2, ..., tn ∈ T : 〈 p1, t1, p2, t2, ..., pn, tn 〉 forms an 
elementary path and (tn, p1) ∈ F. 

Figure 1 shows a PT-net which is live, bounded, 
safe, reversible and conservative. 

Figure 1 shows a PT-net which is live, bounded, 
safe, reversible and conservative. 
  Definition 2.5. For a PT-net N = 〈 P, T, F, W 〉, a 

marking is a function M : P → { 0, 1, 2, ... }, where 
M(p) is the number of tokens in p. (N, M0) represents 
N with an initial marking M0. 

Definition 2.5. For a PT-net N = 〈 P, T, F, W 〉, a 
marking is a function M : P → { 0, 1, 2, ... }, where 
M(p) is the number of tokens in p. (N, M0) represents 
N with an initial marking M0. 

Definition 2.6. For a PT-net N = 〈 P, T, F, W 〉, a 
transition t is said to be enabled at a marking M if and 
only if ∀ p ∈ •t : M(p) ≥ W(p,t). On firing t, M is 
changed to M' such that ∀ p ∈ P : M'(p) = M(p) - 
W(p,t) + W(t,p). In notation, M [N,t〉 M' or M [t〉 M'. 

Definition 2.6. For a PT-net N = 〈 P, T, F, W 〉, a 
transition t is said to be enabled at a marking M if and 
only if ∀ p ∈ •t : M(p) ≥ W(p,t). On firing t, M is 
changed to M' such that ∀ p ∈ P : M'(p) = M(p) - 
W(p,t) + W(t,p). In notation, M [N,t〉 M' or M [t〉 M'. 

Definition 2.7. For a PT-net (N, M0), a sequence of 
transitions σ = 〈 t1, t2, ..., tn 〉 is called a firing sequence 
if and only if M0 [t1〉 ... [tn〉 Mn. In notation, M0 [N,σ〉 
Mn or M0 [σ〉 Mn. 

Definition 2.7. For a PT-net (N, M0), a sequence of 
transitions σ = 〈 t1, t2, ..., tn 〉 is called a firing sequence 
if and only if M0 [t1〉 ... [tn〉 Mn. In notation, M0 [N,σ〉 
Mn or M0 [σ〉 Mn. 

Definition 2.8. For a PT-net (N, M0), a marking M is 
said to be reachable if and only if there exists a firing 
sequence σ such that M0 [σ〉 M. In notation, M0 [N,∗〉 
M or M0 [∗〉 M. [N, M0〉 or [M0〉 represents the set of 
all reachable markings of (N, M0). 

Definition 2.8. For a PT-net (N, M0), a marking M is 
said to be reachable if and only if there exists a firing 
sequence σ such that M0 [σ〉 M. In notation, M0 [N,∗〉 
M or M0 [∗〉 M. [N, M0〉 or [M0〉 represents the set of 
all reachable markings of (N, M0). 

Definition 2.9. Let N = 〈 P, T, F, W 〉 be a PT-net, 
where P = { p1, p2, ..., pm } and T = { t1, t2, ..., tn }. The 
incidence matrix of N is an m × n matrix V whose 
typical entry vij = W(pi,tj) - W(tj,pi) represents the 
change in number of tokens in pi after firing tj once, 
for i = 1, 2, ..., m and j = 1, 2, ..., n. 

Definition 2.9. Let N = 〈 P, T, F, W 〉 be a PT-net, 
where P = { p1, p2, ..., pm } and T = { t1, t2, ..., tn }. The 
incidence matrix of N is an m × n matrix V whose 
typical entry vij = W(pi,tj) - W(tj,pi) represents the 
change in number of tokens in pi after firing tj once, 
for i = 1, 2, ..., m and j = 1, 2, ..., n. 
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Figure 1. A live, bounded, safe, reversible and  
conservative PT-net 

Figure 1. A live, bounded, safe, reversible and  
conservative PT-net 

3. Augmented marked graphs 3. Augmented marked graphs 

This section briefly describes augmented marked 
graphs and summarises their known properties. 

This section briefly describes augmented marked 
graphs and summarises their known properties. 

Definition 3.1 [1]. An augmented marked graph (N, 
M0; R) is a PT-net (N, M0) with a specific subset of 
places R called resource places, satisfying that : (a) 
Every place in R is marked by M0. (b) The net (N', 
M0') obtained from (N, M0; R) by removing the places 

Definition 3.1 [1]. An augmented marked graph (N, 
M0; R) is a PT-net (N, M0) with a specific subset of 
places R called resource places, satisfying that : (a) 
Every place in R is marked by M0. (b) The net (N', 
M0') obtained from (N, M0; R) by removing the places 
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in R and their associated arcs is a marked graph. (c) 
For each r ∈ R, there exist kr ≥ 1 pairs of transitions 
Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tskr, thkr〉 } such that r• = { 
ts1, ts2, ..., tskr } ⊆ T and •r = { th1, th2, ..., thkr } ⊆ T and 
that, for each 〈tsi, thi〉 ∈ Dr, there exists in N' an 
elementary path ρri connecting tsi to thi. (d) In (N', 
M0'), every cycle is marked and no ρri is marked. 

Figure 2 shows an augmented marked graph (N, 
M0; R), where R = { r1, r2 }. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. An augmented marked graph 

Definition 3.2. For a PT-net (N, M0), a set of places S 
is called a siphon if and only if •S ⊆ S•. S is said to be 
minimal if and only if there does not exist a siphon S' 
in N such that S' ⊂ S. S is said to be empty at a 
marking M ∈ [M0〉 if and only if S contains no places 
marked by M. 

), a set of places S 
is called a siphon if and only if •S ⊆ S•. S is said to be 
minimal if and only if there does not exist a siphon S' 
in N such that S' ⊂ S. S is said to be empty at a 
marking M ∈ [M0〉 if and only if S contains no places 
marked by M. 

Definition 3.3. For a PT-net (N, M0), a set of places Q 
is called a trap if and only if Q• ⊆ •Q. Q is said to be 
maximal if and only if there does not exist a trap Q' in 
N such that Q ⊂ Q'. Q is said to be marked at a 
marking M ∈ [M0〉 if and only if Q contains a place 
marked by M. 

Definition 3.3. For a PT-net (N, M0), a set of places Q 
is called a trap if and only if Q• ⊆ •Q. Q is said to be 
maximal if and only if there does not exist a trap Q' in 
N such that Q ⊂ Q'. Q is said to be marked at a 
marking M ∈ [M0〉 if and only if Q contains a place 
marked by M. 

Property 3.1 [1]. An augmented marked graph is live 
and reversible if and only if it does not contain any 
potential deadlock. (Note : A potential deadlock is a 
siphon which would eventually become empty.) 

Property 3.1 [1]. An augmented marked graph is live 
and reversible if and only if it does not contain any 
potential deadlock. (Note : A potential deadlock is a 
siphon which would eventually become empty.) 

Definition 3.4. For an augmented marked graph (N, 
M0; R), a minimal siphon is called a R-siphon if and 
only if it contains at least one place in R. 

Definition 3.4. For an augmented marked graph (N, 
M0; R), a minimal siphon is called a R-siphon if and 
only if it contains at least one place in R. 

Property 3.2 [1, 2, 3]. An augmented marked graph 
(N, M0; R) is live and reversible if every R-siphon 
contains a marked trap. 

Property 3.2 [1, 2, 3]. An augmented marked graph 
(N, M0; R) is live and reversible if every R-siphon 
contains a marked trap. 

Property 3.3 [2, 3]. An augmented marked graph (N, 
M0; R) is live and reversible if and only if no R-
siphons eventually become empty. 

Property 3.3 [2, 3]. An augmented marked graph (N, 
M0; R) is live and reversible if and only if no R-
siphons eventually become empty. 

Definition 3.5 [4]. Suppose an augmented marked 
graph (N, M0; R) is transformed into a PT-net (N', M0') 
as follows. For each r ∈ R, where Dr = { 〈ts1, th1〉, 〈ts2, 
th2〉, ..., 〈tskr, thkr〉 }, replace r with a set of places { q1, 
q2, ..., qkr } such that M0'[qi] = M0[r] and qi

•• = { tsi } 

and •qi = { thi } for i = 1, 2, ..., kr. (N', M0') is called the 
R-transform of (N, M0; R). 

Definition 3.5 [4]. Suppose an augmented marked 
graph (N, M0; R) is transformed into a PT-net (N', M0') 
as follows. For each r ∈ R, where Dr = { 〈ts1, th1〉, 〈ts2, 
th2〉, ..., 〈tskr, thkr〉 }, replace r with a set of places { q1, 
q2, ..., qkr } such that M0'[qi] = M0[r] and qi  = { tsi } 

and •qi = { thi } for i = 1, 2, ..., kr. (N', M0') is called the 
R-transform of (N, M0; R). 

Property 3.4 [4]. Let (N, M0; R) be an augmented 
marked graph, and (N', M0') be its R-transform. (N, 
M0; R) is bounded and conservative if and only if 
every place in (N', M0') belongs to a cycle. 

Property 3.4 [4]. Let (N, M0; R) be an augmented 
marked graph, and (N', M0') be its R-transform. (N, 
M0; R) is bounded and conservative if and only if 
every place in (N', M0') belongs to a cycle. 

The augmented marked graph (N, M0; R) shown in 
Figure 2 contains eight R-siphons : { r1, p2, p4, p6, p7, 
p9 }, { r1, p2, p4, p6, p7, p10 }, { r1, p3, p4, p6, p7, p8 }, { 
r1, p3, p4, p6, p7, p10 }, { r2, p2, p5, p5, p8, p9 }, { r2, p2, 
p5, p6, p8, p10 }, { r2, p3, p5, p6, p8, p9 } and { r2, p3, p5, 
p6, p8, p10 }. Each R-siphon contains a marked trap 
and would never become empty. According to 
Properties 3.2 and 3.3, (N, M0; R) is live and 
reversible. As every place in the R-transform of (N, 
M0; R) belongs to a cycle, according to Property 3.4, 
(N, M0; R) is also bounded and conservative. 

The augmented marked graph (N, M0; R) shown in 
Figure 2 contains eight R-siphons : { r1, p2, p4, p6, p7, 
p9 }, { r1, p2, p4, p6, p7, p10 }, { r1, p3, p4, p6, p7, p8 }, { 
r1, p3, p4, p6, p7, p10 }, { r2, p2, p5, p5, p8, p9 }, { r2, p2, 
p5, p6, p8, p10 }, { r2, p3, p5, p6, p8, p9 } and { r2, p3, p5, 
p6, p8, p10 }. Each R-siphon contains a marked trap 
and would never become empty. According to 
Properties 3.2 and 3.3, (N, M0; R) is live and 
reversible. As every place in the R-transform of (N, 
M0; R) belongs to a cycle, according to Property 3.4, 
(N, M0; R) is also bounded and conservative. 

 p1t5 p6 

t7 

 

p10 
  p9 

t4 

 

 

t3 

p8 

p5 

t6 

t9 

 

 

t8 

p7 

 

  p3 
p2 

p4 

 

t2 

r1 

t1 

t10 

r2 

4. Composition of Augmented Marked Graphs 4. Composition of Augmented Marked Graphs 

This section first describes the composition of 
augmented marked graphs via common resource 
places. Preservation of properties are then studied. 

This section first describes the composition of 
augmented marked graphs via common resource 
places. Preservation of properties are then studied. 

Property 4.1. Let (N1, M10; R1) and (N2, M20; R2) be 
augmented marked graphs, where R1' = { r11, r12, ..., r1k 
} ∈ R1 and R2' = { r21, r22, ..., r2k } ∈ R2 are the 
common places that r11 and r21 are to be fused into one 
single place r1, r12 and r22 into r2, ..., r1k and r2k into rk. 
Then, the net obtained after the fusion is also an 
augmented marked graph (N, M0; R), where R = (R1 \ 
R1') ∪ (R2 \ R2') ∪ { r1, r2, ..., rk } (obvious).  

Property 4.1. Let (N1, M10; R1) and (N2, M20; R2) be 
augmented marked graphs, where R1' = { r11, r12, ..., r1k 
} ∈ R1 and R2' = { r21, r22, ..., r2k } ∈ R2 are the 
common places that r11 and r21 are to be fused into one 
single place r1, r12 and r22 into r2, ..., r1k and r2k into rk. 
Then, the net obtained after the fusion is also an 
augmented marked graph (N, M0; R), where R = (R1 \ 
R1') ∪ (R2 \ R2') ∪ { r1, r2, ..., rk } (obvious).  

Definition 4.1. With reference to Property 4.1, (N, M0; 
R) is called the composite augmented marked graph of 
(N1, M10; R1) and (N2, M20; R2) via a set of common 
resource places { (r11, r21), (r12, r22), ..., (r1k, r2k) }, 
where r11, r12, ..., r1k ∈ R1 and r21, r22, ..., r2k ∈ R2. RF = 
{ r1, r2, ..., rk } is called the set of fused resource places 
that are obtained after the fusion of (r11, r21), (r12, r22), 
..., (r1k, r2k). 

Definition 4.1. With reference to Property 4.1, (N, M0; 
R) is called the composite augmented marked graph of 
(N1, M10; R1) and (N2, M20; R2) via a set of common 
resource places { (r11, r21), (r12, r22), ..., (r1k, r2k) }, 
where r11, r12, ..., r1k ∈ R1 and r21, r22, ..., r2k ∈ R2. RF = 
{ r1, r2, ..., rk } is called the set of fused resource places 
that are obtained after the fusion of (r11, r21), (r12, r22), 
..., (r1k, r2k). 

Figure 3 shows two augmented marked graphs (N1, 
M10; R1) and (N2, M20; R2). Figure 4 shows the 
composite augmented marked graph (N, M0; R) of 
(N1, M10; R1) and (N2, M20; R2) via { (r11, r21) }. 

Figure 3 shows two augmented marked graphs (N1, 
M10; R1) and (N2, M20; R2). Figure 4 shows the 
composite augmented marked graph (N, M0; R) of 
(N1, M10; R1) and (N2, M20; R2) via { (r11, r21) }. 

Property 4.2 [5, 6]. Let (N, M0; R) be the composite 
augmented marked graph of two augmented marked 
graphs (N1, M10; R1) and (N2, M20; R2) via common 
resource places. (N, M0; R) is bounded if and only if 
(N1, M10; R1) and (N2, M20; R2) are bounded. 

Property 4.2 [5, 6]. Let (N, M0; R) be the composite 
augmented marked graph of two augmented marked 
graphs (N1, M10; R1) and (N2, M20; R2) via common 
resource places. (N, M0; R) is bounded if and only if 
(N1, M10; R1) and (N2, M20; R2) are bounded. 

Property 4.3 [6]. Let (N, M0; R) be the composite 
augmented marked graphs of two augmented marked 
graphs (N1, M10; R1) and (N2, M20; R2) via common 
resource places. (N, M0; R) is conservative if and only 
if (N1, M10; R1) and (N2, M20; R2) are conservative. 

Property 4.3 [6]. Let (N, M0; R) be the composite 
augmented marked graphs of two augmented marked 
graphs (N1, M10; R1) and (N2, M20; R2) via common 
resource places. (N, M0; R) is conservative if and only 
if (N1, M10; R1) and (N2, M20; R2) are conservative. 

Definition 4.2. Let (N, M0; R) be the composite 
augmented marked graph of two augmented marked 
graphs via common resource places, and RF ⊆ R be 
the set of fused resource places. For (N, M0; R), a 

Definition 4.2. Let (N, M0; R) be the composite 
augmented marked graph of two augmented marked 
graphs via common resource places, and RF ⊆ R be 
the set of fused resource places. For (N, M0; R), a 
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minimal siphon is called a RF-siphon if and only if it 
contains at least one place in RF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3. Two augmented marked graphs (N1, M10, R1)  
and (N2, M20, R2) 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. An augmented marked graph obtained  
by composing the augmented marked graphs in Figure 3  

via { (r11, r21) } 

Property 4.4 [6]. Let (N, M0; R) be the composite 
augmented marked graph of two augmented marked 
graphs (N1, M10; R1) and (N2, M20; R2) via common 
resource places. (N, M0; R) is live and reversible if 
and only if (N1, M10; R1) and (N2, M20; R2) are live 
and no RF-siphons eventually become empty. 

Consider the augmented marked graphs (N1, M10; 
R1) and N2, M20; R2) in Figure 3. (N1, M10; R1) is 
neither live nor reversible but is bounded and conser-
vative. (N2, M20; R2) is live, bounded, reversible and 
conservative. According to Properties 4.2 and 4.3, the 
composite augmented marked graph (N, M0; R) as 
shown in Figure 4 is bounded and conservative. 

According to Property 4.4, (N, M0; R) is neither live 
nor reversible. 

Figures 5 shows another two augmented marked 
graphs (N1, M10; R1) and (N2, M20; R2). Figure 6 
shows the composite augmented marked graph (N, 
M0; R) of (N1, M10; R1) and (N2, M20; R2) via { (r11, 
r21), (r12, r22) }. Both (N1, M10; R1) and (N2, M20; R2) 
are live, bounded, reversible and conservative. No R-
siphons in (N, M0; R) would eventually become 
empty. According to Properties 4.2, 4.3 and 4.4, (N, 
M0; R) is live, bounded, reversible and conservative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Another two augmented marked graphs  
(N1, M10, R1) and (N2, M20, R2) 

 
 
 
 
 
 
 
 
 

r12 

 t14 

   p11 

 p14 

 t15 r11 

t13 

 

 p13 

t16  

 p15 

r21 

t21  

t22  

 p22  

t23  

t24  

 p23  p21 

(N1, M10, R1) 

(N2, M20, R2) p26 r23 p23

t23

p22

t22

t21

r21 p24 

t26 

t25 

p25 

t28 

t27 

r22 

(N2, M20, R2) 

(N1, M10, R1) 

r12 

r11 

p11 p12 

p16 

t16 

p15 

t15 

t14 

p14 

t13

p13 

t12

t11

p21 

p21 p23 

t24 

t23

t14 

p22  

t22 

t21 

   p11 

p15  

t16

 p14 

t15 r1 

p13  

t13 

 p12 

t12 r12 

t11 

 p12 

 t12 

 t11 

 
 
 
 
 
 
 
 
 
 
 
 

t11

t12

p13

t13

t24

t14 

t15 

p15  

t16 

 p16 

p12  p11 

r1 

r2 

t21

t22

p22

t23 

t24 

p23 p21 
 

t27

t28

p25

t25 

t26 

p24 
p26 

 

r23 

Figure 6. An augmented marked graph obtained by 
composing the augmented marked graphs in Figure 5  

via {(r11, r21), (r21, r22) } 
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5. Component-Based System Design 

In component-based system design, a system is 
synthesised from a set of components [10, 11]. The 
integrated system may not be live and reversible even 
if all the components are live and reversible, especial-
ly as there involves common resources. 

By modelling the components as augmented mar-
ked graphs and composing them via common resource 
places which represent the common resources, based 
on the results obtained in the previous section, the 
properties of the integrated system can be readily de-
rived. In brief, if the components are bounded and 
conservative, the integrated system will be bounded 
and conservative. If the components are live and re-
versible, the integrated system will be live and rever-
sible under a pretty simple condition. These are illust-
rated in the following two examples. 

Example 1. It is a FWS-200 Flexible Workstation 
System for production of circuit boards, extracted 
from [12] (pp. 121-124). The system consists of two 
robots B1 and B2, one feeder area and one PCB area, 
as shown in Figure 7. There are two components : 

Component 1 (production of circuit boards by B1). 
This component involves B1, feeder area and PCB 
area. B1 picks components from the feeder area, and 
moves into the PCB area for inserting components. 
The product is then moved out from the PCB area. 

Component 2 (production of circuit boards by B2). 
This component involves B2, feeder area and PCB 
area. B2 picks components from the feeder area, and 
moves into the PCB area for inserting components. 
The product is then moved out from the PCB area. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Flexible Workstation System (Example 1) 

Components 1 and 2 are modelled as augmented 
marked graphs (N1, M10; R1) and (N2, M20; R2), 
respectively. Figure 8 shows (N1, M10; R1) and (N2, 
M20; R2). Both (N1, M10; R1) and (N2, M20; R2) are 
live, bounded, reversible and conservative. 

Common resource places r11 in (N1, M10; R1) and 
r21 in (N2, M20; R2) refer to the feeder area, and r12 in 
(N1, M10; R1) and r22 in (N2, M20; R2) refer to the PCB 
area. (N1, M10; R1) and (N2, M20; R2) are composed via 

their common resource places. These common re-
source places are fused as follows. Places r11 and r21 
are fused as r1, and r21 and r22 as r2. Figure 9 shows the 
composite augmented marked graph (N, M0; R) of 
(N1, M10; R1) and (N2, M20; R2) via { (r11, r21), (r12, r22) 
}. Since (N1, M10; R1) and (N2, M20; R2) are live, 
bounded, reversible and conservative, according to 
Properties 4.2 and 4.3, (N, M0; R) is bounded and 
conservative. For (N, M0; R), no RF-siphons would 
eventually become empty. According to Property 4.4, 
(N, M0; R) is live and reversible. 

(N, M0; R) serves to represent the integrated sys-
tem. It can be concluded that the Flexible Workstation 
System is live, bounded, reversible and conservative. 
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Semantic meaning for places and transitions 

p11 B1 is ready 
p12 Components for B1 are available 
p13 B1 is picking components from feeder 
p14 B1 is inserting components in PCB area 
p21 B2 is ready 
p22 Components for B2 are available 
p23 B2 is picking components from feeder 
p24 B2 is inserting components in PCB area 
r11 Feeder area is available 
r12 PCB area is available 
r21 Feeder area is available 
r22 PCB area is available 
t11 B1 starts picking components 

t12
B1 finishes picking components and starts inserting
components 

t13
B1 finishes inserting components and starts moving
out the product 

t21 B2 starts picking components 
t22 B2 finishes picking components and starts inserting

components 
t23 B2 finishes inserting components and starts out the

finished product 

Robot B1 

Products from B1 

Feeder area PCB area 

Components for B2 Products from B2 

Robot B2 

 
Components for B1 

Figure 8. Specification of system components as augmented 
marked graphs (Example 1) 

Example 2. It is a flexible assembly system, com-
prising four conveyors (C1, C2, C3 and C4) and four 
robots (B1, B2, B3 and B4), as shown in Figure 10. 
There are four components : 

Component 1 (assembly job performed by B1). 
This component involves C1, B1 and B2. C1 requests 
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 B1 and B2 simultaneously. On acquiring B1 and B2, it 
performs assembly and then releases B1 and B2 on 
completion. 

 
 

Component 2 (assembly job performed by B2). 
This component involves C2, B2 and B3. C2 requests 
B2 and B3 simultaneously. On acquiring B2 and B3, it 
performs assembly and then releases B2 and B3 on 
completion. 

 
 
 
 
 Component 3 (assembly job performed by B3). 

This component involves C3, B3 and B4. C3 requests 
B3 and B4 simultaneously. On acquiring B3 and B4, it 
performs assembly and then releases B3 and B4 on 
completion. 

 

Robot B2Robot B4

Conveyor C4 

Robot B1

Conveyor C1 

Conveyor C3 Conveyor C2 

Robot B3

Figure 10. Flexible Assembly System (Example 2) 

Component 4 (assembly performed by B4). This 
component involves C4, B4 and B1. C4 requests B4 and 
B1 simultaneously. On acquiring B4 and B1, it 
performs assembly and then releases B4 and B1 on 
completion. 
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Semantic meaning for places and transitions 

p11 B1 is ready 
p12 Components for B1 are available 
p13 B1 is picking components from feeder 
p14 B1 is inserting components in PCB area 
p21 B2 is ready 
p22 Components for B2 are available 
p23 B2 is picking components from feeder 
p24 B2 is inserting components in PCB area 
r1 Feeder area is available 
r2 PCB area is available 
t11 B1 starts picking components 

t12 
B1 finishes picking components and starts inserting
components 

t13 
B1 finishes inserting components and starts moving
out the product 

t21 B2 starts picking components 
t22 B2 finishes picking components and starts inserting

components 
t23 B2 finishes inserting components and starts out the

finished product 
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Semantic meaning for places and transitions 

p11 C1 is ready 
p12 C1 is occupying B1 and B2 and performing 

assembly 
p21 C2 is ready 
p22 C2 is occupying B2 and B3 and performing 

assembly 
p31 C3 is ready 
p32 C3 is occupying B3 and B4 and performing 

assembly 
p41 C4 is ready 
p42 C4 is occupying B4 and B1 and performing 

assembly 
r11 B1 is available 
r12 B2 is available 
r21 B2 is available 
r22 B3 is available 
r31 B3 is available 
r32 B4 is available 
r41 B4 is available 
r42 B1 is available 
t11 C1 acquires B1 and B2 and starts assembly 
t12 C1 finishes assembly and releases B1 and B2 
t21 C2 acquires B2 and B3 and starts assembly 
t22 C2 finishes assembly and releases B2 and B3 
t31 C3 acquires B3 and B4 and starts assembly 
t32 C3 finishes assembly and releases B3 and B4 
t41 C4 acquires B4 and B1 and starts assembly 
t42 C4 finishes assembly and releases B4 and B1 Figure 9. An augmented marked graph obtained by 

composing the augmented marked graphs in Figure 8 via  
{ (r11, r21), (r12, r22) } (Example 1) Figure 11. Specification of system components  

as augmented marked graphs (Example 2)  
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Components 1, 2, 3 and 4 are modelled as aug-
mented marked graphs (N1, M10; R1), (N2, M20; R2), 
(N3, M30; R3) and (N4, M40; R4), respectively. Figure 
11 shows these augmented marked graphs. They are 
live, bounded, reversible and conservative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Semantic meaning for places and transitions 

p11 C1 is ready 

p12 C1 is occupying B1 and B2 and performing 
assembly 

p21 C2 is ready 
p22 C2 is occupying B2 and B3 and performing 

assembly 
p31 C3 is ready 
p32 C3 is occupying B3 and B4 and performing 

assembly 
p41 C4 is ready 
p42 C4 is occupying B4 and B1 and performing 

assembly 
r1 B1 is available 
r2 B2 is available 
r3 B3 is available 
r4 B4 is available 
t11 C1 acquires B1 and B2 and starts 

assembly 
t12 C1 finishes assembly and releases B1 and 

B2 
t21 C2 acquires B2 and B3 and starts 

assembly 
t22 C2 finishes assembly and releases B2 and 

B3 
t31 C3 acquires B3 and B4 and starts 

assembly 
t32 C3 finishes assembly and releases B3 and 

B4 
t41 C4 acquires B4 and B1 and starts 

assembly 
t42 C4 finishes assembly and releases B4 and 

B1 
Figure 12. An augmented marked graph obtained by 

composing the augmented marked graphs in Figure 11 via  
{ (r11, r42), (r12, r21), (r22, r31), (r32, r41) }. (Example 2) 

Common resource places r12 in (N1, M10; R1) and 
r21 in (N2, M20; R2) refer to B2. Common resource 
places r22 in (N2, M20; R2) and r31 in (N3, M30; R3) refer 

to B3. Common resource places r32 in (N3, M30; R3) 
and r41 in (N4, M40; R4) refer to B4. Common resource 
places r42 in (N4, M40; R4) and r11 in (N1, M10; R1) refer 
to B1. 

(N1, M10; R1), (N2, M20; R2), (N3, M30; R3) and (N4, 
M40; R4) are composed via their common resource 
places. These common resource places are fused as 
follows. Places r12 and r21 are fused together as r2, r22 
and r31 as r3, r32 and r41 as r4, and r42 and r11 as r1. 
Figure 12 shows the composite augmented marked 
graph (N, M0; R) of (N1, M10; R1), (N2, M20; R2), (N3, 
M30; R3) and (N4, M40; R4) via { (r11, r42), (r12, r21), (r22, 
r31), (r32, r41) }. 
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Since (N1, M10; R1), (N2, M20; R2), (N3, M30; R3) 
and (N4, M40; R4) are live, bounded, reversible and 
conservative, according to Properties 4.2 and 4.3, (N, 
M0; R) is bounded and conservative. For (N, M0; R), 
no RF-siphons would eventually become empty. 
According to Property 4.4, (N, M0; R) is live and 
reversible. 

(N, M0; R) serves to represent the integrated sys-
tem. It can be concluded that the Flexible Assembly 
System is live, bounded, reversible and conservative. 

6. Conclusion 

This paper describes the composition of aug-
mented marked graphs via common resource places, 
where preservation of properties (including liveness, 
boundedness, reversibility and conservativeness) is 
thoroughly investigated. 

It is shown that, for this composition, boundedness 
and conservativeness are preserved while liveness and 
reversibility can be preserved under a pretty simple 
condition. We then show its application to component-
based system design. By modelling the system com-
ponents as augmented marked graphs with their com-
mon resources denoted by common resource places, 
an integrated system can be obtained by composing 
these augmented marked graphs via these common 
resource places. Then, based on the preservation of 
properties, liveness, boundedness, reversibility and 
conservativeness of the integrated system can be 
readily derived from its components. 

In system engineering, liveness, boundedness, re-
versibility and conservativeness are essential pro-
perties that collectively refer to the robustness and 
well-behavedness of a system. Hence, in synthesising 
a system from its components, it is important to assure 
that these essential system properties can be preser-
ved, especially as there involves shared resources 
wherein erroneous situations such as deadlocks and 
capacity overflows can be easily induced. The com-
position of augmented marked graphs proposed in this 
paper contributes to component-based system design 
to provide a means of building a system from its 
components, where the essential system properties can 
be effectively analysed. These are illustrated with 
examples of manufacturing system integration. 
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