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PROGRESSIVE ENCODING OF GREY-LEVEL IMAGES 
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Abstract. In the paper, a new original procedure for the evaluation of discrete Haar spectra for separate fragments 
(blocks) of a digital image is proposed. The procedure explores specific properties of Haar wavelets, refers to the 
assumption that Haar spectrum of the whole image is known, and is much faster than direct evaluation of Haar spectral 
coefficients for the respective image blocks. 

It is shown that the developed procedure can be successively applied to implementing of a locally progressive 
image encoding idea. The essence of the latter – selected blocks of the image under processing are compressed into a 
bit stream with increasing accuracy. To translate the idea into action, direct employment of hyperbolic image filters is 
proposed. Preliminary experimental results show that the developed approach leads to reasonable image compression 
ratios and sufficiently high quality of restored image blocks.. 
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1. Introduction 

The whole set of digital image encoding (compres-
sion) techniques can be roughly divided into a pair of 
groups. The commonly underlined features of image 
compression algorithms falling into the first group are 
– reduction of the number of grey levels in the image 
under processing (Block – Truncation – Coding algo-
rithms, [1]), detection of block similarities within the 
image (finite automata based compression methods, 
[2, 3], fractal image encoding procedures, [4, 5, 6]), 
preliminary change of image dimensionality, [7], and 
so forth. All the enumerated techniques are efficient 
enough – image compression ratios vary from 5 to 25, 
ensuring acceptable quality of restored images. Never-
theless, throughout the last two short decades, for cer-
tain increased attention was paid to fractal image com-
pression technologies. Despite the intractable asym-
metry problem (prolonged image encoding time and 
fast decoding), the fractal approach till now is 
considered to be very attractive, perspective and cheri-
shing a hope, especially at high image compression 
ratios, [8, 9, 10]. 

The distinguishing feature of image compression 
algorithms falling into the second group - initial data 
(arrays of pixel values) are preliminary transformed 
into the spectral domain by means of a particular 
discrete transform (Walsh-Hadamard, cosine, wavelet, 
etc., [11]), i.e. not the image itself but its discrete 
spectrum is analyzed and processed. The compression 
effect, in many cases, is achieved by ignoring high-

frequency components of the image. Among the 
“members” of the group there are – the still image 
compression standard JPEG, [12, 13], hyperbolic 
image filters, [14, 15], wavelet-based image encoding 
techniques, [16, 17], and others. In the past ten years, 
special attention was paid to wavelet-based progres-
sive (embedded) image compression technologies, 
[18, 19, 20]. The discrete wavelet spectrum of an 
image is compressed into a bit stream with increasing 
accuracy. This means that when more bits are added to 
the stream, the restored image will contain more 
detail, a property similar to JPEG – 2000 encoded 
images, [13]. 

In this paper, a new locally progressive image en-
coding strategy (approach) is proposed. Increased 
accuracy is addressed not to the whole restored image 
but to separate selected blocks of the image. Specific 
properties of Haar wavelets, as well as a newly de-
veloped original procedure for finding of Haar spectral 
coefficients for image blocks, ensure sufficiently high 
overall performance of the approach.  

2. Haar wavelets and their properties 

An orthogonal system of Haar functions (wavelets) 
is usually introduced using expressions: 

1) ,0 ,0( =xhaar , )1,0[∈x ; 
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As it can be seen, Haar wavelets are created out of 
a single function (“mother” wavelet)  by dyadic 
dilations and integer translations (expression (1)). Evi-
dently, localization in space and the latter property 
(scaling) are the hallmarks of Haar (wavelet) expan-
sions. 
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Due to these properties, Haar wavelets (Haar ex-

pansions, discrete Haar representations) find various 
interesting applications in the digital image (signal) 
processing area. 

Haar (wavelet) expansions have a number of good 
properties not available in other types of expansions 
(Fourier, Walsh, etc.). To see this in the simplest 
context, consider a one-dimensional analogue image 
(signal) f(x) on the interval [0, 1). We can expand it in 
a Haar function series 

Below, we present developments on the applica-
tion of Haar wavelets to locally progressive encoding 
of digital grey-level images. 
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Consider a one-dimensional digital image X = 
,  TNXXXmX ))1( ... )1( )0(()]([ −= ,,2 NnN n ∈=

∈)(mX }12 ..., ,1 ,0{ −p , for all 1..., ,1 ,0 −= Nm ; 
here p ( ) stands for the number of bits attached 
to encode pixel values in the image. 

1>p

where:  are Haar 
coefficients;  for 
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,1)( =Ψ x ,21<≤ x )(0 ,1−=Ψ x  for 

,121 <≤ x and  otherwise; also, let us 
observe here that 

,0=)(Ψ x

),,(21)12( xmrhaarmx rr ⋅=+−Ψ , The discrete Haar (wavelet) transform (HT) for the 
image X is defined to be: for all values of  r and m; . )1,0[∈x

Xn
N

kYY ⋅== )(H1)]([ ; Haar series (equation (1)) is very well localized in 
space (the distinguishing property of wavelets!) – if 
one is interested in the behaviour of f(x) on a 
subinterval  one needs only to take the 
sum (in (1)) over those indices for which the interval 

 (the support of the Haar wa-

velet ) intersects [ . Furthermore, 
the partial sum of the Haar series (summing 

) represents an approximation to f(x) taking 
into account details on the order of magnitude  or 
greater. 
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here H(n) is an orthogonal HT matrix of order n, 
obtained by discretizing a finite number of Haar 
functions (Figure 1). The vector 

TNYYYkYY ))1( ... )1( )0(()]([ −==  

is said to be the HT spectrum of the image X. 
Each spectral coefficient }1..., 2, ,1 {( )( −∈ NkkY  

possesses very interesting and valuable (from the 
practical point of view) properties: 

1. The coefficient Y  (  )(k ;2 lk sn += − ∈s {1, 2, ..., 

n}; ) is associated with an image 
fragment (block) 

}1
[Xk

2 ..., ,1 ,0{ −∈ −snl
X )](mk= , where =∈ kVm

)(k

 

, i.e., this and only 
this image block specifies numerical value of Y ; 
besides, parameter s stands for the scale level (low 
scale means high resolution). 
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2. A subset (tree) of spectral coefficients can be 
attached to  (provided ), namely: )(kY 1>s
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Worth emphasizing that all spectral coefficients 
(vertices of the tree) , , are associated 
with the same image block  (more precisely, with 
subsets of ). Often, the spectral coefficient Y  is 
called the root of the tree (Figure 2). 

)( ∗kY kk ℑ∈*

kX

kX )(k
Figure 1. Haar wavelets (N = 8) 
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The above-enumerated properties can be gene-
ralized to include two-dimensional digital images. 
Suppose,  and   

;  stand for the 
two-dimensional grey-level image and its discrete 
Haar spectrum, respectively. 

]),([ 21 mmX
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Consider the spectral coefficient Y ,  
. In regard to Y  

we can state the following: 
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where , 
r=1, 2. In other words, numerical value of Y  

is defined exceptionally by  (localization in 
space!). 
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2. A subset of spectral coefficients (quad-tree) can 
be attached to Y , provided  and . 
The vertices (spectral coefficients) of the quad-tree are 
given by 
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In Figure 3, a graphical interpretation of enume-
rated properties, attached to Haar spectral coefficients 
of the two-dimensional digital image, is presented. 

 
 
 
 
 
 
 
 

Figure 2. Graphical interpretation of properties of Haar spectral coefficients ( }15 ,14 ,13 ,12 ,7 ,6{3 =ℑ  represents 

the tree, attached to the spectral coefficient (root of the tree) Y ; N =16) )3(
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Figure 3. Graphical interpretation of properties of Haar spectral coefficients: (a) image [ , N =16; the coefficient Y(2, 
3) is associated with the image block ; (b) the quad-tree, attached to the Haar coefficient Y(2, 3) 
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The two mentioned properties (localization in 
space and availability of quad-trees in HT spectrum of 
the image) made it possible to describe, to develop 
and to put into action a very interesting and 
perspective grey-level image encoding idea – EZW 

(Embedded – Zero-tree – Wavelet) coding algorithm, 
[16]. 

In the sections below, we propose a novel modi-
fication (approach) – locally progressive encoding of 
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grey-level images. The essence of the approach – ad-
ditional bits of information are used to improve qua-
lity not of the whole (restored) image but that of 
selected smaller blocks of the image. Implementation 
of the idea rests on the fact that HT spectra for se-
lected image blocks can be efficiently found using HT 
spectrum of the whole image. 

2.2.  A new approach to the determination of HT 
spectra for image blocks 

Suppose,  and Y = 

 are a one-dimensional grey-
level image and its discrete Haar (wavelet) spectrum, 
respectively. 
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In the light of properties of Haar wavelets, we 
have developed a new efficient procedure for the 
determination of numerical values of Y  
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the constant component of the image block  and is 
found using recurrent relationships: 
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Thus, the discrete HT spectrum of  is found – 

0.25-   20.5-   22.875     

Similarly, Y(6) is associated with the image block 
.  TTX )4    10())11( =

Since  (i.e.,  and 2 2==s
), we easily compute the HT spect-

rumY    for : 
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A simple analysis of the above relationships, as 
well as knowledge of the detailed scheme for the 
direct evaluation of HT spectra for image blocks, 
made it possible to estimate time expenditures asso-
ciated with both approaches (direct evaluation, 
proposed procedure). Comparative analysis was done 
for one-dimensional image blocks of size  
( 5
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whereas the newly developed approach (procedure) 
required  

1)(22 −−+=ℜ sns
pr  

operations. The speed gain ) (  prd ℜℜ=ρρ  is 
obvious (Table 1).  

Table 1. Comparison of two approaches to finding of HT 
spectra for one-dimensional image blocks of size  
( ) 

s

n
2

10242 ==N

s 5 6 7 8 9 

dℜ  290 706 1666 3842 8706 

prℜ  41 71 133 259 513 

ρ  7.07 9.94 12.53 14.83 16.97 

Now, consider a two-dimensional grey-level image 
 . Let [  

be its two-dimensional discrete HT spectrum. Let us 
designate the discrete HT spectrum of the image block 

, associated with the spectral coefficient 
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 are binary representations of the 
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 2. Particular blocks of the image are characterized 
as being very informative and require to be 
restored in a greater detail. 
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∗k The overall high performance of the proposed lo-

cally progressive image encoding procedure is 
attained, mainly, owing to sufficiently high compres-
sion ratios of the whole image and comparatively low 
compression ratios of the selected image blocks.  

We here emphasize that the number of operations 
(addition, multiplication) needed for direct evaluation 
of the discrete HT spectrum of the image block 

, associated with the spectral coefficient 
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..., n – 1;  are dimensions of the whole image 
), equals  

nn 2x2 
], 2m([ 1mX

Since, customarily, the progressive image encod-
ing idea (approach) is realized in a spectral domain, 
fast passage from the discrete Haar (wavelet) spectrum 
of the whole image to discrete Haar spectra of the 
selected image blocks is extremely valuable (plays a 
key role). 
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1 )(22 2 , Below, we present implementation of the develo-
ped progressive image encoding approach using two-
dimensional Haar hyperbolic image filters (Figure 4). 

whereas the proposed approach (procedure) requires  
3.2. Implementation of the idea 

4)(10)12)(( 4)12( 2 −−+−−+−=ℜ snsn ss
pr  

Hyperbolic image filters can be attached to the 
class of unsophisticated lossy image encoding 
techniques.  

operations. The speed gain, expressed in terms of 
prd ℜℜ=  ρ , is presented in Table 2. 

The hyperbolic image filtering (encoding) idea 
originally was described by prof. P. Zinterhof (Salz-
burg University, Austria, 1993) and was referred to 
process two-dimensional grey-level images, [14]. The 
idea itself is rather simple. 

Table 2. Comparison of two approaches to finding of HT 
spectra for image blocks of size  (N = 512) ss 2x2

s 6 7 8 

dℜ  90368 426496 1967104 

prℜ  4751 17161 66051 

ρ  19.02 24.85 29.78 

Consider a two-dimensional grey-level image 
 ],([ 21 mmX })1 ..., ,1 ,0{ ,( 21 −∈ Nmm . Let [  

be its two-dimensional discrete HT spectrum. If, now, 
],( 21 kkY

M  is some a priori chosen integer 
, then for storing (transmitting) one 

must take only those spectral coefficients , 
whose serial numbers ( satisfy the condition 

))1 2−

), 21 kk

(1( <≤ NM
),( 21 kkY

Mkk ≤⋅ 21  ( }1 ,max{ rr k=k , r = 1, 2). When reconst-
ructing the initial image (obtaining its estimate), the 
rest spectral coefficients ( Mkk >⋅ 21 ) are equated to 
zero, i.e., high frequency components of the image, at 
the decompression stage, are ignored (compression 
effect!). Thus, the hyperbolic filtering idea leans upon 
the supposition that the human eye is less sensitive to 
changes in high frequencies than in lower ones. 

In the context of locally progressive image 
encoding, the above results (achievable HT spectrum 
evaluation speed gains) are highly valuable.  

3. Locally progressive encoding of grey-level 
images 

In what follows, we shortly present a locally prog-
ressive grey-level image encoding idea. Implemen-
tation of the idea rests on the direct use of both the 
hyperbolic image filters and the developed fast pro-
cedure for finding HT spectra of selected image 
blocks.  The characteristic feature of the hyperbolic image 

filters – their simplicity, easy realization, tolerable 
image compression ratios. 3.1. The general scheme 

For practical applications one can make use of the 
relationships established between the level M of a 
hyperbolic filter and the corresponding compression 
ratio β of the grey-level image (or image block) under 
processing, namely: , ),(2 MNfN=β  where 

The general scheme reflecting implementation of 
the locally progressive image encoding idea (two-
dimensional case) is presented in Figure 3. 

It should be emphasized that the locally progres-
sive image encoding idea is kept alive due to the fol-
lowing circumstances: { }

{ }

∑
−

= 







+



+

++=
MN

k k
MN

MNMNf
,1min

2

1,min                    

1,min2),(

  1. An image fragment (block) under processing is 
associated (in some sense) with the whole image 
as a context, i.e., beyond the context the image 
block is less meaningful. 
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represents the total number of stored Haar spectral 
coefficients of the image  (Table 3). 

The role of hyperbolic image filters, used to imple-
ment the locally progressive image encoding idea, is 

two-fold: firstly, they are used to compress “heavily” 
( 201 ≥β ) the whole image and, secondly, to compress 
“softly” ( 52 ≤β ) the selected image block. 
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IMAGE BLOCK   HT 

HYPERBOLIC 
FILTERING 
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OBTAINING THE RESTORED 
IMAGE 

(progressive image coding) 

Figure 4. The locally progressive encoding of two-dimensional grey-level images (with the use of hyperbolic image filters) 

One can easily ascertain that the overall averaged 
image compression ratio β equals 

τβ
τββ
+

=
1

1 , 

where: 1β  – compression ratio of the whole image 

 with dimensions , ]2m,([ 1mX nn 22 × 2β  – compres-
sion ratio of the selected image block with dimensions 

 ( ) and  (Table 4). ss 22 × ≤ 1−≤ ns6 s−n⋅= 42βτ

Table 3. Relationships between the level M of a hyperbolic 
image filter and the respective image compression ratio β  

Image size, N×N β 
512x512 256×256 128×128 64×64 

2 48687 12102 2999 734 
3 26366 6544 1611 389 
4 17569 4349 1064 254 
5 12959 3199 779 183 
10 5235 1273 303 65 
15 3123 749 175 45 
20 2175 512 118 35 
25 1642 389 96 29 
30 1308 299 83 24 
40 908 216 64 19 
 In a particular case (for images of size 512×512; 

Table 4) we have – the overall image compression 
ratio 24>β , provided 301 ≥β  and 22 =β  (for 

image blocks of size 64x64) or 401 ≥β  and 42 =β  
(for image blocks of size 128×128). The quality of a 
restored selected image block of size 64×64 (or 
128×128) is expected to be very high. 

n⋅= 42βτ

1β

Table 4. The image N×N ( ) compression ratio β, for 

different values of the parameter τ ( ) 

nN 2=
m−

Compression ratio of the whole image,  τ 
20 25 30 40 

8 5.71 6.06 6.32 6.67 
12 7.5 8.11 8.57 9.23 
16 8.89 9.76 10.43 11.43 
32 12.31 14.04 15.48 17.78 
48 14.12 16.44 18.46 21.82 
64 15.24 17.98 20.43 24.62 
128 17.30 20.92 24.30 30.48 
192 18.11 22.12 25.95 33.10 
256 18.55 22.78 26.85 34.59 

4. Experimental results 

To corroborate the obtained theoretical results 
(Sections 2 and 3), some test grey-level images of size 
512×512 and 256×256 were analyzed, namely: 
plant.bmp 512×512 (Figure 5; a), survey.bmp 512×512 
(Figure 6; a) and yard.bmp 256×256 (Figure 7; a). 
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Application of the locally progressive image 
encoding procedure to the images 512×512 gave 
auspicious and fast-track results.  

For instance, compression of the image plant.bmp 
at a ratio 301 =β  made it possible to obtain a rough 
image estimate (restored image; PSNR = 18.37) with 
still visible dislocation of objects in the plant area 
(Figure 5; b). Comparatively small amount of 
additional information (12.6 KB; compression ratio 

52 =β ) improved quality of the selected image 
fragment (associated with Haar spectral coefficient 

) considerably – PSNR = 21.70 (Figure 5; c). 
One more (third) image encoding level (7.9 KB of 

additional information; 

)3 ,2(Y

23 =β ) highlighted details in 
the left-bottom block of the earlier selected fragment 
(Figure 5; d). The quality of the latter restored image 
block is high enough (PSNR = 23.23). The overall 
averaged image compression ratio 96.8=β .  

)3 ,

09.

Two-level processing (encoding) of the image 
survey.bmp 512×512 (Figure 6; a) can be characte-
rized as being impressive enough – the quality of the 
restored image fragment (associated with the Haar 
spectral coefficient Y ) is high (PSNR = 25.08; 3(

351 =β ; 32 =β ) (Figure 6; b, c). The overall image 
compression ratio 9=β .  

            

(a)           (b) 

            
(c)           (d) 

Figure 5. Locally progressive encoding of test images: (a) original image plant.bmp 512x512; (b) the rough estimate of the 
whole image ( 301 =β ); (b) the selected image fragment of size 256x256 compressed at a ratio 52 =β ; (c) the selected image 

block of size 128x128 compressed at a ratio 23 =β  (third encoding level) 

Locally progressive encoding applied to images of 
smaller sizes leads to similar prepossessing results. 
For instance, preliminary compression ( 201 =β ) of the 
image yard.bmp 256×256 (Figure 7; a) and the resul-
ting image estimate (PSNR = 22.40) create conditions 

for distinguishing a moving object (a man) in the yard 
region (Figure 7; b). Repeated encoding of the 
localized region (this time, associated with the Haar 
spectral coefficient Y ; )6 ,6( 32 =β ) reveals some new 
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details (Figure 7; c; PSNR = 26.80). The averaged 
image compression ratio 1.14=β . 

β

351 =β

201 =β

It goes without saying that the overall averaged 
image compression ratio  directly depends on the 
size of the selected image blocks (the values of 1β  
and 2β  being fixed), i.e., the smaller size of the 

selected image block, the higher image compression 
ratio β . 

Finally, we here note that computer realization of 
the proposed locally progressive image encoding 
approach, based on the use of hyperbolic image filters, 
was done by Asta Širvelyte – Bachelor of Mathema-
tics, Kaunas University of Technology. 

             
(a)       (b)        (c) 

Figure 6. Locally progressive encoding of test images: (a) original image survey.bmp 512x512; (b) the rough estimate of 
the whole image ( ); (b) the selected image fragment of size 256x256 compressed at a ratio 32 =β  

             
(a)       (b)        (c) 

Figure 7. Locally progressive encoding of test images: (a) original image survey.bmp 256x256; (b) the rough estimate of 
the whole image ( ); (b) the selected image fragment of size 64x64 compressed at a ratio 32 =β  

5. Conclusion 

In the paper, a new original procedure for the de-
termination of the discrete Haar (wavelet) spectra for 
the selected image blocks is presented. The procedure 
explores specific properties of Haar wavelets, refers to 
the fact that the discrete HT spectrum of the whole 
image is known and appears to be much faster than 
direct evaluation of HT spectra for respective image 
blocks.  

On the other hand, the developed procedure made 
it possible to develop and realize a new locally 
progressive (grey-level) image encoding idea. Firstly, 
the image under processing is compressed “heavily” 
using two-dimensional hyperbolic filters, secondly, the 
selected image blocks are highlighted by giving them 
more details (“soft” compression, repeated application 
of hyperbolic filtering). The preliminary experimental 
results show that the developed image encoding ap-

proach is noteworthy – the quality of restored selected 
image fragments (blocks) is high enough, the overall 
image compression ratio is tolerable. 

The proposed multi-level and locally progressive 
image encoding procedure, undoubtedly, will find 
various applications in processing medical images, in 
implementing efficient and up-to-date digital data pro-
cessing  technologies (e-health, e-business, etc.).  

In the future, some analysis, concerning the usage 
of modified hyperbolic filters is supposed. In parallels, 
implementation of the locally progressive image en-
coding approach, based on the direct use of EZW 
algorithm, is planned too. 
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