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Abstract. An original digital signature scheme based on action of infinite ring on module is presented. It is 
assumed that the ring contains an infinite multiplicative monoid. The ring action is defined as monoid elements's action 
on the module element as an operator.  

The signature scheme is based on particularly designed one–way functions (OWFs), using a postulated hard 
problem in monoid action level.  

The investigation of signature scheme security against three kinds of attacks is presented. Referencing to the 
postulated OWFs, the proposed signature scheme has provable security property. 
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1. Indroduction 

In recent time, there appeared two challenges in 
protection of cryptographic information: 
1. Cryptosystem implementation in limited environ-

ments like PDA's, mobile phones and smart cards. 
RSA or ElGamal type algorithms based on integer 
factorization and discrete logarithms are not well 
suited for that because they require large integer 
modular arithmetic and therefore costly special 
co–processors. 

2. The most worrisome threat appeared to integer fac-
torization and discrete logarithm cryptosystems 
(including elliptic curve discrete logarithms) 
comes from quantum computers. (Shor, 1997) 
showed that if such machines could be built, 
integer factorization and discrete logarithms could 
be computed in polynomial time. The vulnerable 
ones are RSA and ElGamal cryptosystems. 

According to our knowledge, the first signature 
scheme designed in infinite non-commutative groups 
appeared in (Ko et al., 2002). This invention is based 
on an essential gap existing between the conjugacy 
decision problem (CDP) and conjugator search prob-
lem (CSP) in non–commutative group. This means 
that CSP is hard and CDP is feasible. The conjugation 
operation serves for signing and CDP provides a veri-
fication procedure. This scheme may be called a pure 
scheme based on group formalism, i.e. applying a 
group presentation level only. The motivation of this 

solution appears from the fact that traditional signa-
ture schemes require a compatible addition operation 
together with an existing single group multiplication 
operation or, in other words, with the conjugation 
operation. As it is clear, the group presentation level 
provides only one binary operation according to its 
definition. 

Algebraic terms used in this study can be found in 
(van der Waerden, 1967).  

We consider a group or monoid having an infinite 
number of elements we will call words. As usual, we 
reckon the word consists of some primitive elements 
called generators or atoms. 

Similarly to (Ko et al., 2002), our scheme also 
uses an infinite non-commutative group but only as an 
auxiliary system to construct a formal ring with 
elements acting as operators on a certain compatible 
module. Addition operation is defined for multiplica-
tive group elements. So we obtain a new set with 
multiplication and addition operations and define it as 
a ring. Then instead of separately defined non-com-
mutative group we have a non-commutative group in 
the ring as a subset. This group generates a multi-
plicative monoid in the ring applying all possible 
combinations of multiplication and addition opera-
tions with its elements. In general, each monoid 
element consists of sum of words, since the distribu-
tivity property takes place in the ring. So, each word is 
an element of generating group. 
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An infinite non-commutative group we consider 
as defined by finite set of generators and a relations 
(Magnus et al., 1966). In doing so both the group and 
the monoid have two level attributes: presentation 
level and action level. The same relations can be ap-
plied for every word included in ring element. 

Finite set of generators and relations define the 
ring presentation level. The ring action level is a ring 
element action on the module as an operator. For an 
operator action on the module element the special 
binary operation is introduced. We treat an action 
operation as multiplicative operation having a distri-
butivity property with respect to addition. 

As was mentioned before, the introduced addition 
operation is formal, i. e. has no sense in the monoid 
presentation level, but has a concrete meaning in the 
ring action level. This means that the addition 
operation in the ring is compatible with an addition 
operation defined in the module. Then the module is 
said to be compatible with a ring (or monoid). The 
defined action operation is linked with multiplication 
in monoid and ring by mutual associativity property. 

We introduce some problem called a Ring Action 
Problem (RAP) and reckon it as hard. The RAP in our 
case has the same sense as Monoid Action Problem 
(MAP). On this basis we will construct an One-Way 
Function (OWF) for creation of a signature scheme. 

Historically, some attempts were made for a cryp-
tographic primitives construction using more complex 
algebraic systems instead of traditional finite cyclic 
groups or finite fields during the last decade. The 
originator in this trend was (Sidelnikov et al., 1993), 
where a proposition to use non-commutative groups 
and semigroups in session key agreement protocol is 
presented. 

Some realization of key agreement protocol using 
(Sidelnikov, 1993) methodology with application of 
the semigroup action level could be found in (Saka-
lauskas and Burba, 2003). Some concrete construction 
of commutative sub-semigroup is proposed there. 

Traditionally, the main problems for a cryptogra-
phic primitive's construction in the case of non-com-
mutative groups is the word equivalence problem 
(word problem) and conjugator search problem (CSP), 
(Ko et al., 2000). The word problem must be solvable 
and the CSP must be intractable. Both these problems 
are considered in the non-commutative system pre-
sentation level, defining a finite set of generators and 
relations. For a cryptographic primitives design the 
OWF is constructed using the infeasible CSP as a 
core. 

As usual, the solution of the word problem in 
groups is based on the normal (canonical)  forms' 
construction (Dehornoy and Paris, 1999 / Ko et al., 
2000). These normal forms, when used for cryptogra-
phic purposes, must reliably hide an information about 
the secret factors of the considered word. The unsolv-
ability in general of the word problem for semigroups 

was proved by (Markov, 1947) and (Post, 1947). This 
means that there is no unique normal form for equiva-
lent words in general semigroup. So the cryptographic 
primitives' construction in presentation level in gene-
ral semigroups is problematic. 

(Monico, 2002) has presented an example of 
cryptosystem based on finite semigroup action prob-
lem (SAP). It is a direct generalization of Diffie–
Hellman key exchange algorithm using finite semi-
group of matrices or matrix polynomials over a finite 
vector field. As a consequence the proposed SAP is a 
multi–dimensional generalization of traditional (one–
dimensional) discrete logarithm problem (DLP) and is 
more hard. This cryptosystem is used for session key 
agreement protocol and ElGamal cryptosystem. Ac-
cording to the author, this cryptosystem requires 
further investigations and first of all the secure key 
length needs to be determined. 

We think the action level introduction in complex 
algebraic systems serves to a word problem solution in 
this level much more easy than in the presentation 
level. Then there is no matter about the word problem 
complexity in presentation level. As a consequence, 
the CSP and other problems in group or monoid 
presentation level may be as hard as possible since we 
have no doubt about this complexity. 

We present now some formal digital signature 
scheme based on the ring action on a module here. 
The postulated OWF is based on the RAP, which is 
treated as infeasible. To construct a signature, the 
word problem in semigroup presentation level is re-
placed by the word problem in action level, i. e. in the 
module where the word problem is reckoned feasible. 
Then we are able to choose the construction of mo-
noid and ring as complex as possible taking no matter 
about the complexity of word problem solution in it.  

Finally, we define some notations for signature 
creation and verification. 

We denote the message space consisting of finite 
length binary strings by T. Let a signer Alice intends 
to sign some message TA ∈ T  and to send it to a ve-
rifier Bob. As usual, Alice signs not a message TA but 
some h–value m of the original message. Assume that 
there are two publicly available cryptographically 
secure h–functions (Menezes et al., 1996), surjective 
function H  and injective h. The data to be signed is 
expressed as m = H(TA). 

Alice creates a signature S on value m and sends 
it to verifier Bob. Bob has a publicly available verifi-
cation function Φ to verify the signature S on  m.  

Alice and Bob communicate through insecure and 
open communication channels and all the data pub-
lished and transmitted are available to the active 
adversary Eve. All parties share information about the 
structure of ring R, module M, hash functions H and h, 
verification function Φ and public key of Alice. Eve 
can obtain, remove, forge and retransmit any message 
Alice sends to Bob. 
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In section 2 we present some basic concepts as 
preliminaries for signature scheme construction. We 
introduce a general infinite ring on the basis of infinite 
non-commutative Gaussian group acting on  certain 
compatible module. The suitable OWF construction is 
presented.  

We present a signature scheme in section 3. 
Security analysis for three kinds of attacks is 

presented in section 4. 
Section 5 is dedicated to some discussions on the 

presented signature scheme. Some considerations of 
security of this signature scheme are also presented 
there. 

2. Preliminaries 

The main definitions and notations used in this 
study are in (van der Waerden, 1967). 

Let us consider some Gaussian group, presented 
by a finite set of generators and relations, and desig-
nated by the pair (G , ⋅ ) ( Dehornoy and Paris, 1999). 
For elements of G we formally introduce an additive 
operation +. Assume that multiplication is distributive 
with respect to addition operation. We denote as G' 
the set of all available sums of elements in G. By 
combining the elements in G ∪ G' using a multi-
plication and addition operations we can obtain the 
new set R. Then R is a ring which can be denoted by 
the triplet (R , ⋅ , + ). The corresponding pair (R , ⋅ ) is 
a monoid which we denote as G+ . 

The monoid G+ is not a Gaussian monoid that is 
embedded in its group G of fractions in the sense of 
(Dehornoy and Paris, 1999). It is clear that G ⊂ G+. 
The monoid G+ has the same set of generators and 
relations as group G which constitutes a monoid G+ 
presentation level. The monoid G+ has an unity 
element 1, such that for any  g ∈ G+, 

1 · g =  g · 1 =  1 . 

Accordingly the inverse element η-1 ∈ G, satisfies 
the relations 

η-1 · η =  η  · η-1 =  1 .  

The set in R which has no multiplicative inverse 
elements we denote as  R \ G . 

We consider some module formally defined by 
the pair (M , +) over monoid G+ and at the same time 
over the ring R. As convenient the module is an 
additive abelian group. 

Assume that there is an opportunity to define two 
mutually commutative subsets RL, RR in R \ G. Then 
for any  s ∈ RL and  r ∈ RR the commutation property 
holds: 

s  · r  =  r  · s. 

We consider R as a ring of operators or multi-
pliers acting on module M. Then as convenient M is 

called a module over the ring R or in other legal 
notation as R-module. For this action we introduce a 
new associative binary operation (function) ◦: R x  M 
→ M. This means that for all s ∈ S and m ∈ M there 
exists k ∈ M , such that 

k = s ◦ m . 

The ◦ operation is a ring action operation on 
module. 

We define the following order of the introduced 
associative operations ·, ◦ and + for s, r ∈ R and m, n 
∈ M as illustrated by the following equation 

s · r ◦ m + n = ( (s · r) ◦ m )+n  = (s ◦ ( r ◦ m ) ) + n .  

According to this and the associativity of opera-
tions applied, the following expressions are equivalent 

(r · s ) ◦ m = r · s ◦ m = r ◦ (s ◦ m) = r ◦ s ◦ m ; 

Assume that the following distributive relations 
are valid for all s, r ∈ R and m, n ∈ M 

(r + s) ◦ m = r ◦ m + s ◦ m ; 
r ◦ (m  +  n) = r  ◦ m  +  r ◦ n . 

For a signature scheme design the One-Way 
Function (OWF) construction is required. For that we 
restrict the ◦ to the domain R\G . Then ◦ performs a 
mapping ◦: R \ G  ×  M → M. Assume also that two 
mutually commutative subsets RL, RR defined above 
are in R \ G.  

So we postulate that this ◦ is the OWF. This also 
means that the corresponding Ring Action Problem 
(RAP) is hard, i. e. this means that neither having a ∈ 
M and s ∈ R \ G  we can not find m ∈ M and 
symmetrically nor having a ∈ M and m ∈ M  we can-
not find s ∈ R \ G  from the equation 

a = s ◦ m. 

In the well known partial case of S being a cyclic 
group of prime order p and m being an integer, one 
can construct the OWF based on Discrete Logarithm 
Problem (DLP) 

a = s ◦ m =  sm mod p. 

(Monico, 2002) has presented an example of 
cryptosystem based on the finite Semigroup Action 
Problem (SAP). It is a direct generalization of DLP, 
using finite semigroup of matrices or matrix poly-
nomials over finite vector field. The proposed SAP is 
a multi–dimensional generalization of traditional (one-
dimensional) DLP and is more hard. 

The message space consisting of finite length 
binary strings we denote by T. Let Alice intends to 
sign some message TA ∈ T  and send it to Bob. As-
sume that there are available two publicly known 
cryptographically secure h-functions (Menezes et al., 
1996) H and h , performing the following mappings 

H:  T → M ; 
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4. Security analysis h:  M → RR . 

Function H is surjective and h is injective. Assume that the active eavesdropper Eve can 
obtain, remove, forge and retransmit any message 
Alice sends to Bob. Any forgered data d we denote as 
d F.  3. Signature creation and verification 

Consider security of signature scheme for three 
main attacks: data forgering on valid signature, 
signature repudiation on valid data and existential 
forgering. 

3.1. Key generation. Alice chooses at random 
secret elements α ∈ RL, η ∈ G and x ∈ M. Then she 
calculates an element  a ∈ M and ρ ∈ R 

a = η ◦ α2 ◦ x , 
4.1. Data forgering ρ = η ⋅ α ⋅ η-1 . 

Assume Eve replaces the original message TA 
with forgered one TA

F . Then she sends TA
F to Bob. 

Bob having H calculates 

Then the Private Key (PrK) and Public Key 
(PuK) are as follows: 

PrK = ( α , η,  x ) ;  PuK = ( a ,  ρ ) . mF = H( TA
F ), 

3.2. Signature creation. Alice takes a message TA  
∈ T to be signed, chooses at random ξ ∈ R  and 
calculates h-values m ∈ M  and µ ∈ RR:  

and taking signature S = (σ, s) verifies if ρ ◦ s is equal 
to σ ◦ q + σ ◦ ρ ◦ mF . Verification fails, because 

ρ ◦ s = σ ◦ a + σ ◦ ρ ◦ m ≠ σ ◦ a + σ ◦ ρ ◦ mF . m = H ( TA ) ; 
Another attempt is to try to find TA

F for a valid m. 
But this is impossible because we assumed that h-
function H is cryptographically secure. 

µ = h ( ξ ◦ m ) . 

The secret signature key is ξ. 
She calculates the following signature parameters So the invalid data can not be signed with a valid 

signature. σ = η ⋅ µ ⋅ η-1 ;  
4.2. Signature repudiation. s = σ ◦ ( η ◦ α ◦ x  + m ). 

Assume Alice intends to refuse recognition of his 
signature on some valid data. Then it follows that 
valid signature S = ( σ, s )  can be forgered by Eve and 
she can sign the message m with forgered signature  SF 
= ( σF , sF ) instead. The verification procedure obtains 
that 

Alice forms the following signature for message  
TA  

S = ( σ , s ).    

3.3. Signature verification. After receiving mes-
sage TB and assuming that it is original, i.e. TB = TA, 
Bob calculates 

ρ ◦ sF = ρ ◦ σF ◦ ηF ◦ αF ◦ x + ρ ◦ σF ◦ m  = 
=η ⋅ α ⋅ η-1 ⋅ ηF ⋅ µF ⋅ ηF-1 ⋅ ηF-1 ⋅ αF ◦ xF + ρ ◦ σF ◦ m, mB = H ( TB ) . 

Having signature's S components σ and s, and 
assuming that mB = m, the verification function Φ = Φ 
( m, σ, s ) is TRUE if 

where σF = ηF ⋅ µF ⋅ ηF-1 . 
 But η-1 ⋅ ηF ≠ 1 and α ⋅ αF ≠ α2 and therefore 

ρ ◦ sF ≠ σF ◦ a + ρ ◦ σF ◦ m 
ρ ◦ s  =  σ ◦ a  +  ρ ◦ σ ◦ m . 
  (V) So this signature scheme ensures the non-repu-

diation property. 
The validity of (V) follows from the equations 

4.3. Existential forgering ρ ◦ s = ρ ◦ ( σ ⋅ η ⋅ α ◦ x  + σ ◦ m ) =  
= η ⋅ α ⋅ η-1 ⋅ η ⋅ µ ⋅ η-1 ⋅ α ◦ x + ρ ◦ σ ◦ m = 
= η ⋅ α ⋅ µ ⋅ α ◦ x + ρ ◦ σ ◦ m = 
= η ⋅ µ ⋅ α2 ◦ x + ρ ◦ σ ◦ m = 
= η ⋅ µ ⋅ η-1 ⋅ η ⋅ α2 ◦ x + ρ ◦ σ ◦ m = 
= σ ◦ a + ρ ◦ σ ◦ m. 

An existential forgering is defined in (Goldwas-
ser, 1988). 

Assume Eve is trying to sign a forgered message 
TA

F. Then she must to forge the parameters of PrK 
replacing them by αF, ηF, xF and perform the 
following calculations by choosing some ξF ∈ S  In general, the condition presented here is 

sufficient for validity of verification function Φ. This 
is proved for three main kinds of attacks considered in 
the next section. 

mF = H ( TA
F ) 

µF = h ( ξF ◦ xF ) 
σF = ηF ⋅ µF ⋅ ηF-1   

The forgered data must satisfy the equation (V) 

ρ ◦ sF = σF ◦ a + ρ ◦ σF ◦ mF    

63 



E. Sakalauskas, T. Burba 

64 

Then Eve must determine sF having mF and σF 
which satisfy the last equation. 

Let us formally write the equation 

sF = ρ-1 ◦ ( σF ◦ a + ρ ◦ σF ◦ mF ), 

taking in mind that ρ-1 ◦ ρ  = 1  and 1 ◦ sF  = sF . 
Then let also 

ρ-1 = η ⋅ α-1 ⋅ η-1 . 

But according to definition of h function both µ and 
µF are in RL , and RL is a subset of R \ G. Hence µF-1 
does not exist and so does ρ-1. 

So Eve is not able to calculate forgered sF , 
having mF and σF . 

5. Discussion 

We have presented an abstract signature scheme 
based on the action of ring R on certain module M (R-
module). We think that there is a possibility to 
construct such an algebraic structure using a Gaussian 
group as a construction material and to choose a 
module compatible to it. So the signature scheme is 
based on the three main constructions: 

1. A certain ring R acting on module M as a ring of 
operators, defined above. 

2. Commutative subsets RL, RR  in R, defined 
above.  

3.The OWF postulation based on the Ring Action 
Problem (RAP). 

It is proved that our scheme is invulnerable 
against three main kinds of attacks investigated above. 
Referencing to postulated OWFs, this means that our 
scheme has a provable security property. 

Proposed signature scheme does not require arith-
metic calculations with large integers and so it could 
be more easily implemented in PDAs than RSA or 
ElGamal cryptosystems. 

Finally, so far we have no any knowledge about 
quantum information algorithms capable to break a 
cryptosystem based on infinite non-commutative al-
gebraic systems. The same, of course, is valid for our 
scheme as well. Therefore, we think that the signature 
scheme there presented requires further investigations 
as possible alternative to the traditional RSA and 
ElGamal signature schemes. 
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