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Abstract. In this paper, we investigate two multistart tabu search implementations for the MAX-CUT problem: an 
algorithm based on application of a steepest ascent heuristic to specially constructed subproblems and the classical 
random restart method. Computational results on three sets of standard test problems indicate that the first of these 
techniques outperforms the second one and is very competitive when compared to other heuristic algorithms. 

 
 

1. Indroduction 

Given an undirected graph G  with 
vertex set V , edge set 
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weights  associated with the edges ( )ijw ∈,
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, the 
MAX-CUT problem asks for a subset of vertices V  
such that the weight of the cut  given 

by  is maximized. Introducing 

binary variables , the problem can be stated 
as follows  
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In (1), (2) a partition ( )21 ,VV  is represented by 
 which is the incidence vector of the 

subset V , that is,  if and only if . 
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The MAX-CUT problem is of considerable prac-
tical significance. It has a large number of applica-
tions, the most known of which are found in design 
automation [1, 4, 5] and statistical physics [1, 6]. 

The MAX-CUT problem is NP-hard even in the 
case when  for each edge . Therefore, 
exact algorithms require exponential time in the worst 
case and in practice can solve only small or at most 
moderately sized MAX-CUT instances. For larger 

graphs only heuristic techniques are applicable. Such 
algorithms for the MAX-CUT problem include a 
projected gradient algorithm [2], a rank-2 relaxation 
heuristic [3], a pure and hybrid GRASP [7], a pure and 
hybrid variable neighborhood search algorithm [7], 
and a combination of the rank-2 heuristic with path-
relinking [8]. Goemans and Williamson [10] proposed 
a randomized algorithm based on solving a 
semidefinite programming relaxation of the MAX-
CUT problem. If all edge weights  are positive, 
then their algorithm produces a solution whose expec-
ted value is within a factor of 0.87856 of the optimum 
value. Many important research results on the MAX-
CUT problem can be found in a survey [16]. 
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The model (1), (2) can be viewed as a partial case 
of the unconstrained binary quadratic optimization 
problem: 

      maximize  (3) ( )
( )
∑ ∑=

Eji
iijiij xcxxcxf

, 1

subject to (2); here ( ) Ejwcij ∈−= 2 , and  
Vici ∈,

jic

, is the sum of the weights of the edges inci-
dent to i  (we assume in the rest of the paper that  
and  denote the same object – coefficient in (3) cor-
responding to the edge 

ijc

( )ji,  ). 

In [14] several multistart tabu search strategies 
for (3), (2) were experimentally compared. The best 
performance was shown by a multistart strategy based 
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on application of a deterministic heuristic to specially 
constructed subproblems (projections) of (3), (2). In 
this paper we adopt this algorithm for solving the 
MAX-CUT problem. For comparison purposes, we 
also investigate the classical random restart procedure 
with tabu search in the local improvement phase. The 
basic concepts of tabu search can be found, for 
example, in [9]. 

3.3. Set ii xx −= 1:
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updated c Ejiij ∈′ ),(, , and . Vici ∈′,

3.4. Apply TS ( )2
** ,,, bfxx . 

4. Stop with the solution  of value . *x *f

In Step 3.1 of this algorithm the variables  are 

included into X  (and their indices into V ) sequen-
tially. This process is randomized by assigning to x
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clear that the vertices with large  are more 
attractive. The experiments showed that the value of 
λ  should be sufficiently large, too. For example, 

500=λ  is apt. However, we observed that for the 
MAX-CUT problem slightly better results are 
obtained when λ  is drawn randomly from some inter-
val [ ]2,h1h . Such a strategy increases the level of 
diversification while constructing new starting points 
for TS. In particular, we have taken . 
Another parameter used in Step 3.1 is coefficient 

5000,5 2h1 ==h
α  

controlling the size of X. In the experiments, we set α  
to 0.4. 

The paper is organized as follows. In Section 2, 
we present the algorithms for (1), (2). In Section 3, we 
report the results of experiments. In Section 4, we 
conclude with a few final remarks. 

2. Algorithms 

In this section we briefly describe two multistart 
tabu search algorithms adopted for solving the MAX-
CUT problem. The algorithms deal with the trans-
formed instances of (3), (2). The new instance is 
constructed by mapping the current solution 

 to (3), (2) to the zero vector. This ope-
ration amounts to replacing  in (3) with 1  for 
each  such that . Let 
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The constant term of the new objective function 
 is equal to . When dealing with the 

transformed instance this term always can be released. 
f ′ ( )xf

The first algorithm generates new starting points 
by fixing values of some variables at 0 and then 
applying a steepest ascent procedure to the projection 
of the problem constructed by removing the fixed 
variables. The algorithm, named MST, can be 
described as follows. 

MST 

1. Randomly generate an 0–1 vector 
. Map ( )nxxx ,,1 K= x  to the zero vector getting 

, and c . Set  

. 

( ) Ejicij ∈′ ,,

ffxx == :,: **

Vi′,

)
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(x
2. Apply tabu search procedure TS ( )1

** ,,, bfxx . 

In Step 3.2 of MST we apply a constructive 
algorithm for (3), (2) described in [13]. The idea of 
this algorithm is to make a steepest ascent from the 
center of an n′ – dimensional unit cube (0.5, 0.5, …, 
0.5) to some its vertex (0–1 vector) by fixing one 
variable at 0 or 1 at each step of this climb. The 
algorithm is applied to the transformed subproblem, 
that is, to the one of type (3), (2) with  and ijc′ ic′  
instead of  and c . ijc i

The loop 3.1–3.4 is executed until a selected 
stopping criterion is met. In our implementation we 
used a stopping rule based on the CPU clock. The 
number of repetitions of this loop, of course, depends 
on the time taken by a run of tabu search procedure 
TS. This time interval is controlled by the last para-
meter submitted to TS – coefficient b  used to bound 
the number of tabu search iterations. The overall 
algorithm has a warm-up phase (Step 2) in which TS 
is allowed to run longer ( )21 bb >  than in Step 3.4. The 

3. While stopping criterion is not satisfied repeat the 
following steps. 

3.1. Select a subset of variables { }*VixX i ∈= of 

size n  nα=′ . 

3.2. Apply the steepest ascent procedure to the 
subproblem defined by X  (it is obtained by 
fixing each at 0). Let be a solution 
returned by it. 

Xxi ∉ x′
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tabu search procedure for (3), (2) can be formally 
stated as follows. 

TS ( )  bfxx ,,, **

1. Set )(:,0 xff ==:b , tabu value T Vii ∈= ,0: . 

2. Set 0:,: =−∞= γL . 

3. For k =  do  n,,1K
3.1. Increment b  by 1. 

3.2. If *fcf k >′+ , then set 1:,: == γkq  and go 
to 4. 

3.3. If , then perform 3.1 for next k. 0>kT

3.4. If , then set Lck >′ 1:,:,: ==′= akqcL k

Lck =′
. 

Otherwise check whether . If so, then 
increment  by 1, randomly select a number a

]1,0[∈ς  and, if a/1≤ς , set . kq =:

4. Set qqq cffx ′+=−= :,1:
( ) Ej ∈ Vici ∈′,

x . Update c ,  
, and , to keep 

ij′

i, x  to be corres-
ponding in the transformed problem instance to 
the zero vector. If 0=γ , then go to 6. Otherwise 
proceed to 5. 

5. Apply a local search procedure to x . It returns 
possibly improved solution x  and value im-
provement  (if  then clocalf ,0local >f icij ′′ ,  are also 

updated). Set fxf= , f *xf+ ,localf : =:=:* . 

6. Decrement iT  by 1 for each positive T Vii ∈, . Set 
, where TTq =: T  is the tabu tenure value. If 

nbb < , then go to 2. Otherwise return. 

The local search procedure invoked in Step 5 of 
the above algorithm returns a solution that is locally 
optimal in the neighborhood  
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This procedure like TS itself works with the trans-
formed problem, too. So, if no variable is flipped in its 
value, then  is returned. 0local =f

Besides  and ** ,, fxx b  listed explicitly TS also 
has an additional parameter, namely, the tabu tenure 
value T . We run TS on the MAX-CUT problem 
instances with T . The same value was used in 
[14] when dealing with the unconstrained binary 
quadratic optimization problem. 

20=

In the experiments we also tried the classical ran-
dom restart algorithm formulated for the MAX-CUT 
problem given in the form (3), (2). This method 
consists of two steps executed repeatedly: generation 
of random starting solution and invocation of TS for 

this solution. In the next section we will refer to it as 
RRT (“Random Restart Tabu”). We believe that it is a 
good practice to compare any more elaborated multi-
start method against this traditional multistart ap-
proach. 

3. Experimental results  

The main purpose of experimentation was to 
investigate the capabilities of tabu search in solving 
instances of the MAX-CUT problem and to compare 
the obtained results with those reported in the 
literature. 

The algorithms we have presented in the previous 
section were coded in the C programming language 
and the tests were carried out on a Pentium III 800 PC. 
We run MST with 250001 =b , 000102 =b  and RRT 

with 00010=b . 

In the first experiment, we tried MST and RRT on 
problem instances G1, G2, G3, G11,…, G16, G22, 
G23, G24, G32,…, G37, G43, G44, and G45 created 
by Helmberg and Rendl [12] and used by several 
authors including [3, 7, 8] for testing their algorithms. 
The solution values and average computation times 
for MST and RRT on these instances are listed in 
Tables 1 and 2. For comparison purposes, Table 1 also 
includes the results obtained with most successful 
algorithms described in the literature: variable neigh-
borhood search with forward path-relinking vnspr 
presented by Festa, Pardalos, Resende and Ribeiro [7], 
rank-2 relaxation heuristic circut developed by Burer, 
Monteiro and Zhang [3], and a hybrid of circut and 
path-relinking circut+pr proposed by Festa and 
Resende [8]. The data (cut value in one run) for vnspr 
(third column) are taken from [7] and the data (best 
cut value in 10 runs) for circut and circut+pr (fourth 
and fifth columns) from [8]. The first two columns of 
each of Tables 1 and 2 give the problem (graph) iden-
tifier and the number of the vertices of the graph. The 
last two columns of Table 1 display the value of the 
best solution obtained from 10 runs of RRT and MST, 
respectively. The columns under heading “RRT” and 
“MST” in Table 2 list for each graph the average cut 
value and the average time taken to first find a solu-
tion that is best in the run. Each run was limited to 
1800 seconds for a graph of order 800 and to 3600 
seconds for a graph of order 1000 or 2000. 

By analyzing the results in Tables 1 and 2, we 
find that MST for this class of instances, in general, 
performs better than RRT, especially when 
comparison is based on the best solutions produced by 
these techniques. Each of them was able to find for 
some graphs a cut of weight larger than that known in 
the literature. Specifically, MST has improved the best 
known values for G14, G15, G16, G22 and G44 and 
RRT for G44 and G45 (all these values in Table 1 are 
indicated in bold face). We can also see from Table 1 
that the best results are obtained by circut+pr.  
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Table 1. Best solutions found by different techniques for Helmberg and Rendl instances  
 

Problem n vnspr circut circut+pr RRT MST 
 

 

G1   800 11621 11624 11624 11624 11624 
G2   800 11615 11620 11620 11620 11620 
G3   800 11622 11622 11622 11622 11622 

 

 

G11   800     564     558     564     564     562 
G12   800     556     554     556     556     552 
G13   800     580     582     582     580     576 

 

 

G14   800   3055   3061   3061   3042   3063 
G15   800   3043   3049   3049   3024   3050 
G16   800   3043     –    –   3026   3052 

 

 

G22 2000 13295 13354 13355 13235 13358 
G23 2000 13290 13354 13338 13246 13329 
G24 2000 13276 13329 13331 13241 13327 

 

 

G32 2000   1396   1396   1402   1384   1392 
G33 2000   1376   1368   1372   1358   1368 
G34 2000   1372   1372   1376   1362   1368 

 

 

G35 2000   7635   7672   7672   7590   7672 
G36 2000   7632   7669   7670   7577   7669 
G37 2000   7643   7680   7681   7589   7675 

 

 

G43 1000   6659   6660   6660   6660   6660 
G44 1000   6642   6649   6649   6650   6650 
G45 1000   6646   6653   6653   6654   6650 

 

 
     Table 2.  Average solutions found by MST and RRT and average time (in seconds) 

 to the best solution in the run for Helmberg and Rendl instances  
 

Problem n            RRT         MST 
value time value time 

 

 

G1   800 11624     15 11610   147 
G2   800 11620   180 11607   195 
G3   800 11622     54 11611   278 

 

 

G11   800     564   819     558   213 
G12   800     554   736     547   181 
G13   800     579   640     571   414 

 

 

G14   800   3037   785   3059   787 
G15   800   3018   581   3047 1109 
G16   800   3022   683   3048   916 

 

 

G22 2000 13221 2039 13306 1519 
G23 2000 13224 2162 13302 1634 
G24 2000 13223 1381 13308 1824 

 

 

G32 2000   1380 1498   1385 1290 
G33 2000   1355 1054   1357   812 
G34 2000   1359 1803   1359 1324 

 

 

G35 2000   7582 1200   7668 2863 
G36 2000   7571 2557   7661 2578 
G37 2000   7582 1974   7669 2384 

 

 

G43 1000   6660   845   6648   733 
G44 1000   6650 1484   6639   478 
G45 1000   6653   800   6640   596 
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However, computation times for circut+pr (as re-

ported in [8]) were very large: for G1 – G3, for 
example, about 36000 seconds on an SGI Challenge 
with a 196 MHz R10000 processor. Slightly inferior 
solutions are produced by circut which, on the other 
hand, is incomparably faster than circut+pr. 
Comparing MST and vnspr, we can see that our 
algorithm in most cases found cuts of larger weight 
than vnspr. In general, we can conclude that there is 
no clear winner among the compared algorithms. Even 
the random restart method RRT sometimes performs 
superbly. It simply beats other competitors on the 
graph clusters G1–G3 and G43–G44 by finding a 
solution of the best known value in almost each run 
(10 times for G1, G2 and G3, 9 times for G43 and 
G44, and 7 times for G45; average values are given in 
the third column of Table 2). 

In the second experiment, we considered ten 
MAX-CUT problem instances sg3dl101000,…, 
sg3dl1010000 of size 1000 and ten instances 
sg3dl141000,…, sg3dl1410000 of size 2744 used by 
Burer, Monteiro and Zhang [3]. These instances 
(graphs) are constructed from cubic lattices modeling 
Ising spin glasses (see [3] for details). In Table 3 (the 
last two columns) we give for each graph the value of 
the best solution found by each of the algorithms RRT 
and MST in 5 runs. Each run was limited to 3600 
seconds for the first ten (smaller) graphs and to 7200 
seconds for the ten larger graphs. We also include in 

this table the results from the literature: from [7] for 
circut and vnspr and from [3] for the algorithm pro-
posed by Hartmann [11] (the column under heading 
“H2”). The latter algorithm focuses on finding the 
groundstates of Ising spin glasses that can be embed-
ded as square or cubic lattices in two or three dimen-
sions, respectively. Since the used instances are of 
such type it is not a surprise that the approach of 
Hartmann produces significantly better solutions than 
any of the other competitors. However, such a good 
performance is achieved at the expense of very large 
computation times: for sg3dl14 series about 33000 
seconds per instance on SGI Origin 2000 machine (see 
[3] for the exact timing of H2 and for a more detailed 
characterization of the computer used). 

As it can be seen from Table 3 MST again pro-
duced better cuts than RRT. The difference between 
cut values especially large is for sg3dl14 series of 
graphs. Our algorithm MST compares favourably also 
with circut and vnspr. Compared with circut for 
sg3dl14 series, for example, MST found better cuts in 
48 runs (out of 50) and tied in 2 runs. In comparison 
with vnspr, MST improved in 47 runs, tied in 1 run, 
and produced inferior solutions in only two cases. 

The structure of Table 4 is very similar to that of 
Table 2. We can see from it that the average time taken 
to first find a solution that is best in the run for RRT is 
noticeably smaller than for MST. This was not a case 
for Helmberg and Rendl graphs. 

Table 3.  Solutions found by different techniques for Burer, Monteiro and  
Zhang instances  

 

Problem circut vnspr H2 RRT    MST 
 

 

sg3dl101000   880   892   896   892   896 
sg3dl102000   892   900   900   898   900 
sg3dl103000   882   884   892   886   888 
sg3dl104000   894   896   898   896   896 
sg3dl105000   882   882   886   884   884 
sg3dl106000   886   880   888   884   888 
sg3dl107000   894   896   900   898   898 
sg3dl108000   874   880   882   880   880 
sg3dl109000   890   898   902   900   902 
sg3dl1010000   886   890   894   890   892 

 

 

sg3dl141000 2410 2416 2446 2378 2438 
sg3dl142000 2416 2416 2458 2394 2448 
sg3dl143000 2408 2406 2442 2394 2434 
sg3dl144000 2414 2418 2450 2390 2436 
sg3dl145000 2406 2416 2446 2380 2432 
sg3dl146000 2412 2420 2450 2394 2440 
sg3dl147000 2410 2404 2444 2384 2434 
sg3dl148000 2418 2418 2446 2386 2434 
sg3dl149000 2388 2384 2424 2362 2416 
sg3dl1410000 2420 2422 2458 2402 2450 
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     Table 4. Average solutions found by MST and RRT and average time (in seconds) 
 to the best solution in the run for Burer, Monteiro and Zhang instances  

 

Problem             RRT             MST 
value time value time 

 

 

sg3dl101000     888.4   961   889.6 1755 
sg3dl102000    896.8 1438   896.8 2208 
sg3dl103000    884.4   578   883.2 1616 
sg3dl104000    894.4 1677   892.4   913 
sg3dl105000    881.6 2163   881.2 1722 
sg3dl106000    882.4 1735   883.6 1808 
sg3dl107000    896.0 1619   894.8 2203 
sg3dl108000    877.2   511   878.4   712 
sg3dl109000    896.4 1472   890.8 1391 
sg3dl1010000    888.4 1311   888.0   297 

 

 

sg3dl141000  2377.6 4833 2425.2 5265 
sg3dl142000  2392.0 3035 2436.4 4645 
sg3dl143000  2382.0 4286 2422.4 3878 
sg3dl144000  2384.8 3279 2430.4 3665 
sg3dl145000  2376.4 3701 2424.4 5871 
sg3dl146000  2388.4 3614 2429.6 2760 
sg3dl147000  2377.2 2146 2420.4 5405 
sg3dl148000  2382.0 2864 2424.8 5726 
sg3dl149000  2360.8 4258 2406.4 4784 
sg3dl1410000  2392.8 3869 2433.2 5099 

 

 

  Table 5. Solutions found by different techniques for the torus problems 

Problem    n circut SA RRT MST 
pm3-8-50 512 454 458 458 458 
pm3-15-50 3375 2964 3016 2930 3000 
g3-8 512 41684814 39111654 40043061 41684814 
g3-15 3375 281029888 260202525 251918092 283206561 

 
     Table 6.  Average solutions found by MST and RRT and average time (in seconds) 

 to the best solution in the run for the torus problems  
 

Problem             RRT                 MST 
value time value        time 

 

 

pm3-8-50             458.0    745             456.0   785 
pm3-15-50           2924.4 3611           2992.4 4172 
g3-8   39914366.0   639   41647774.4   841 
g3-15 250725220.6 4458 282541878.0 2764 

 

 
 

 
The last experiment was conducted on a set of 

test problems taken from the DIMACS library of 
semidefinite-quadratic-linear programs [15]. This set 
contains four instances of MAX-CUT, called the torus 
problems, which originated from the Ising model of 
spin glasses in physics (see [15] for details). We run 
MST and RRT on each instance 5 times for 1800 
seconds in the case of pm3-8-50 and g3-8 and for 
7200 seconds in the case of pm3-15-50 and g3-15. 
The results are reported in Tables 5 and 6. Table 5 also 
includes the results from the literature: from [3] for 
circut and from [15] for an implementation of the 

simulated annealing algorithm SA. Tables 5 and 6 
clearly show that MST is quite effective in obtaining 
high-quality solutions for the torus set. In particular, 
for g3-8 MST was able two times (out of 5) to find a 
cut of value 41684814 that is known to be optimal [3]. 
For pm3-8-50 the best performance is demonstrated 
by RRT. This algorithm can find cuts of weight 458 
(which is the best known value), perhaps, constantly 
within the allotted half hour. For pm3-15-50 the best 
cut is produced by SA. For g3-15 a rather good 
solution is found by MST. We believe that signifi-
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cantly better solutions for this instance can be 
obtained in longer runs of MST. 

4. Conclusions 

In this paper we presented two multistart tabu 
search implementations for the MAX-CUT problem. 
The results of experiments show that the algorithm 
based on construction of starting points using a one-
pass heuristic for (3), (2), in general, outperforms the 
random restart method. The algorithm can quickly 
find solutions that are competitive with those found by 
most successful algorithms described in the literature. 
For 6 benchmark graphs the solutions of weight larger 
than the best known value were produced.  
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