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ENTROPY AND THE COMPLEXITY FOR ZN ACTIONS 

Bünyamin Aydin∗ 
Cumhuriyet University, Sivas,TURKEY 

Abstract. The complexity of a finite object was introduced by A. Kolmogorov and V. Tihomirov in [1] and it was 
conjectured that for Z actions the complexity coincides with topological entropy, [1] [2], [3]. In the present paper we 
introduce complexity for Zn actions and prove the Kolmogorov assertion for continuous actions of Z 
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Let us introduce definitions and notations we 
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Let A = {al, ..., ak} be a finite set of symbols, 
(alphabet); where , j =1, 2, 
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Now let Cp(X) define complexity of the confi-
guration space X relatively to the program P as: be the space of configurations with Tychonoff topo-

logy, σ be the shift in this configuration space: 
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Let P be such a program that for an arbitrary 
program P' we have a constant C(P, P') such that for 
every stamp wF the inequality 

Definition 1. A dynamical system (X, T) is a sym-
bolic system on Zn, if X is the σ-invariant closed subset 
of Ω and T is the restriction of σ to X. 
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P +≤  Now we define the complexity of the configu-

ration spaces of the symbolic dynamical system (X, T). holds. 
Definition 2. For an arbitrary finite subset F of Zn we 
denote by AF the set of stamps (configuration) on F.  
Every point 

We call this program P the asymptotically optimal 
program. 

The existence of such a program P was proved in 
[1]. 
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Proposition 1: For every symbolic system (X, T) 
and arbitrary optimal programs P1 and P2, 

on this set AF is called a configuration stamp. 
Let P be some program which acts from the set of 

all finite words in the {0, 1}-alphabet into the space of 
stamps. By l(p) we denote the number of elements in 
the finite word p in the {0,1}-alphabet. 
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Proof: Let us prove the inequality 
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Now we define complexity C of the stamp 
w

)( F
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F relatively to the program P: From the definition of an asymptoticaly optimal prog-
ram we have for an arbitrary stamp wF 
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where  is a constant. ),( 21 PPCNow we define the complexity CP(w) for the 
configuration w∈X relatively to the program P: 
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We have and then 
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Let fix . We will show that U
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there is some finite word (α1, α2, ..., αn) ∈ {0, 1}n, 
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But for every constant C we have: 
Now we will show that Card . 1||)(2 ++≤ kIa εU
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Now we will prove the main results of our paper. 
thus Theorem 1: Let (X, T) be a symbolic system on 

Zn. Then 
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where  is the topological entropy of the action T 
of the group Z

)(Tht
n on X. 

Proof: Let the complexity CP(X) of the space X 
be finite and equal to a. So we have: So we have . 1)(2 ++≤≤ kIaUCardVCard ε

awC
I kIP

Xwkk
=

∈∞→
)|(sup

||
1suplim

1
. To finish the proof of the theorem we need first 

some facts about topological entropy. 
Theorem 2. Let (X, T) be a symbolic dynamical 

system. Then 
Then let 0>ε be an arbitrary number. There is some 
n0 ∈ IN such that ∀  0nk >
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rent restrictions of points of X on the Ik set is not big-
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Now we will prove the inverse inequality. Let 
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thus the complexity of the space X relatively to this 
program P is not bigger than )( ε+b . 

Because of that, the complexity of an arbitrary 
asymptotically optimal program P will not than be 
bigger than b. 

The proof is complete. 


