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Abstract. Ambient Intelligence is a new vision of future digital environments characterized by ubiquity, transpa-
rency and intelligence. The user is surrounded by embedded systems that are invisible, context-aware, personalized and 
adaptable to the user requirements. Design of Ambient Intelligence systems is, essentially, design of sophisticated and 
interconnected embedded systems that operate within a common human-oriented environment. Such embedded sys-
tems contain a variety of embedded components with different functionality, characteristics and requirements. Embed-
ded components are common hardware/software components that are basic blocks for building embedded systems and 
have a great deal of variability. This paper focuses on embedded component design for Ambient Intelligence systems 
and proposes a design framework based on the systematic domain analysis methods, well-proven domain models, well-
documented design processes, UML-based object-oriented specification, meta-programming-based representation of 
variability within generic embedded components, and automatic domain code generation. We demonstrate validity of 
our approach for two domains of application: communication control and fault-tolerance. 
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1. Introduction 

Ambient Intelligence (AmI) is a vision for future 
communication and human-machine interaction sys-
tems [Riva, 03]. Common features of such systems are 
ambient computing, omnipresent communication to 
support context-awareness and intelligent interfacing 
[Ducatel, 01]. The domain is not well understood yet, 
regardless of a wide stream of research on the topic 
[Boekhorst, 02] [Basten, 03a] [Basten, 03b] [Lindwer, 
03] [Weber, 03] [Remagnino, 03] [Cai, 05].  

From the pure structural perspective, an AmI-
oriented environment can be treated as a specifically 
organized collection of integrated embedded systems 
(ES) satisfying requirements and constrains of AmI-
oriented design. They are as follows: higher diversity 
and complexity of systems and components, increased 
quality, productivity and reuse content, standardiza-
tion, stricter requirements for time-to-market and 
fault-tolerance, design for variation and low power 
[Basten, 03b]. These factors should be considered in 
the context of underlying domain technology, which is 
further scaling down and causes exponential comp-
lexity growth of the designed systems [ITRS, 03]. The 
outcome is that systems of yesterday become compo-
nents of today. Furthermore, the blurring boundaries 
between hardware (HW) and software (SW) design 
[Eggermont, 02] [Vahid, 03] for a long perspective 

requires introduction of the higher-level abstractions 
in the design process [ITRS, 03].  

The researchers can respond to this challenge by 
either improving the currently used design methodo-
logies or creating the new ones. New AmI-oriented 
systems must be based on the fundamental principle 
stating that any system consists of components. This 
principle is common for any technical system as well 
as for a mature engineering discipline, and it is some-
times called “a law of nature” [Szyperski, 99]. The 
design methodologies for AmI systems must exploit 
adequately this principle, too.  

ES are used as subsystems in a variety of smart 
products such as mobile phones, DVD players, and 
kitchen appliances. These systems implement a large 
diversity of functions; however, they are composed of 
a limited number of common SW/HW components 
such as DSP, MPEG, codecs, etc. We call these basic 
design blocks embedded components, the nodes for 
the future AmI systems. We use this term as a generic 
name for IP (Intellectual Property) components (IPs), 
(embedded) SW components, HW components (soft 
IPs), and SW/HW subsystems. However, this term 
should be also treated as an abstraction covering va-
rious forms of representation such as a generic specifi-
cation and metamodel of reusable components.  

Since there is a great variety of embedded com-
ponents, which are required for the design of AmI 
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systems, reuse and variability management of compo-
nent assets has become increasingly important in 
embedded system design. The designers are shifting 
their focus from designing separate application-spe-
cific domain systems to developing generic compo-
nents [Becker, 01], platforms [Mihal, 02], or entire 
product lines [Diaz-Herrera, 00], which implement 
common functionality of component (system) family 
that satisfies the specific needs of a particular market 
segment, and provide variability management mecha-
nisms for instantiating the specific component (ins-
tance) customized for particular performance and 
application requirements. Such product lines could be 
successfully used for developing embedded compo-
nents on an industrial scale to match huge customer 
demand and varying requirements, as well as maintain 
quality-of-service and shorten time-to-market.  

The key to successful design for variability is sys-
tematic management of domain variations, while 
exploiting the commonalities. These commonalities 
permit reuse of shared assets, such as architectures, 
reusable components, test cases and documentation. 
When a new AmI system is developed, the emphasis 
should be placed on automatic integration of existing 
embedded components or generation of customized 
components rather than programming. Domain ana-
lysis and knowledge mining for extraction of antici-
pated variability, development of methods and abstrac-
tions for facilitating and improving variability mana-
gement mechanisms, and creation of tools for imple-
mentation of variability and generation of customized 
ready-to-use components are essential to design 
success.  

Our contribution is (1) a general variability-orien-
ted design framework for developing generic 
embedded components, (2) adoption of high-level ab-
stractions such as UML class diagrams and metapro-
grams for specification of embedded components, 
management of design variability and implementation 
of domain code generation for well-understood do-
mains. 

The outline of this paper is as follows. Section 2 
describes the concept of Embedded Component, its 
representation forms and design processes. Section 3 
describes the Embedded Component design metho-
dology in detail. Section 4 presents our experiments. 
Section 5 presents evaluation of results and con-
clusions. 

2. Embedded Component Design Framework 
2.1. Embedded Component Concept, its 

Representation Forms, and Model  

The designers use a broad variety of models in the 
ES domain [Selic, 03b]. For instance, models of com-
putation (MoC) are formal and abstract definitions of 
a component [Edwards, 97] [Lee, 98]. Examples of 
MoC are finite state machine (FSM), Boolean circuit, 
Petri nets, etc. MoC allow analyzing the intrinsic 

properties of a component such as execution time or 
memory space of an algorithm while ignoring many 
implementations issues. The design process is iterative 
– a design is transformed from an informal description 
into a detailed specification usable for manufacturing. 
Multiple MoC are needed to express the heteroge-
neous nature of most ES.  

Component models [Agaësse, 97] [Haase, 99] 
[Meguerdichian, 01] [Nitsch, 03] [Siegmund, 00] 
[Štuikys, 02] [Vermeulen, 00] [Zhu, 01] usually deal 
with the problems of representation, retrieval and 
reuse of HW/SW components for IP libraries, IP pro-
viders and IP users. These models either allow custo-
mization of components with respect to user require-
ments for successful IP reuse, or enable convenient IP 
retrieval and sharing. The design process focuses on 
design space exploration, parameterization, and gene-
ration of specific components (IPs). The proposed 
solutions are usually language-centric (pre-processing, 
extensions of languages, etc.). 

Architectural models such as platforms [Mihal, 02] 
[Sangiovanni-Vincentelli, 01] address system-level de-
sign based on IP reuse. Platforms are common archi-
tectures based on principal components that remain 
fixed within a certain degree of parameterization. 
Such platforms can support a variety of applications in 
a given application domain. Platforms emphasize not 
the design of functionality, but the communication-
based design independent of the behaviour of parti-
cular components. The design process focuses on refi-
nement of a platform for a specific application. 

We introduce a concept of Embedded Component 
in the context of the AmI-oriented design as follows. 
Embedded Component is a design abstraction common 
to SW/HW systems. It has three representation forms: 
generic specification (GS), reusable instance (RI) and 
embeddable instance (EI) (see Figure 1). These forms 
correspond to three hierarchic abstraction layers as 
follows. Generic specification is at the generic layer of 
abstraction (the highest one), reusable instance is at 
the reuse layer (the middle one), and embeddable ins-
tance is at the embedding layer (the lowest one). A 
higher abstraction layer is refined into a lower one 
using a well-defined design process. Below, we de-
scribe these representation forms of Embedded Com-
ponent in more detail as follows. 

Generic specification is parameterized description 
of a family of related component instances. A family 
includes several (from dozens to hundreds or even 
thousands) reusable instances that differ in functiona-
lity and requirements. The environment for a generic 
specification is a generic library of IP providers or 
large design organizations.  

Reusable instance is a particular instance gene-
rated from a generic specification that can be reused in 
several applications. Usually it is not specific enough 
to be embedded into a particular target system and 
needs to be adapted to its environment of application. 
The environment for a reusable instance is either 
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libraries of IP providers, IP exchanges, or libraries of 
design teams.  

Embeddable instance is a component instance that 
was adapted to a particular context of application and, 
generally, is not reusable. The environment for an em-
beddable instance is an ES as a part of the AmI sys-
tem. An embeddable instance can be implemented in a 
real system either (1) “use-as-is” without any modi-
fication, or (2) with customization/modification of a 
reusable instance.  

A Generic Embedded Component Model (see Fi-
gure 2) describes the structure of a generic specifica-
tion. A metainterface represents the generic parame-
ters at a higher level of abstraction and hides the 
families of reusable instances and details of their 
implementation from the user. The generic interface 
and generic functionality represent the parameterized 
interface and functionality of reusable instances, res-
pectively. The reusable instances are derived from a 
generic specification automatically using transforma-
tion generation tools. 
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Figure 1. Relationship between Embedded Component forms 
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Figure 2. Generic Embedded Component Model 

The Generic Embedded Component Model sup-
ports:  
 1) Domain-independence – the model is common for 

HW, SW, and embedded SW domains [Štuikys, 
03]. Here we have in mind the representation of 
components only, but not the semantic aspects.  

 2) Design automation – a generic specification is a 
generic form representing a family of the related 
reusable instances, and a generation/transforma-
tion process can be defined, supported and execu-
ted to obtain the reusable instances automatically.  

 3) Common methodological background for trans-
forming, customizing and delivering of Embed-
ded Components.  

2.2. Design processes 

Design processes are a very important part of the 
suggested framework. We describe these processes in 
more detail latter. Now, we focus on the formulation 
of the pre-conditions of the processes and present the 
framework in the whole (see Figure 3).  
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Figure 3. Embedded Component design processes for AmI 

(1) Analysis process comprises the consideration of 
roadmaps for ES and AmI domains [ITRS, 03] 
[Eggermont, 02], including requirements for AmI, 
and systematic analysis of experimental AmI 
systems, HW and SW systems.  

(2) Specification process is applied for describing 
Embedded Components at a higher-level of abst-
raction using object-oriented approach based on 
UML diagrams [Booch, 98] and design patterns 
[Gamma, 95]. 

(3) Design process includes development of generic 
representations of Embedded Components (i.e., 
generic specifications) using the metaprogram-
ming techniques [Štuikys, 02] in order to manage 
the design variability in AmI domain. 

(4) Generation process is automatic creation of re-
usable Embedded Component instances according 
to the pre-specified requirements of a user or 
application.  

(5) Adaptation is a process of adapting a reusable 
instance and integrating it into a real AmI system. 
As the context of such a system may be unknown 
for an Embedded Component designer, we do not 
consider this process in the paper. 

3. Design Methodology in Details 
3.1. Well-Understood Domains and AmI 

SW engineering considers “domain” as its basic 
theme of exploration [Jacobson, 97]. The topic is so 
important and widely discussed that a new discipline, 
Domain Engineering, has emerged [Diaz-Herrera, 01] 

[Harsu, 02]. A domain is an environment from which 
SW engineers extract knowledge required for desig-
ning a system. In the context of reuse, domains can be 
categorized as vertical (narrow) and horizontal 
(broad) ones. From the evolutionary perspective, do-
mains can be treated either as poorly or well-
understood ones. AmI covers both vertical and hori-
zontal domains and, as a topic for research and crea-
ting the future advanced systems, it is not well-under-
stood in many aspects yet. However, design of an AmI 
system relates to the variety of sub-domains (HW, SW, 
and ES design) that are already well-understood.  

To support the basic constrains and requirements 
(reliability, functionality, variability for AmI systems, 
etc.), the designers should pay an increased attention 
to the well-understood domains in the first place. It is 
particular important for designing Embedded Compo-
nents because the main intention of introducing them 
is to ensure a high reuse context [ITRS, 03] [Egger-
mont, 02]. There is no precise definition in the 
literature what a well-understood domain or sub-do-
main is. The term “well-understood domain” should 
be conceived here as a domain that contains well-
proven model(s). There are many well-proven models 
in both HW and SW domains. Examples selected 
below refer to the aspects of componentry in HW and 
SW design and experiments we have carried out. 
 1)  Communication models such as handshake [Ber-

kel, 94] and FIFO [Gajski, 97] protocols are 
models for describing aspects of communication 
between HW components given in a high-level 
HW description language (HDL), such as VHDL, 
Verilog or SystemC. 
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 2) Triple Redundancy Model (TRM) is used in the 
reliability-critical applications to mask HW faults. 
TRM implements the two-out-of-three voting 
concept, as well as the erroneous output indica-
tion (if needed). There are Space, Data and Time 
Redundancy sub-models of TRM [Entrena, 01] 
[Fuhrman, 95] [Pflanz, 98] as follows: a) Space 
redundancy is based on the addition of extra hard-
ware in order to perform simultaneously the same 
operations of a system. b) Time redundancy is 
based on the usage of additional time to perform 
system functions, thus achieving soft error tole-
rance. c) Data redundancy is based on the addi-
tion of redundant data (auxiliary data path, error-
detecting and correcting codes) to ensure reliabi-
lity during transfer of data via system intercon-
nections.  

 3) Wrapper models are widely used in HW design, 
e.g.: a) Bus wrapper provides an implementation 
of a particular data protocol for communication 
with other components. This solution is used in 
Virtual Socket Interface methodology [Cyr, 01] to 
connect the IPs to on-chip buses in System-on-
Chip (SoC) designs. b) Protocol wrapper 
provides an implementation of an OSI protocol 
layer. This solution is used in the FPX networking 
platform [Braun, 02] to implement high-level 
networking functions by abstracting the operation 
of the lower-level packet processing functions. c) 
Memory wrapper adapts the physical memory 
interfaces to a communication network that may 
have a different number of access ports. This 
approach is used in [Gharsalli, 02] to facilitate the 
integration of the standard memory components 
into SoC designs. 

3.2. General Domain Analysis Methods for Design 
for Variability 

The more complex system/component has to be 
designed, the higher is the role of domain analysis. 
Domain analysis methods can be categorized as ad 
hoc and systematic ones. The first ones prevail in cur-
rent design practice, especially in HW and ES design. 
The role of systematic methods increases alongside 
with the growth of design complexity. We expect that 
they will become extremely important in design of 
future AmI systems. Thus, we present below a brief 
survey of the systematic domain analysis methods that 
can be used to design the Embedded Components for 
AmI systems.  

Multi-Dimensional Separation of Concerns [Os-
sher, 01] claims that design concerns can be under-
stood in terms of an n-dimensional design space, 
called a hyperspace. Each dimension is associated 
with a set of similar concerns, such as a set of compo-
nent instances; different values along a dimension are 
different instances. A hyperslice is a set of instances 
that pertain to a specific concern. A hypermodule is a 
set of hyperslices and integration relationships that 

dictate how the units of hyperslices are integrated. The 
method is especially useful in domains where a great 
variety of requirements exists at different layers of 
abstraction such as in ES design.  

Feature-Oriented Domain Analysis [Kang, 90] 
[Prieto-Diaz, 91] deals with analysis and documen-
tation of distinctive features of SW systems. Features 
are domain characteristics that define both common 
domain aspects as well as differences between related 
domain systems. The underlying concepts are: aggre-
gation (composition of separated concerns into a 
generic component), decomposition (abstraction and 
isolation of domain commonalties and variations), 
parameterization (substitution of the application-spe-
cific concerns with values of component parameters), 
generalization (capturing domain commonalties, 
while expressing the variations at a higher level of 
abstraction), and specialization (tailoring a generic 
component into a specific component that incorporates 
the application-specific details). 

Family-oriented Abstraction, Specification and 
Translation [Weiss, 99] method focuses on grouping 
similar entities or concepts into families. A family is a 
collection of system parts that are treated together 
because they are more alike than different. Grouping 
is based on commonalties that fall along many dimen-
sions (structure, algorithm, etc.). Commonality defines 
the shared context that is invariant across abstractions 
of the application. The individual family members 
(instances) are distinguished by their differences, 
called variabilities. Variability captures the properties 
that distinguish abstractions in a domain. The aim of 
the method is to uncover variability and provide 
means for its implementation.  

Conceptually, the analyzed methods have many in 
common. First, they emphasize decomposition of a 
design space into smaller dimensions related to the 
specific design concerns. Secondly, they describe ma-
nagement of variability and commonality in a domain 
and, finally, integration of similar entities (features) at 
a higher layer of abstraction. From that perspective, 
any of the analyzed methods can be used for designing 
Embedded Components. The selection depends upon 
the skills of a designer and the available tools. 

We summarize our analysis as follows. We assume 
that SW/HW components designed for AmI systems 
have variant and invariant parts. These parts represent 
variability and commonality in the domain. The 
primary goal of using domain analysis methods is to 
recognize the parts, and express them in a suitable 
form for further refinement. At a higher level, we use 
domain concerns alongside with the domain-oriented 
abstractions to describe the variant and invariant parts 
more precisely. Finally, we formulate the issues of 
domain analysis either explicitly or implicitly. The 
explicit artifacts are taxonomy of domain objects and 
their features (requirements, parameters), methods, 
processes and models for ES design. The implicit 
artifacts are domain knowledge in the form of a 
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conceptual model used for further refinement of the 
obtained domain artifacts and models.  

3.3. Domain-Specific Analysis Methods 

The domain-specific analysis methods mostly 
focus on design space exploration, i.e., analyzing and 
searching the domain for the optimal design solutions 
(in terms of power, area, delay, etc.). Design space 
exploration tasks today often deal with high-level 
synthesis problems, such as automated resource 
allocation, binding of computation and communica-
tion to resources, and scheduling.  

As complexity of the design systems increases, it 
is becoming more and more unlikely that a designer 
will find an optimal design solution using his expe-
rience, domain knowledge and prior design decisions 
as a basis only. A disciplined approach to design space 
exploration is inevitably needed in order to evaluate 
ever-increasing design spaces. Here, we analyze an 
approach for the automated and systematic design 
space exploration widely known as Y-Chart [Kienhuis, 
97] [Gerstlauer, 02].  

The Y-chart identifies three sub-domains: (1) 
Functional sub-domain: functional components, algo-
rithms, etc. (2) Structural sub-domain: processors, 
memories, busses, etc. (3) Physical sub-domain: hard-
ware resources, delays, constraints, etc. 

The Y-Chart also defines system, register-transfer, 
gate, and transistor levels where each level is defined 
by the type of objects. The higher-level objects are 
hierarchically composed of the lower-level ones. At 
each level, the design can be described in the form of 
a behavioral, a structural model, or a physical model 
as follows.  
(1) Behavioral model describes the desired functio-

nality as a composition of abstract functional 
entities that get activated, process input data, 
produce output data, and terminate.  

(2) Structural model describes the net-list of physical 
components and their connectivity. Structural 
objects represent real components and wires that 
are processing the data.  

(3) Physical model describes the physical placement 
of the sub-components on the chip.  

The design activities begin at the highest-level 
sub-domain that corresponds to the highest-level of 
abstraction in the domain. Then, a successive refine-
ment process between each sub-domains is applied 
according to various abstraction levels. The design 
process ends at the lowest level of abstraction in phy-
sical sub-domain. 

In the Y-Chart, system design is the process of mo-
ving from a behavioral description to a structural de-
scription under a set of constraints where the structural 
objects are each designed at the next lower level.  

At the system level, system design is the process 
of deriving a structural description of the system and 
the system architecture from a behavioral system 

specification. Behavioral objects at the system level 
are general functions and algorithms that communi-
cate by transferring data through global variables. 
Structural objects are processing elements, e.g. gene-
ral-purpose processors, custom hardware, compo-
nents, and memories that communicate via buses. For 
each design task, the models at the input and output of 
the flow have to be defined such that the transfor-
mation between the models becomes possible.  

An application and architecture are modeled 
separately and explicitly mapped onto each other. 
Next, a performance analysis for alternative applica-
tion instances, architecture instances and mappings 
has to be done, thereby exploring the design space of 
the target system.  

3.4. UML-Based Specification  

The Object-oriented design (OOD) methodology is 
based on the concept of using high-level models orga-
nized around real world concepts. This approach has 
actually become the de-facto standard for SW design. 
Objects are usually modeled using UML [Booch, 98]. 
Recently, UML has gained acceptance in HW and ES 
design community, too [Jong, 02] [Martin, 02] [Chen, 
03] [Edwards, 03] [Goudarzi, 04]. Advantages of 
using UML for OO HW design are as follows: 1) high 
level specification of a designed system, 2) better soft 
IP reusability and adaptability, 3) better documenta-
tion for further reuse and maintenance of a system.  

Design patterns are another abstraction for repre-
senting common design solutions in UML notation 
[Gamma, 95]. Design patterns are used to abstract and 
encapsulate common design solutions as well as to 
describe contexts to which they can be applied in an 
implementation-independent way. They originated in 
SW domain for creating the SW systems using pre-
vious successful design experience. However, recently 
there are evident signs and efforts for adapting them 
for HW design [Yoshida, 01] [Åström, 01] [Doucet, 
02] [Damaševičius, 03] [Selic, 03a] [Damaševičius, 
04a, b].  

In the context of Embedded Component design for 
AmI systems, the OO specification of a system using 
UML is extremely important due to the following rea-
sons. 1) Describing a system in an abstract and imple-
mentation-independent way significantly raises the 
level of abstraction. 2) Using the standard UML dia-
grams eases the communication between different 
design teams. 3) Using the already verified design 
solutions ensures a higher design quality. 4) Using 
graphical design tools, catalogues of design patterns, 
and automatic code generation tools can increase 
design productivity as well as accelerate design reuse, 
sharing and transfer. 

Additionally, the usage of design patterns may re-
duce the gap between the development of SW and HW 
parts, as the OO and pattern-based design is widely 
used in SW domain. It can be very useful to co-design 
the HW and SW parts of a system using the same 
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design methodology, and partition these parts as late 
as possible in the design cycle. The same high-level 
description can be implemented either in HW, or in 
SW running on an embedded processor. This allows 
achieving greater flexibility for the system designer. 

However, in order to exploit the full potential of 
design patterns in HW design domain, much work still 
is to be done. As has been shown in [Yoshida, 01] only 
a few SW design patterns can be introduced in HW 
design without changes. The others require a certain 
degree of adaptation, and the rest ones from currently 
known list of 23 main SW design patterns [Gamma, 
95] are not adopted at all, yet. 

3.5. Metaprogramming 

Several related efforts in the area are aspect-
oriented programming [Kiczales, 97], generative 
programming [Czarnecki, 00] [Sztipanovits, 02], and 
generic programming [Gibbons, 03]. Metaprogram-
ming is a kind of higher-level programming the 
interest and attention for which is constantly growing 

[Sheard, 01]. It can be applied in different domains 
and in the various contexts where the multi-language 
design paradigm [Kleinjohann, 98] [Jerraya, 99] is 
used. In this context, we consider metaprogramming 
as a design technology for managing variability and 
implementing domain code generation [Štuikys, 02]. 

The main aim of metaprogramming is to create a 
metaspecification – a program generator for a narrow 
domain of application. Conceptually, a metaspecifi-
cation is based on the generic embedded component 
model (Figure 2). Whereas structurally, a metaspeci-
fication (see Figure 4) consists of a generic interface, 
related domain program instances and a modification 
algorithm that describes generation of a particular 
instance depending upon values of the generic para-
meters. The modification algorithm can include meta-
if (conditional generation) and meta-for (repetitive 
generation) constructs as well as sophisticated applica-
tion-specific patterns composed of nested combina-
tions of simpler metaconstructs.  

Metaspecification

Generic interface 
has has

Generic parameter 
contains 

1 

* 
Modification algorithm

contains

Program instance

1

*

Metaconstruct

implements

Metalanguage describes
Domain language

describes
depends 

Metacode
contains

 
Figure 4. Detailed architecture of a metaspecification 

Depending upon the representation of a metaspeci-
fication, there are two basic dimensions of metaprog-
ramming: the homogeneous and heterogeneous ones. 
Here we focus on the latter. 

Heterogeneous metaprogramming is based on ex-
plicit separation of concerns and the usage of two 
different languages in the same metaspecification. The 
lower-level language (domain language) is used for 
expressing the basic domain functionality. The higher-
level language (metalanguage) is used for expressing 
generalization and describing domain program modi-
fications. A designer uses a metalanguage as a higher-
level abstraction to integrate together the different 
domain program instances and make up a metaspecifi-
cation. The main mechanism allowing to implemen-
ting this integration is external (generic) parameteri-
zation. The latter separates the programming concerns 
explicitly and bridges the higher- and lower-levels 
while developing a metaspecification. Then a meta-
specification is used as a set of instructions for a 

metalanguage processor to generate the specific do-
main program instances.  

Heterogeneous metaprogramming can be imple-
mented in several ways [Štuikys, 03]. One way is to 
use some general-purpose programming language 
(e.g., Java, C++) in the role of a metalanguage and a 
domain-specific language (e.g., VHDL, Verilog or 
SystemC) as a domain language. The other way is to 
use a dedicated language in the role of a meta-
language. Though there are no essential differences 
between both methods, the second has some advan-
tages from the user's perspective. A dedicated meta-
language processor can better ensure the explicit sepa-
ration of concerns when implementing external para-
meterization, thus giving some advantages for a user.  

The advantages of heterogeneous metaprogram-
ming are as follows. 1) The usage of a domain-inde-
pendent metalanguage allows automatic (pre-program-
med) adaptation to limitations of a particular synthe-
sizer, and automatic documentation generation. 2) The 
end-user has access to customized instances because 
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they are explicitly separated. 3) An instance is much 
more readable than a generic component.  

The disadvantages of heterogeneous metaprogram-
ming are as follows. 1) It requires two design environ-
ments, thus the validation process is more complex. 2) 
Clashing of component names must be prevented 
(manually or automatically).  

3.6. Design of Generic Embedded Components 
Using Metaprogramming 

Generic aspects of Embedded Component are 
represented in a metaspecification. Each metaspeci-
fication has an interface for describing the generic 
parameters, and a body that contains the generic inter-
face and generic functionality of Embedded Compo-
nents. Metaspecifications serve for 1) concise repre-
sentation of the families of qualified instances that 
have the related functionality, and 2) selection and 
generation of the particular domain component instan-

ces depending upon the values of the generic para-
meters introduced through a metalanguage interface. 

Development of a metaspecification can be de-
scribed as follows (see Figure 5). The domain (repre-
sented by one or more available component instances, 
models and the requirements) is analyzed, and the 
modification concerns are identified and separated. 
These concerns represent the variable aspects in a 
domain that depend upon generic parameters. The 
separated concerns are expressed through generic 
parameters, implemented using the metaprogramming 
techniques, and then integrated back with the fixed 
aspects of a domain that are orthogonal with respect to 
the generic parameters. The result is a metaspecifica-
tion that encapsulates a family of the related Embed-
ded Component instances and implements a Generic 
Embedded Component. For illustrative example, see 
Figure 6. 

Domain
Program(s)

Modification
Algorithm

Meta-
specification

Metaprogramming

Require-
mentsIPs

Domain Analysis

Models

 
Figure 5. Framework for development of a metaspecification 

 void generate_gate(String func, int no, int width) { 
// generating VHDL entity of a gate ... 

println("ENTITY GATE_"+func+"_"+no+"x"+width+" IS");
 print("PORT (X0"); 
 for(int i=1; i<no; i++) print(", X"+i); 
 print(" : IN STD_LOGIC"); 
 if (width > 1)  

print("_VECTOR("+(width-1)+" downto 0)"); 
 println(";");  
 print("\t Y : OUT STD_LOGIC");  
 if (width>1)  

print("_VECTOR("+(width-1)+" downto 0)"); 
 println(");");  
 println("END GATE_"+func+"_"+no+"x"+width+";");  
// generating VHDL architecture of a gate ... 
 println("ARCHITECTURE BEHAVE OF "); 

println("\t\t GATE_"+func+"_"+no+"x"+width+" IS");  
 println("BEGIN");  
 print("\t\t Y <= X0"); 
 for(int i=1; i<no; i++) print(" "+func+" X"+i); 
 println(";");  
 println("END BEHAVE;");  
} 

ENTITY GATE_AND_3x8 IS 
PORT (X0, X1, X2: IN STD_LOGIC_VECTOR(7 downto 0); 

Y: OUT STD_LOGIC_VECTOR(7 downto 0)); 
END GATE_AND_3x8; 
 
ARCHITECTURE BEH OF GATE_AND_3x8 IS 
BEGIN 
   Y <= X0 AND X1 AND X2; 
END BEH;  

Figure 6. Generic gate specification (metalanguage - Java, domain language - VHDL), and its VHDL instance  
(when function = AND, no = 3, width = 8) 
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In general, a metalanguage is used to express all 
possible variability in a domain, while a domain lan-
guage is used to express the invariant part or commo-
nality in a domain. As metaparameters obtain values 
from a restricted set relevant to a domain, a metaspeci-
fication describes the family of the related component 
instances in a domain. Thus, a metaspecification that 
expresses in total commonality and variability of a do-
main as well as a metalanguage environment (proces-
sor, compiler) is a domain generator.  

3.7. Generation from UML-based Specifications 
Using Metaprogramming Techniques  

Design of a generic embedded component can be 
split into two parts: the structural and behavioral ones. 
Our aim here is to demonstrate how the structural part 
of a given design problem can be specified at a higher 
abstraction layer using UML. 

To implement the transformation process from the 
UML-based specifications, the design methodology 
must (1) ensure a mapping between the UML subset 
used to model HW and the HDL abstractions. (2) 
Implement a set of translation rules (and an automatic 
translation program, if possible) between the UML-
based specification of a HW model and the HDL-
based specification of a HW component. 

A mapping is described semi-formally using UML 
metamodel, i.e., the model that describes the syntax of 

UML diagrams using a subset of UML. A metamodel 
consists of a class diagram, where classes describe the 
syntactic components of the used UML diagram. A 
metamodel for mapping UML to VHDL was initially 
described in [Damaševičius, 04a] and is extended now. 
Other mappings also can be used (see, e.g., 
[McUmber, 99] [Björklund, 02]). Below, we present a 
mapping between UML class diagrams and a structu-
ral subset of VHDL (see Figure 7). VHDL abstractions 
are shown in parentheses. 

Elements of UML class diagrams are classifiers, 
relationships and features. Classifiers are interfaces 
and classes that describe basic design blocks. Rela-
tionships (Figure 7, a) describe different types of con-
nections and associations between classifiers. Features 
(Figure 7, b) describe parameters, attributes and me-
thods of classifiers. We map an abstract class (inter-
face) to a VHDL entity. A class that realizes an ab-
stract class is mapped to VHDL architecture. Class 
parameters are mapped to a VHDL generic statement, 
class attributes – to the VHDL ports (public) and sig-
nals (private), and class methods – to the VHDL 
processes (procedures). The composition relationship 
describes composition of a system from the compo-
nents and is mapped to a VHDL port map statement. 
The inheritance relationship means that a VHDL 
entity inherits the I/O ports from a base entity. 

Interface (entity)

Realization (of)

1

1

1

*
Inheritance

*

*

Composition (port map)

1

1 *

1
Class (architecture)

Classifier

ModelElement

Relationship  
 

(a) 

Method (process)

Interface (entity) Class (architecture)

Parameter (generic)

Public attribute (port)

Private attribute (signal)

1

*

1

*

1

*

1

*

ModelElement

Classifier

Feature

 

(b) 

Figure 7. A mapping between UML class diagrams and VHDL structural abstractions: (a) relationships and (b) features 

Once the mapping between UML and HDL has 
been defined, rules that describe the translation 

process between UML and HDL can be formulated. 
The aim of the translation rules is to describe how an 
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instance of a UML metamodel (i.e., any UML model 
described using a subset of UML defined in a meta-
model) can be transformed into an instance of a target 
model (i.e., a concrete HDL specification that descri-
bes the implementation of a HW model specified 
using UML). These rules can be implemented manual-
ly by a HW designer, or automatically using a dedica-
ted translation tool or code generator using a wide 
range of code generation strategies [Selic, 02]. 

We have implemented code generation using meta-
programming integrated with in UMLStudio [Prag-
Soft, 03]. The tool provides capabilities to generate 
code from UML diagrams. The generation process is 
specified using a built-in scripting language Prag-
Script that provides access to the data stored by 
UMLStudio projects. (Note that scripting languages 
are a kind of metalanguages). A script written in Prag-
Script is, in fact, a metaspecification that provides a 
generic interface to UMLStudio. UMLStudio allows 
the end-users to write their own scripts if they require 
code generation in selected language. Using Prag-
Script, we have written a metaspecification, which 
implements generation of a VHDL structural code 
from UML class diagrams.  

We summarize the difficulties of using UML for 
HW design as follows:  
 1) Specification of interconnections between HW 

components. Block-based diagrams are more 
common for HW designers. They are more 
straightforward and are oriented at interconnec-
ting components. Whereas UML class diagrams 
are more intuitive and oriented at reusing and 
customizing components. 

 2) Specification of generic domain functionality. 
UML specifications are usually used to specify 
concrete systems and are not good for describing 
families of "look-alike" systems and thus mana-
ging variability in a domain. 

 3) Model validation problem. HW models must be 
validated much more accurately than SW models. 
The problem is that UML models describe 
systems at a high level of abstraction and leave 
many details for a designer to implement later. 

 4) Increased initial development time. The designers 
must get used to a new design paradigm and 
spend much time for developing a library of basic 
OOD models. 

Furthermore, a great deal of work still must be 
done in adapting UML for HW and ES design, stan-
dardizing UML extensions for parallelism and real 
time design, developing UML-based tools and integ-
rating them into a HW/SW co-design and SoC design 
flow before the full potential of the model-based and 
OOD might be exploited. 

4. Experiments and Case Study 

We demonstrate applicability of our approach by 
designing an Embedded Component for two applica-
tions: communication control and fault-tolerance. Two 
different well-proven models are considered: protocols 
and triple redundancy model (TRM). Below, we 
describe the experiments using an Embedded Compo-
nent design framework shown in Figure 3. First, we 
begin with the analysis of a domain. 

4.1. Analysis 

The main purpose of communication control is to 
ensure relevant transmission of data (e.g., operands, 
commands, addresses, etc.) to and from the IP. Trans-
mission can be described using different rules or 
protocols, i.e. an agreed format for transmitting data 
between the IPs. In Figure 8, we present a generalized 
architecture of a communication control circuit. Here, 
IP is a third-party soft IP that implements basic func-
tionality of a circuit, and ASPC (FSM) is an applica-
tion-specific protocol controller (finite state machine) 
that controls the reading and writing of data to and 
from IP, respectively. We consider here two common 
communication protocols, namely, handshake protocol 
that deals with an asynchronous flow of data, and 
FIFO protocol that deals with sudden bursts of data in 
a producer-consumer model. 

The main purpose of fault-tolerance is to ensure 
operation of ES under normal as well as exceptional 
conditions. Fault-tolerance usually relies on redun-
dancy, i.e., the addition of resources, time, or informa-
tion beyond that is needed for normal system opera-
tions (see Figure 9). Here IP1, IP2, IP3 are instances of 
the same IP component, and ASIC (voter) is an appli-
cation-specific integrated circuit that implements 
majority voting. There are three types of redundancy 
as described in sub-section 3.1. 

IP
ASPC
(FSM)

IP data

Protocol control

IP data

Protocol control

 

Figure 8. Generalized architecture of a communication control circuit 
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Figure 9. Generalized architecture of a fault-tolerant circuit 

IP

WrapperModel

Wrapper

IPModel
 

Figure 10. Specification of a Wrapper design pattern 

4.2. Specification 

To specify an Embedded Component, we have 
used UML class diagrams and applied a Wrapper 
design pattern (see Figure 10) [Damaševičius, 03]. 
Wrapper design pattern allows adapting an interface 
and behavior of the IP component to the context of a 
given application. It allows specifying well-proven 
domain models within well-understood domains (see 
Section 3.1). Below, we explain it briefly. 

The abstract class (entity in VHDL) Wrapper in-
herits the I/O ports of the IP, and declares new I/O 
ports for wrapper functionality. The class (architecture 
in VHDL) IPModel implements the functionality of 
entity IP. The architecture WrapperModel implements 
the functionality of Wrapper and contains component 
IP. This description means that WrapperModel wraps 
IPModel with a new functionality. 

4.3. Design 

We have designed the universal wrapper generator 
to automatically generate five different wrappers 
(Handshake, FIFO, Space TMR, Time TMR, and Data 
TMR) for the black-box third-party soft IP cores 
described in VHDL. The design flow for 
implementing the analyzed architectures (see Figures 
8, 9) is shown in Figure 11 and presented below. 
 1) The designer specifies a design problem in UML 

class diagrams using a Wrapper design pattern. 
We use UMLStudio [PragSoft] as a front-end tool 
to draw UML diagrams. The designer develops an 
UML metamodel and a script for translation from 
UML to VHDL using a scripting language Prag-
Script that provides straightforward access to the 
data stored by UMLStudio projects. A PragScript 
script provides a generic interface to UMLStudio. 

PragScript interpreter uses UML model (class 
diagram) and a translation script to generate a 
structural VHDL model.  

 2) Since the structural VHDL model is not enough 
for a wrapper, and UML class diagrams cannot 
describe functionality, several Java metaspecifica-
tions were developed. These metaspecifications 
capture the behavioral models of wrapper functio-
nality using the heterogeneous metaprogramming 
techniques (metalanguage – Java, domain lan-
guage – VHDL). Each metaspecification is a Java 
class, which encapsulates a generic domain entity 
(e.g., FIFO buffer, voter, etc.). Java processor 
processes metaspecifications and generates speci-
fic behavioral VHDL models for a target system 
using values of the generic parameters specified 
via class constructor.  

3) The VHDL parser analyses the supplied soft IP 
source code, constructs a syntax tree, and extracts 
the values of the parameters for generation.  

4) The universal wrapper generator performs wrap-
ping of the soft IP by generating the instances of 
the component instances that belong to a spe-
cified wrapper, and the port map statements to 
map the signals of the wrapper to the soft IP. 

The generation process is fully automatic. The user 
only has to supply values of the parameters for the 
wrapper generator. The result is a fully synthesizable 
reusable instance in VHDL that can be used as an 
Embedded Component for ES design. 

4.4. Generation of Reusable Instances  

We use two kinds of metaspecifications in our de-
sign flow (see Figure 11): (1) a script developed using 
embedded UMLStudio scripting language PragScript, 
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and (2) the metaspecifications of behavioral VHDL 
models developed using an external metalanguage 
(Java).  

The first metaspecification is for describing the 
structural variability of a component family, while the 
second one is for representing the behavioral varia-
bility. Note that an external metalanguage can be used 
for specifying both structural and behavioral variabili-
ty of a design problem, which leads to metaprogram-
ming-only implementation [Štuikys, 02]. Here our aim 
was to integrate the different kinds of meta-specifi-
cations into a unified design flow. 

A metaspecification that describes a generic em-
bedded component is used as a set of instructions for a 
metalanguage processor (compiler) to generate the 
domain language code (reusable instances) depending 
upon the values of the generic parameters specified by 
a designer or other program.  

The tools for implementing generation process are 
conventional compilers because general-purpose prog-
ramming languages such as C++, Java can be used in 
the role of metalanguages, too (see Figure 7 and [Štui-
kys, 03]). 
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Figure 11. Implementation of wrapping for well-proven models 

4.5. Results 

In our experiments, we have used the freely avail-
able third-party soft (HW) IPs as follows. 1) Free-
6502 core [Kessner, 99] is a CPU core compatible 
with 8-bit 6502 microprocessor. 2) DRAGONFLY 
core [LEOX, 01] is a 8-bit controller that can be used 
for serial communication management, FLASH and 
SDRAM control, etc. 3) AX8 core [Wallner, 01] is a 
16-bit AT90Sxxxx compatible micro-controller core. 
4) i8051 micro-controller [Givargis, 00] is compatible 
with 8-bit microprocessor designed by Intel.  

Synthesis results of the original soft IPs and the 
generated wrappers (Synopsys; CMOS 0.35 µm tech-
nology) are presented in Tables 1-4. 

The synthesis results show the following average 
increase in chip area of the generated wrappers with 
respect to the original soft IPs: 10% for the Space 
TRM wrapper, 44% for the Time TRM wrapper, 10% 
for the Data TRM wrapper, 10% for the Handshake 
wrapper, and 50% for the FIFO (size = 4) wrapper. 

Table 1. Synthesis results (FIFO and handshake models; area) 

Soft IP Area, cells (IP) Increment area, cells 
(Handshake) 

Over-head Increment area, cells 
(FIFO(4)) 

Over-head 

Free-6502 4670 471 10 % 2210 47 % 
Dragonfly 5883 921 16 % 4568 78 % 
AX8 8020 836 10 % 4199 52 % 
i8051 24258 1016 4 % 5063 21 % 

Table 2. Synthesis results (triple redundancy models; area) 

 
Soft IP 

Area, cells 
(Space TRM) 

Over-head Area, cells 
(Time TRM) 

Over-head Area, cells 
(Data TRM) 

Over-head 

Free-6502 678 15 % 2024 43 % 348 7 % 
Dragonfly 698 12 % 3973 68 % 1024 17 % 
AX8 956 12 % 3576 45 % 874 11 % 
i8051 406 2 % 4314 18 % 1142 5 % 
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Table 3. Synthesis results (FIFO and handshake models; est. power usage) 

Soft IP Power, uW (IP) Power, uW 
(Handshake wrapper) 

Overhea
d 

Power, uW 
(FIFO(4) wrapper) 

Overhea
d 

Free-6502 8.2693 0.8607 10 % 4.9414 60 % 
Dragonfly 19.9421 5.2775 26 % 5.3653 27 % 

AX8 31.2318 13.4852 43 % 5.3563 17 % 
i8051 50.5518 16.6699 33 % 10.2537 20 % 

Table 4. Synthesis results (triple redundancy models (TRM); est. power usage) 

 
Soft IP 

Power, uW 
(space TRM) 

Overhea
d 

Power, uW 
(data TRM) 

Overhea
d 

Power, uW 
(time TRM) 

Overhea
d 

Free-6502 25.844 212 % 11.120 34 % 12.211 47 % 
Dragonfly 58.247 192 % 23.639 18 % 21.721 9 % 
AX8 34.605 11 % 34.082 9 % 40.595 30 % 
i8051 100.262 98 % 63.912 26 % 56.517 12 % 
 

The synthesis results show the following average 
increase in estimated power usage of the wrapped soft 
IPs with generated wrappers with respect to the ori-
ginal soft IPs: 26% for the Handshake wrapper, and 
39% for the FIFO (buffer size = 4) wrapper. 201% for 
space redundancy, 26% for data redundancy and 23% 
in time redundancy for the generated fault tolerant 
components with respect to the original soft IPs. Note 
that space redundancy here means that there are 3 
instances of the original soft IP. The considerable po-
wer usage of protocol wrappers can be explained by 
the fact that the protocol-based communication to 
transfer data requires more switching power than di-
rect point-to-point communication. 

Furthermore, the experiments we have carried out 
show that using the third-party soft IPs as black-box 
entities and well-proven models for their modification 
enables us to simplify the design validation problem. 
This result follows from the fact that we use the 
qualified soft IPs and apply thorough testing proce-
dures only for the newly created functionality intro-
duced by the performed modifications. 

5. Evaluation and Conclusions 

Future Ambient Intelligence (AmI) systems will 
require a diversity of components with much higher 
complexity in order to respond to new requirements 
and constraints. Management of complexity and varia-
bility in design through raising the level of abstraction 
has already been approved in the past and should be 
exploited further. 

In this paper, we have suggested the Generic Em-
bedded Component Model within a general design 
framework as a higher-level design abstraction to sup-
port design of the AmI systems. The model has the 
following properties. 1) It is common for design of 
SW as well as HW components. 2) It contains diffe-
rent representation forms (generic specification, fami-
ly of related instances, and embeddable instances). 3) 
It supports generative reuse.  

We have also proposed to apply the combined 
systematic domain analysis methods and to use the 

high-level abstractions and object-oriented specifica-
tion methods and metaprogramming for representing 
the model and automatically generating the reusable 
instances. We have restricted the application of the do-
main analysis methods for the well-understood do-
mains only, because Embedded Components for AmI 
systems must be based on the well-proven models in 
the first place. 

The suggested design framework particularly fo-
cuses on the usage of heterogeneous metaprogram-
ming techniques. The techniques allow us: 1) To 
describe the Generic Embedded Components at a 
higher level of abstraction. 2) To parameterize them 
with respect to the variety of user- and application-
specific requirements. 3) To flexibly manage variabi-
lity in a domain. 4) To generate the customized ready-
to-use Embedded Component instances for well-
understood domains of application.  

The techniques can be applied in two different 
modes: either as a built-in implementation embedded 
into higher-level design tools (e.g., UML-based tools, 
but there is a little progress now due to UML restric-
tions), or as an independently used technique to sup-
port generative reuse. We have demonstrated suitabi-
lity and validity of the proposed model for HW do-
main by developing a universal wrapper generator for 
two applications: communication control and fault-
tolerance.  

Future work still requires many efforts for adop-
ting and integrating the higher-level abstractions such 
as UML and metaprogramming techniques into a 
unified design flow in order to fully exploit their 
capabilities for embedded system design. If one could 
combine the retrieval of third-party soft IPs with auto-
matic domain analysis and design space exploration 
(for different soft IP characteristics tradeoffs), at the 
same time providing information for variability mana-
gement of soft IPs, the approach could substantially 
increase design productivity and flexibility for deve-
loping future AmI-oriented embedded components 
and systems.  
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