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Abstract. Different design languages are used for hardware and software domains. The most popular ones are 
VHDL and C++. Recently, SystemC language was developed aiming to bridge both domains. In this paper, we 
compare these design languages by separating and analysing the capabilities of the different language subsets with 
respect to the implementation of the different programming paradigms. Our analysis illustrates that the considered 
design languages show a great deal of similarity, despite different domains of application. We demonstrate the usage of 
the language subsets in a case study (design of a generic calculator model). 
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1. Indroduction 

With the arrival of complex Systems-on-Chip 
(SoC), the system designers often have to deal with 
the hardware (HW) and embedded software (SW) 
parts in the same design. These parts are usually de-
signed using different design languages and metho-
dologies, which requires application of the multi-
language design approaches [1] and multi-language 
specifications [2], and raises a variety of problems 
such as language inter-operability, distributed design, 
co-simulation, validation, etc. As the complexity of 
HW designs continues to increase, there are many 
signs that HW and SW development methods are be-
ginning to converge. There is a great interest in a HW 
design community to compare the existing design pro-
cesses, technologies and abstractions in HW and SW 
domains in order to share their achievements. 

Many different languages were developed for SW 
and HW design. Currently the standard HW descrip-
tion languages (HDLs) are VHDL [3], an offspring of 
ADA, and Verilog [4], which has a C-like syntax. 
Research continues in the development of new HDLs 
or extensions of the existing languages, e.g., Handel-C 
[5], HML [6], JHDL [7], Objective-VHDL [8], OpenJ 
[9], Rosetta [10], SDL [11], SpecC [12], SUAVE [13], 
Superlog [14], SystemC [15], SystemCSV [16].  

These developments either (1) reflect the recent 
trend towards blurring the boundaries between HW 
and SW domains through the usage of a single 
language (SpecC, SystemC), or (2) aim at enriching 
the HW design domain with the object-oriented 
concepts (Objective VHDL, SUAVE), or (3) introduce 
the domain-specific abstractions (SystemCSV), or (4) 

aim at the system-level design (Rosetta, Superlog, 
SDL). 

The implementation of the languages can be 
categorised as follows. (1) Adding new keywords to 
the existing languages such as C++ (Handel-C), Java 
(JHDL, OpenJ) or VHDL (Objective VHDL, SUAVE) 
for supporting the HW description at a high level. (2) 
Providing a basic set of HW primitives that can be 
easily extended into a higher level support (HML, 
SDL). (3) Providing class libraries that implement 
support for HW modeling (SystemC, SystemCSV). 

When languages are constructed on the top of the 
existing ones (which is usually the case), this leads to 
the stratification of languages according to the diffe-
rent subsets (levels, layers) introduced for various 
purposes by the different language development teams 
at a different time. For example, C was developed in 
the early 1970s for the algorithmic programming. 
Later, the object-oriented constructs were added to C 
in the early 1980s and C++ was born. Recently, C++ 
was extended for HW design to become SystemC. 

The aims of this paper are (1) to analyse subset by 
subset the similarities and differences of the design 
languages from the different application domains, and 
(2) to demonstrate the usage of the analysed subsets. 

The structure of the paper is as follows. We re-
view the related works in Section 2. We analyse the 
subsets of the selected design languages (VHDL, C++, 
and SystemC) in Section 3. We present a case study in 
Section 4. Experimental results are given in Section 5. 
We present a discussion in Section 6. We finish with 
conclusions and future work in Section 7. 
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2. Related works 

The analysis of domain languages or their spe-
cifications is a common activity in SW engineering. 
For example, Coplien [17] considers C++ as a 
language, which implements the procedural, modular, 
object-oriented and generic programming paradigms.  

Gabrielli et al. [18] decompose VHDL into four 
abstraction levels: behavioural, data-flow, structural 
and mixed ones. The behavioural level describes the 
behaviour of a system without considering other 
constraints. The data-flow level deals with the flow of 
signals and data between the HW blocks. The struc-
tural level deals with the allocation of the components. 

Allen and Gajski [19] decompose HW specifi-
cations into four levels: algorithmic, modular, cycle-
accurate, and Register-Transfer Level (RTL). The 
algorithmic level specifies only the behaviour of a 
design, with no specific implementation details. At the 
modular level, the design is partitioned into com-
ponents that communicate through a clearly specified 
protocol. Cycle accuracy introduces the notion of a 
clock and a time at which the events occur, but 
without specifying the implementation details of the 
events. RTL specifies the implementation of events 
without relying on a particular implementation 
technology. However, the algorithmic and modular 
levels are common to SW specifications, too. The 
notion of events and concurrency are also used in the 
object-oriented design.  

Another cluster of papers deals with the compa-
rison of design languages. We consider only some of 
them below. Li and Leeser [6] compare VHDL and 
HML with respect to the understandability of syntax, 
synthesisability, and type checking capabilities. Smith 
[20] compares VHDL and Verilog languages with 
respect to parameterisation capabilities, data types, 
design reusability, code readability and facilities for 
describing the synthesizable constructions. Gerstlauer 
et al. [21] compare VHDL, VHDL+ and SpecC with 
respect to the language features such as support for the 
state machines, exception handling, and communica-
tion abstractions. Bunker et al. [22] compare Objec-
tive VHDL, SpecC and Java with respect to the availa-
bility of the automatic verification techniques, integ-
ration with the existing design practice, formality of 
semantics, and learning curve. Bezerra [23] compares 
Java Forge, VHDL and Handel-C with an emphasis on 
the quality of the developed designs. 

Recently, SystemC attracted much attention of the 
researchers as a new HW modeling language, and 
caused the need to compare it with other languages in 
the domain. For example, Bonanome [24] presents a 
comparison of Verilog and SystemC based on the exis-
tence or absence of constructs, timing mechanisms, 
built-in data types, simulation semantics and language 
determinism. Agliada et al. [25] compare VHDL and 
SystemC on the statement level in the context of 
VHDL to SystemC conversion. Charest and Aboulha-
mid [26] compare the capabilities of VHDL and 

SystemC to express domain commonalties and 
variations, to describe regular structures and to handle 
design reuse. 

Our contribution to the field of domain analysis is 
as follows. We decompose the abstractions of the 
analysed design languages (VHDL, C++, SystemC) 
into different subsets and compare the capabilities of 
the languages subset by subset. We give a particular 
emphasis on the generic/template subset of the ana-
lysed languages. 

3. Analysis of subsets in design languages 
3.1. Principles of analysis 

Design languages have many common features, 
which reflect the achievements in SW engineering and 
programming technologies at the time of their crea-
tion, as well as many differences related to the diffe-
rent domains of application. Our aim is to compare the 
design languages by analysing the relationship of the 
languages and roles of their subsets. We consider C++ 
as the principal language for SW design, VHDL - for 
HW design, and SystemC - for the system-level SW/ 
HW modeling and co-design. The relationship bet-
ween these design languages can be summarised in 
Figure 1. C++ is dedicated purely for SW domain. 
VHDL is dedicated for HW domain, however it has 
some SW background inherited from its parent 
language, ADA. SystemC is an extension of C++ with 
HW design concepts and can be used for both 
domains. 

HW
domain

SW
domain

VHDL C++

SystemC

SW abstractionsHW abstractions

 
Figure 1. Relationship of design languages 

A more general problem is how we establish the 
criteria for the comparison of the languages. One can 
compare the language features, capabilities, abstrac-
tions, etc. However, we apply an approach, which was 
also used by Coplien [17], i.e., we analyse the lan-
guages with respect to their suitability to express the 
concepts of the different programming paradigms. We 
apply the principle of the multi-dimensional separa-
tion of concerns [27] in our analysis below. We sepa-
rate different subsets in each considered language. 
These subsets support different issues in SW engineer-
ing and various programming paradigms (algorithmic, 
structural, component-based, object-oriented, meta-
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programming). We believe that by establishing the 
roles and relationships of their respective subsets, we 
can compare the languages as follows. 

3.2. VHDL 

VHDL is an IEEE standard HW description lan-
guage [3]. It can describe the behaviour and structure 
of the electronic systems, but is particularly suited as a 
language to describe the structure and behaviour of the 
digital electronic HW designs. Below, we present a 
brief overview of VHDL language.  

The design entity is the primary HW abstraction 
in VHDL. An entity is an interface, which abstracts 
corresponding implementations in one or more archi-
tectures. The architectures can contain signals, proces-
ses and instantiations of other entities. A process 
consists of a sequence of statements, which are execu-
ted sequentially, whereas the processes themselves are 
executed concurrently. A process may have some local 
variables to store its state. The signals are used for 
communication between the processes. VHDL cur-
rently supports definition of a weak form of abstract 
data type, using types and operations defined in 
packages. Further details can be found in [28, 29]. 

We separate the subsets of VHDL according to 
the different programming paradigms the language 
supports as follows: 

(1) Behavioural subset is a subset for describing 
the HW design-specific concepts at the RTL, such as 
signals, data types (bit, std_logic, etc.), logical opera-
tors (and, or, xor, etc.). These are directly mapped to 
the technology-dependent HW objects, such as flip-
flops and logic gates, during synthesis. 

(2) Structural subset is a subset for expressing the 
structural programming concepts, such as for loop, if 
and case statements, which are used to describe the 
repetitive and conditional features of a design. This 
subset is SW design-specific, and is translated to the 
muxes, latches, registers, or sequences of HW objects 
(in case of the for loop) during synthesis. 

(3) Component subset is a subset for expressing 
the concepts of component-based programming. It 
describes partitioning of a design into the different 
design units such as functions, procedures, blocks, 
entities, architectures, configurations, and packages. 

(4) Generic subset is a subset for expressing the 
metaprogramming concepts, which are used to de-
scribe the families of similar designs. It includes gene-
rics for the declaration of the generic parameters, as 
well as the conditional (if generate) and repetitive (for 
generate) statements for the generation of the con-
current statements, which are performed during design 
elaboration prior to synthesis. 

The subsets of VHDL are summarised in Table 1. 

3. 3. C++ and SystemC 

SystemC is a modeling language based on C++. It 
consists of a set of C++ class libraries and a 
simulation kernel that allow users to model the HW 

related concepts like concurrency, timing, etc. The 
language offers the following advantages:  

(1) Executable specification – a model written in 
SystemC can be compiled and made executable.  

(2) Faster simulation – the simulation speed is 
higher when compared to either VHDL or Verilog.  

(3) Higher abstraction levels – when compared to 
the standard HDLs, SystemC can model the highly 
abstract concepts in an elegant and concise fashion.  

(4) Implementation independence – a SystemC 
model does not specify a particular implementation. It 
can be implemented either in HW or in embedded SW, 
using a general-purpose processor or a DSP. 
Table 1. Subsets of VHDL 

Languag
e Subset 

Language 
Statements Paradigm Target 

Object 

Behaviou
ral 

HW-specific data 
types, signal & 

variable declarations, 
assignments, logical 

expressions 

Algorithmic HW objects 

Structura
l 

processes, for loops, if 
statements, case 

statements 
Structural 

HW objects, 
collections of 
HW objects 

Compone
nt 

Blocks, functions, 
procedures, entities, 

architectures, 
configurations,  

packages 

Component-
based 

Collections of 
HW objects 

Generic 
generics, if/for 

generate statements, 
generic port maps 

Metaprogram
ming 

HW design 
units 

  
The important features of SystemC are briefly 

discussed below. The basic block of a SystemC 
program is a module. A module is similar to the entity 
in VHDL. It is an abstract representation of a functio-
nal unit, without specifying any implementation 
details. Each module has a set of ports through which 
it interacts with the outside world. Ports can be input, 
output, or input/output ones. Individual modules com-
municate with one another through signals that con-
nect the ports of modules.  The code that implements 
the algorithm of a module is encapsulated in one or 
more processes.  

SystemC supports all C++ data types. For mo-
deling HW, the additional data types are available. 
These include types for representing bits, bit vectors, 
4-valued logic, variable precision integers, etc. In ad-
dition to these data types, the language also provides 
constructs that enable representing HW behaviour. 
There are wait () statements that suspend execution, 
write () and read () functions to send and receive data 
from ports, and so on.  

SystemC is an extension of C++, therefore, it has 
inherited all C++ features. The support of some of 
these features is, however, limited for synthesis. The 
non-synthesizable subset of C++/SystemC includes 
the local and nested class declarations, dynamic me-
mory allocation, exception handling, function recur-
sion, overloading, file I/O, inheritance, pointers, 
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floating-point data types and user-defined templates. 
More details of the language are discussed in [15, 30], 
and a complete list of features can be found in the 
SystemC user’s guide [31]. After the analysis, we 
identify the subsets common to C++ and SystemC as 
follows: Behavioral

Generic

Component

Structural

VHDL

Structural

Functional

Object

Arithmetic

C++

Template

Structural

Functional

Arith-
metic

SystemC

HW-
specific

Template

Object

Figure 2. Relationship between subsets of the languages 

(1) Arithmetic subset is a subset for describing 
SW algorithms. It includes natural data types (int, 
long, float, double, etc.), variables, arrays, operators, 
expressions, assignments, etc. 

(2) Structural subset is a subset for expressing the 
structural programming concepts, such as for/while 
loops, if/case statements, which are used to describe 
the repetitive and conditional features of an algorithm.  

4. Design of a generic calculator 

In this case study, we demonstrate design a ge-
neric calculator model, which performs the simple 
arithmetic computations (addition and multiplication) 
with an arbitrary number of the expression members. 
We present the development process of the calculator 
model subset by subset, while at the same time com-
paring the capabilities of VHDL, C++ and SystemC. 
First, we implement the basic domain functionality 
(e.g., the 2-operand addition) as follows: 

(3) Functional subset is a subset for expressing 
the concepts of the component-based programming. A 
primary unit is a function that consists of an interface 
and body. 

(4) Object subset is a subset for supporting the 
object-oriented programming. It includes classes, 
which encapsulate variables (states) and functions 
(methods).  VHDL C++ SystemC 

signal x1, x2, y: 
          bit_vector (15 downto 0); 
... 
y <= x1 + x2; 

int x1, x2, y; 
 
... 
y = x1 + x2; 

sc_signal<int>  
        x1, x2, y; 
... 
y = x1 + x2; 

(5) Template subset is a subset for expressing the 
meta-programming concepts. This subset describes the 
generic functions and classes. Template keyword is 
used to declare the generic parameters or types. 
Templates are evaluated during program compilation. 

Note that operator “+” was overloaded in VHDL 
and SystemC for simplicity. 

Additionally, SystemC has the HW design-speci-
fic subset as follows: 

These three fragments, despite belonging to the 
different domains and languages, have many common 
features. First, variables (signals) are declared, with 
the explicit declaration of their type. Second, the 
required computations are described. Third, the value 
of the result is assigned. These fragments demonstrate 
the behavioural (arithmetic) subset. Note that VHDL 
and SystemC use the HW-specific data types, whereas 
C++ uses the SW-specific data types. 

(6) HW-specific subset – a subset for expressing 
the HW design concepts. It includes modules, pro-
cesses, channels, HW-specific data types (e.g., sc_bit, 
sc_logic, etc.), signals and operations with them. 

The subsets of C++ and SystemC are summarised 
in Table 2. 

Table 2. Subsets of C++ and SystemC 

Language 
Subset 

Language 
Statements Paradigm 

Target  
Object 

Arithmetic 

Natural data types, 
variables, arrays, 

expressions, 
assignments 

Algorithmic Machine code 
(assembler) 

Structural for/while loops, 
if/case statements Structural Statements 

Function Functions Component-
based 

Collection of 
statements 

Object Classes Object-
oriented 

Collection of 
variables and 

functions 

Template Templates Meta-
programming 

Functions, 
classes 

HW-
specific1 

Signals, HW-specific 
data types, over-

loaded operations 
Algorithmic Collection of 

HW objects 

Now, we extend the basic functionality with the 
structural subset to implement the selection of the 
particular calculator operation as follows: 

VHDL C++/SystemC 
constant ADD: integer:=1; 
constant MULT: integer:=2; 
signal op: integer; 
... 
if (op = ADD) then 
    y <= x1 + x2; 
end if; 
if (op = MULT) then 
    y <= x1 * x2; 
end if; 

enum OPERATION  
              {ADD, MULT}; 
OPERATION op; 
... 
if (op == ADD) 
    y = x1 + x2; 
 
if (op == MULT) 
    y = x1 * x2; 

The relationship between the different subsets of 
the design languages is summarised in Figure 2. 

The presented fragments demonstrate that the 
structural subset is very similar in all three languages. 

Next, we demonstrate the implementation of the 
generic calculator model for an arbitrary number of 
the operands as follows (only addition case is shown). 
We have substituted a collection of variables with an                                                            

1 SystemC only 
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array (C++, SystemC) or a vector (VHDL). We used a 
vector type instead of an array in VHDL because of 
the synthesisability issues. 

VHDL C++/SystemC 
variable temp: bit_vector  (15 downto 0); 
... 
temp := x(15 downto 0);  
for i in 2 to NUM loop 
   temp:=temp + x (i*16 downto (i-1)*16);  
end loop;  
y <= temp; 

const NUM = 3; 
... 
int temp = x[0]; 
for(int i=1;i<NUM;i++)
    temp = temp+x[i]; 
 
y = temp; 

Next, we construct a design unit using the 
component subset of the languages. We develop a 
function in SystemC and C++, and an entity in VHDL 
as follows. SystemC function has no inputs and 
outputs specified, because it is not allowed for 
processes. VHDL port declaration considers the 
different lengths of the output signal depending on the 
operation specified. 

VHDL C++/SystemC 
entity Calculator is 
  port (a: in bit_vector(NUM*16-1 downto 0); 
           c: out bit_vector  
              ((OP-1)*(NUM-1)*16+15 downto 0)); 
end Calculator; 
 
architecture model of Calculator is 
  begin 
-- calculator functionality 
end model; 

int result (int num, 
      int op, int *x) { 
// calculator 
// functionality 
} 
 
void Result() { 
// calculator 
// functionality 
} 

The component subset allows separating compo-
nent interface from its functionality and hiding the 
implementation details. 

Next, we introduce the object subset to encapsu-
late variables and functions into a class. Since VHDL 
has no support for the object-oriented programming, 
we present a package, which can encapsulate type 
declarations, constants, procedures, and component 
declarations, instead. In C++/SystemC, the object sub-
set is implemented using the class construct. SystemC 
class inherits a standard sc_module class, which 
implements the HW design concepts. Its constructor is 
defined using a library macro SC_CTOR. A process is 
registered using a library macro SC_METHOD.  

Next, we introduce the meta-programming subset 
to describe the generic design units.  

VHDL provides generics for writing the parame-
terised models. The generic component specification 
represents a set of possible component implemen-
tations or instantiations. A particular instance is 
generated when the instance-specific parameter values 
are passed into a generic component. The use of ge-
nerics for parameterisation of structure and behaviour 
helps to create reusable design blocks.  

VHDL provides the generate statement for gene-
rating the repetitive structures. These are the concur-
rent VHDL constructs that may contain further 

concurrent statements for replication, and help to 
effectively produce the iterative structures of a design. 
The repetitive form of generate statement specifies a 
discrete range of values, and for each of these it 
generates an instance of the statements in the body of 
the generate statement. The conditional form includes 
a Boolean expression, which governs whether the 
statements comprising the body of that generate state-
ment are included. The generics provide a level of 
abstraction that allows isolating many implementation 
details when developing a HW system as well as 
reduce the risk of introducing errors when components 
are reused.  

VHDL SystemC 
package calc_pack is 
    subtype op_type is  
                   integer range 1 to 2; 
    constant ADD:  op_type:=1; 
    constant MULT: op_type:=2; 
     
    component Calculator 
    -- port declaration 
    end component; 
end calc_pack; 

class Calculator:  
             public sc_module { 
    void Result(); 
public: 
    sc_in<T> x [NUM]; 
    sc_out<T> y; 
    SC_CTOR(Calculator) { 
        SC_METHOD(Result); 
   } 
}; 

C++ templates provide the ability to write code 
generators and perform static computations. The temp-
late specifies only a generic skeleton for a class (or 
function) declaration. To complete the declaration, a 
programmer must supply a concrete value for each of 
the template’s parameters. These parameters must be 
known at compile time. This causes the template to be 
instantiated: replacing all occurrences of the para-
meter with its value creates an instance of the temp-
late. C++ templates resemble a two-level language, 
where a metalanguage (i.e. templates) manipulates 
with the base code (classes and functions). Control 
structures (e.g., if/else, for) can be realised in temp-
lates using the template recursion technique [32] as a 
looping construct, and the class template specializa-
tion as a conditional construct.  

The reasons behind the introduction of the gene-
ric parameters are as follows: (1) to express the gene-
ralisation of a model, when new generic parameters 
are introduced, and (2) to perform the customisation 
of a model, when a specific instance is derived de-
pending on the values of the generic parameters. For 
example, a parameter OP (see below) generalises ex-
pressions regardless of the implementation, whether it 
is a variable or a generic parameter. However, in case 
of the generic implementation, only one specific ex-
pression is instantiated (adder or multiplier), whereas 
in a non-generic implementation both design units will 
be created. Therefore, genericity allows achieving 
larger reusability, as well as better performance. 

Since the C++ metaprogramming subset has no 
repetitive and conditional generation constructs, we 
use template specialization for conditional generation 
and template recursion for repetitive generation of 
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entity Calculator is -- component
  generic ( -- generic

WIDTH : integer := 16; -- behavioral
NUM : integer :=2; -- behavioral
OP : integer := ADD ); -- behavioral

  port ( -- component
x: in std_logic_vector (NUM*WIDTH-1 downto 0); -- behavioral
y: out std_logic_vector -- behavioral

((OP-1)*(NUM-1)*WIDTH+WIDTH-1 downto 0) ); -- behavioral
end Calculator; -- component

architecture model of Calculator is -- component
  begin -- component
  g1: if OP = ADD generate -- generic
    process (x) -- structural
      variable temp: std_logic_vector (WIDTH-1 downto 0); -- behavioral
    begin -- structural
        temp := x(WIDTH-1 downto 0); -- behavioral
        for i in 2 to NUM loop -- structural

temp := temp + x(i*WIDTH-1 downto (i-1)*WIDTH); -- behavioral
        end loop; -- structural
        y <= temp; -- behavioral
    end process; -- structural
  end generate g1; -- generic
  g2: if OP = MULT generate -- generic
    process (x) -- structural
    variable temp: std_logic_vector -- behavioral

((OP-1)*(NUM-1)*WIDTH+WIDTH-1 downto 0); -- behavioral
    begin -- structural
        temp(WIDTH-1 downto 0) := x(WIDTH-1 downto 0); -- behavioral
        for i in 2 to NUM loop -- structural

temp(i*WIDTH-1 downto 0) := -- behavioral
temp((i-1)*WIDTH-1 downto 0) * -- behavioral
x(i*WIDTH-1 downto (i-1)*WIDTH); -- behavioral

        end loop; -- structural
        y <= temp; -- structural
    end process; -- structural
  end generate g2; -- generic
end model; -- component

Figure 4. Generic calculator implementation in VHDL with 
a decomposition into subsets 

code. The conditional generation is performed as 
follows: 

VHDL C++ 
g1: if  OP = ADD  generate 
 
    process (x) 
      begin 
-- adder  
-- functionality 
    end process;  
 
end generate g1; 

enum OPERATION {ADD, MULT}; 
template<OPERATION OP> 
    class Calculator2x { }; 
class Calculator2x<ADD> { 
public: 
    static inline int Result (int a, int b) { 
           return a+b;        
    } 
}; 

For VHDL and SystemC models, we introduced 
an additional generic parameter WIDTH, to specify 
data path width. For C++, we can not specify the size 
of the type directly, therefore, we introduced generic 
parameter T to specify a data type, thus indirectly 
specifying data size.  

SystemC supports C++ templates without restric-
tions for modeling only, whereas the usage of 
templates for design of synthesizable HW models is 
not allowed. The implementations of the template 
class (C++/SystemC) and the generic entity (VHDL) 
are as follows: 

VHDL C++/SystemC 
entity Calculator is 
    generic (WIDTH: integer; 
                  NUM: integer; 
                  OP: op_type); 
-- port declaration 
end Calculator; 

template <class T, int NUM,  
                     OPERATION op> 
class Calculator:  
   public sc_module  { 
/* variable (signal) and  
    process (method) declarations */ 
}; 5. Experimental results 

A sample of the modeling results for the SystemC 
implementation of the generic calculator model is 
presented in Figure 6. The model is not synthesizable 
due to the usage of the template subset, therefore, no 
synthesis results are given. 

 
enum OPERATION {ADD, MULT};

template <class T, int NUM, OPERATION op> // template
class Calculator: public sc_module  { // object
    // Process
    void Result() { // functional
        T temp = x[0]; // arithmetic
        if (op == ADD) // structural
            for (int i = 1; i < NUM; i++) // structural
                temp = temp + x[i]; // arithmetic
        if (op == MULT) // structural
            for (int i = 1; i < NUM; i++) // structural
                temp = temp * x[i]; // arithmetic
        y = temp;    // arithmetic
    } // functional
public: // object
    // Signals
    sc_in<T> x[NUM]; // HW-specific
    sc_out<T> y; // HW-specific
    sc_in<bool> clk; // HW-specific
    // Constructor
    SC_CTOR(Calculator) { // HW-specific
        SC_METHOD(Result); // HW-specific
        sensitive_pos << clk; // HW-specific
    } // HW-specific
}; // object

Figure 3. Generic calculator implementation in SystemC 
with a decomposition into subsets 

Table 3. VHDL calculator synthesis results 

Parameter values Synthesis results  
Data 
width, 
bits 

Op. 
type 

No. of 
operands

Area, 
cells 

Delay, 
ns 

Estimated 
power  
usage 

2 68 12.09 76.4425 uW
3 136 14.56 169.2122 uW8 + 
4 204 17.07 266.3093 uW
2 152 25.88 171.8903 uW
3 304 28.38 387.6492 uW16 + 
4 456 30.87 612.3716 uW
2 337 54.11 385.3689 uW
3 666 56.98 857.5363 uW32 + 
4 995 59.94 1.3466 mW
2 665 28.79 736.7024 uW
3 2093 65.59 3.2794 mW8 * 
4 4153 95.46 6.6230 mW
2 2805 68.34 4.3473 mW
3 8419 130.09 14.5581 mW16 * 
4 16888 185.35 29.9051 mW
2 11640 137.03 19.2108 mW
3 35253 246.40 64.3500 mW32 * 
4 16888 185.35 29.9051 mW

Finally, we present the results of our design ef-
forts. The generic implementations of the calculator 
model are presented in Figures 3, 4, & 5, for SystemC, 
VHDL, and C++, respectively. Comments describe the 
subset to which the particular language statement 
belongs. Note that the generic/template subsets of the 
languages are shown in bold.  
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enum OPERATION {ADD, MULT};

// this class is never instantiated
template <OPERATION OP>
class Calculator2x { };

// template specialization for OP = ADD
class Calculator2x <ADD> {
public:
    template <class T>
    static inline T Result(T a, T b){

return a+b;
    }
};

// template specialization for OP = MULT
class Calculator2x <MULT> {
public:
    template <class T>
    static inline T Result(T a, T b){

return a*b;
    }
};

template <int NUM, OPERATION OP>
class Calculator {
public:
    template <class T>
    static inline T Result(T *a){ return Result(a,a+1); }
    template <class T>
    static inline T Result(T *a, T *b){
// template recursion to mimic the for loop
        return Calculator2x<OP>::Result(*a,

Calculator<NUM-1,OP>::Result(b,b+1)); }
};
// recursion boundaries for NUM=2 and OP=ADD
class Calculator <2, ADD> {
public:
    template <class T>
    static inline T Result(T *a, T *b){
        return Calculator2x<ADD>::Result(*a, *b); }
};
// recursion boundaries for NUM=2 and OP=MULT
class Calculator <2, MULT> {
public:
    template <class T>
    static inline T Result(T *a, T *b){
        return Calculator2x<MULT>::Result(*a, *b); }
};

  
Figure 5. Generic calculator implementation with C++ templates: a 2-operand generic operation implementation (on the left), 

and generalised for an arbitrary number of operations (on the right) 

Figure 6.  Modeling results of SystemC calculator:  
3-operand adder (above), and 3-operand multiplier (below) 

The synthesis results (we use Synopsys tools; 
0.35um technology) for the VHDL implementation of 
the generic calculator model are presented in Table 3 
(area optimisation was applied). 

6. Discussion 

SoC design raises new problems to the HW 
designers: the increased complexity, the interoperabi-
lity between HW and embedded SW, and the require-
ments for the high-level system models and reusable 
design descriptions. In order to solve these and many 
other problems, the HW designers are trying to adopt 
the concepts and solutions from the SW domain such 
as object-oriented design, UML [33], design patterns, 
separation of concerns, metaprogramming, etc. 

SystemC promises to bridge both SW and HW 
domains by providing (1) a modeling environment and 
simulation kernel for HW design, (2) the power and 
functionality of C++ for SW design, and (3) multiple 
abstraction levels for the system-level design. How-
ever, only some of the capabilities of SystemC are 
currently supported for synthesis to RTL implemen-
tation. Therefore, the research continues in adapting 

the existing synthesizable HDLs such as VHDL to the 
increased requirements for SoC design. 

Currently, design of a large-scale system is 
usually performed as follows. (1) High level specifica-
tion of a system using UML diagrams and a set of the 
pre-defined design patterns. (2) Development of a 
system model using C++/SystemC. (3) Verification of 
a system model using SystemC simulation environ-
ment. (4) Automatic translation (if possible) or manual 
conversion of a system model to the synthesizable 
HDL (VHDL, Verilog) specification for further syn-
thesis.  

The problem with this approach is that conversion 
of UML diagrams to SystemC code and further to the 
standard HDL specification is not straightforward and 
is a time-consuming and error-prone task. Automatic 
solutions are not always possible due to the complexi-
ty of the domain and a lack of the necessary abstrac-
tions (e.g., UML lacks timing concept). The available 
tools usually support only the translation of a limited 
subset of the high-level language. For example, often 
designers have to manually rewrite SystemC models 
to make them convertible to VHDL and synthesizable. 
In such cases, domain analysis and thorough know-
ledge of the design languages is essential. The exis-
tence of similar abstractions or subsets in the langua-
ges helps to implement such a translation more easily. 
However, more research is needed in mapping the 
advanced SW design concepts such as design patterns 
to the synthesizable HDL abstractions. 

7. Conclusions and future work 

VHDL, C++, and SystemC languages show a 
great deal of similarity, despite different domains of 
their application. Language subsets and their roles are 
comparable. The usage of the metaprogramming-
oriented language subset allows achieving greater 
reusability and better performance in the domain. 
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However, the application of templates for developing 
generic SystemC models is still hindered by the limi-
tations of the synthesis tools. 

Future work will focus on further research on the 
convergence of SW and HW design methodologies, 
including the application of the object-oriented design 
techniques, UML class diagrams and design patterns 
for HW design. 
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