
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.1(30)

A SUBSET-BASED COMPARISON OF MAIN DESIGN LANGUAGES

Robertas Damaševičius
Software Engineering Department, Kaunas University of Technology

Studentų 50, LT-3031, Kaunas, Lithuania

Abstract. Different design languages are used for hardware and software domains. The most popular ones are
VHDL and C++. Recently, SystemC language was developed aiming to bridge both domains. In this paper, we
compare these design languages by separating and analysing the capabilities of the different language subsets with
respect to the implementation of the different programming paradigms. Our analysis illustrates that the considered
design languages show a great deal of similarity, despite different domains of application. We demonstrate the usage of
the language subsets in a case study (design of a generic calculator model).

Key words: domain analysis, design language, language subset, VHDL, SystemC.

1. Indroduction

With the arrival of complex Systems-on-Chip
(SoC), the system designers often have to deal with
the hardware (HW) and embedded software (SW)
parts in the same design. These parts are usually de-
signed using different design languages and metho-
dologies, which requires application of the multi-
language design approaches [1] and multi-language
specifications [2], and raises a variety of problems
such as language inter-operability, distributed design,
co-simulation, validation, etc. As the complexity of
HW designs continues to increase, there are many
signs that HW and SW development methods are be-
ginning to converge. There is a great interest in a HW
design community to compare the existing design pro-
cesses, technologies and abstractions in HW and SW
domains in order to share their achievements.

Many different languages were developed for SW
and HW design. Currently the standard HW descrip-
tion languages (HDLs) are VHDL [3], an offspring of
ADA, and Verilog [4], which has a C-like syntax.
Research continues in the development of new HDLs
or extensions of the existing languages, e.g., Handel-C
[5], HML [6], JHDL [7], Objective-VHDL [8], OpenJ
[9], Rosetta [10], SDL [11], SpecC [12], SUAVE [13],
Superlog [14], SystemC [15], SystemCSV [16].

These developments either (1) reflect the recent
trend towards blurring the boundaries between HW
and SW domains through the usage of a single
language (SpecC, SystemC), or (2) aim at enriching
the HW design domain with the object-oriented
concepts (Objective VHDL, SUAVE), or (3) introduce
the domain-specific abstractions (SystemCSV), or (4)

aim at the system-level design (Rosetta, Superlog,
SDL).

The implementation of the languages can be
categorised as follows. (1) Adding new keywords to
the existing languages such as C++ (Handel-C), Java
(JHDL, OpenJ) or VHDL (Objective VHDL, SUAVE)
for supporting the HW description at a high level. (2)
Providing a basic set of HW primitives that can be
easily extended into a higher level support (HML,
SDL). (3) Providing class libraries that implement
support for HW modeling (SystemC, SystemCSV).

When languages are constructed on the top of the
existing ones (which is usually the case), this leads to
the stratification of languages according to the diffe-
rent subsets (levels, layers) introduced for various
purposes by the different language development teams
at a different time. For example, C was developed in
the early 1970s for the algorithmic programming.
Later, the object-oriented constructs were added to C
in the early 1980s and C++ was born. Recently, C++
was extended for HW design to become SystemC.

The aims of this paper are (1) to analyse subset by
subset the similarities and differences of the design
languages from the different application domains, and
(2) to demonstrate the usage of the analysed subsets.

The structure of the paper is as follows. We re-
view the related works in Section 2. We analyse the
subsets of the selected design languages (VHDL, C++,
and SystemC) in Section 3. We present a case study in
Section 4. Experimental results are given in Section 5.
We present a discussion in Section 6. We finish with
conclusions and future work in Section 7.

49

R. Damaševičius

2. Related works

The analysis of domain languages or their spe-
cifications is a common activity in SW engineering.
For example, Coplien [17] considers C++ as a
language, which implements the procedural, modular,
object-oriented and generic programming paradigms.

Gabrielli et al. [18] decompose VHDL into four
abstraction levels: behavioural, data-flow, structural
and mixed ones. The behavioural level describes the
behaviour of a system without considering other
constraints. The data-flow level deals with the flow of
signals and data between the HW blocks. The struc-
tural level deals with the allocation of the components.

Allen and Gajski [19] decompose HW specifi-
cations into four levels: algorithmic, modular, cycle-
accurate, and Register-Transfer Level (RTL). The
algorithmic level specifies only the behaviour of a
design, with no specific implementation details. At the
modular level, the design is partitioned into com-
ponents that communicate through a clearly specified
protocol. Cycle accuracy introduces the notion of a
clock and a time at which the events occur, but
without specifying the implementation details of the
events. RTL specifies the implementation of events
without relying on a particular implementation
technology. However, the algorithmic and modular
levels are common to SW specifications, too. The
notion of events and concurrency are also used in the
object-oriented design.

Another cluster of papers deals with the compa-
rison of design languages. We consider only some of
them below. Li and Leeser [6] compare VHDL and
HML with respect to the understandability of syntax,
synthesisability, and type checking capabilities. Smith
[20] compares VHDL and Verilog languages with
respect to parameterisation capabilities, data types,
design reusability, code readability and facilities for
describing the synthesizable constructions. Gerstlauer
et al. [21] compare VHDL, VHDL+ and SpecC with
respect to the language features such as support for the
state machines, exception handling, and communica-
tion abstractions. Bunker et al. [22] compare Objec-
tive VHDL, SpecC and Java with respect to the availa-
bility of the automatic verification techniques, integ-
ration with the existing design practice, formality of
semantics, and learning curve. Bezerra [23] compares
Java Forge, VHDL and Handel-C with an emphasis on
the quality of the developed designs.

Recently, SystemC attracted much attention of the
researchers as a new HW modeling language, and
caused the need to compare it with other languages in
the domain. For example, Bonanome [24] presents a
comparison of Verilog and SystemC based on the exis-
tence or absence of constructs, timing mechanisms,
built-in data types, simulation semantics and language
determinism. Agliada et al. [25] compare VHDL and
SystemC on the statement level in the context of
VHDL to SystemC conversion. Charest and Aboulha-
mid [26] compare the capabilities of VHDL and

SystemC to express domain commonalties and
variations, to describe regular structures and to handle
design reuse.

Our contribution to the field of domain analysis is
as follows. We decompose the abstractions of the
analysed design languages (VHDL, C++, SystemC)
into different subsets and compare the capabilities of
the languages subset by subset. We give a particular
emphasis on the generic/template subset of the ana-
lysed languages.

3. Analysis of subsets in design languages
3.1. Principles of analysis

Design languages have many common features,
which reflect the achievements in SW engineering and
programming technologies at the time of their crea-
tion, as well as many differences related to the diffe-
rent domains of application. Our aim is to compare the
design languages by analysing the relationship of the
languages and roles of their subsets. We consider C++
as the principal language for SW design, VHDL - for
HW design, and SystemC - for the system-level SW/
HW modeling and co-design. The relationship bet-
ween these design languages can be summarised in
Figure 1. C++ is dedicated purely for SW domain.
VHDL is dedicated for HW domain, however it has
some SW background inherited from its parent
language, ADA. SystemC is an extension of C++ with
HW design concepts and can be used for both
domains.

HW
domain

SW
domain

VHDL C++

SystemC

SW abstractionsHW abstractions

Figure 1. Relationship of design languages

A more general problem is how we establish the
criteria for the comparison of the languages. One can
compare the language features, capabilities, abstrac-
tions, etc. However, we apply an approach, which was
also used by Coplien [17], i.e., we analyse the lan-
guages with respect to their suitability to express the
concepts of the different programming paradigms. We
apply the principle of the multi-dimensional separa-
tion of concerns [27] in our analysis below. We sepa-
rate different subsets in each considered language.
These subsets support different issues in SW engineer-
ing and various programming paradigms (algorithmic,
structural, component-based, object-oriented, meta-

50

A Subset-Based Comparison of Main Design Languages

programming). We believe that by establishing the
roles and relationships of their respective subsets, we
can compare the languages as follows.

3.2. VHDL

VHDL is an IEEE standard HW description lan-
guage [3]. It can describe the behaviour and structure
of the electronic systems, but is particularly suited as a
language to describe the structure and behaviour of the
digital electronic HW designs. Below, we present a
brief overview of VHDL language.

The design entity is the primary HW abstraction
in VHDL. An entity is an interface, which abstracts
corresponding implementations in one or more archi-
tectures. The architectures can contain signals, proces-
ses and instantiations of other entities. A process
consists of a sequence of statements, which are execu-
ted sequentially, whereas the processes themselves are
executed concurrently. A process may have some local
variables to store its state. The signals are used for
communication between the processes. VHDL cur-
rently supports definition of a weak form of abstract
data type, using types and operations defined in
packages. Further details can be found in [28, 29].

We separate the subsets of VHDL according to
the different programming paradigms the language
supports as follows:

(1) Behavioural subset is a subset for describing
the HW design-specific concepts at the RTL, such as
signals, data types (bit, std_logic, etc.), logical opera-
tors (and, or, xor, etc.). These are directly mapped to
the technology-dependent HW objects, such as flip-
flops and logic gates, during synthesis.

(2) Structural subset is a subset for expressing the
structural programming concepts, such as for loop, if
and case statements, which are used to describe the
repetitive and conditional features of a design. This
subset is SW design-specific, and is translated to the
muxes, latches, registers, or sequences of HW objects
(in case of the for loop) during synthesis.

(3) Component subset is a subset for expressing
the concepts of component-based programming. It
describes partitioning of a design into the different
design units such as functions, procedures, blocks,
entities, architectures, configurations, and packages.

(4) Generic subset is a subset for expressing the
metaprogramming concepts, which are used to de-
scribe the families of similar designs. It includes gene-
rics for the declaration of the generic parameters, as
well as the conditional (if generate) and repetitive (for
generate) statements for the generation of the con-
current statements, which are performed during design
elaboration prior to synthesis.

The subsets of VHDL are summarised in Table 1.

3. 3. C++ and SystemC

SystemC is a modeling language based on C++. It
consists of a set of C++ class libraries and a
simulation kernel that allow users to model the HW

related concepts like concurrency, timing, etc. The
language offers the following advantages:

(1) Executable specification – a model written in
SystemC can be compiled and made executable.

(2) Faster simulation – the simulation speed is
higher when compared to either VHDL or Verilog.

(3) Higher abstraction levels – when compared to
the standard HDLs, SystemC can model the highly
abstract concepts in an elegant and concise fashion.

(4) Implementation independence – a SystemC
model does not specify a particular implementation. It
can be implemented either in HW or in embedded SW,
using a general-purpose processor or a DSP.
Table 1. Subsets of VHDL

Languag
e Subset

Language
Statements Paradigm Target

Object

Behaviou
ral

HW-specific data
types, signal &

variable declarations,
assignments, logical

expressions

Algorithmic HW objects

Structura
l

processes, for loops, if
statements, case

statements
Structural

HW objects,
collections of
HW objects

Compone
nt

Blocks, functions,
procedures, entities,

architectures,
configurations,

packages

Component-
based

Collections of
HW objects

Generic
generics, if/for

generate statements,
generic port maps

Metaprogram
ming

HW design
units

The important features of SystemC are briefly

discussed below. The basic block of a SystemC
program is a module. A module is similar to the entity
in VHDL. It is an abstract representation of a functio-
nal unit, without specifying any implementation
details. Each module has a set of ports through which
it interacts with the outside world. Ports can be input,
output, or input/output ones. Individual modules com-
municate with one another through signals that con-
nect the ports of modules. The code that implements
the algorithm of a module is encapsulated in one or
more processes.

SystemC supports all C++ data types. For mo-
deling HW, the additional data types are available.
These include types for representing bits, bit vectors,
4-valued logic, variable precision integers, etc. In ad-
dition to these data types, the language also provides
constructs that enable representing HW behaviour.
There are wait () statements that suspend execution,
write () and read () functions to send and receive data
from ports, and so on.

SystemC is an extension of C++, therefore, it has
inherited all C++ features. The support of some of
these features is, however, limited for synthesis. The
non-synthesizable subset of C++/SystemC includes
the local and nested class declarations, dynamic me-
mory allocation, exception handling, function recur-
sion, overloading, file I/O, inheritance, pointers,

51

R. Damaševičius

floating-point data types and user-defined templates.
More details of the language are discussed in [15, 30],
and a complete list of features can be found in the
SystemC user’s guide [31]. After the analysis, we
identify the subsets common to C++ and SystemC as
follows: Behavioral

Generic

Component

Structural

VHDL

Structural

Functional

Object

Arithmetic

C++

Template

Structural

Functional

Arith-
metic

SystemC

HW-
specific

Template

Object

Figure 2. Relationship between subsets of the languages

(1) Arithmetic subset is a subset for describing
SW algorithms. It includes natural data types (int,
long, float, double, etc.), variables, arrays, operators,
expressions, assignments, etc.

(2) Structural subset is a subset for expressing the
structural programming concepts, such as for/while
loops, if/case statements, which are used to describe
the repetitive and conditional features of an algorithm.

4. Design of a generic calculator

In this case study, we demonstrate design a ge-
neric calculator model, which performs the simple
arithmetic computations (addition and multiplication)
with an arbitrary number of the expression members.
We present the development process of the calculator
model subset by subset, while at the same time com-
paring the capabilities of VHDL, C++ and SystemC.
First, we implement the basic domain functionality
(e.g., the 2-operand addition) as follows:

(3) Functional subset is a subset for expressing
the concepts of the component-based programming. A
primary unit is a function that consists of an interface
and body.

(4) Object subset is a subset for supporting the
object-oriented programming. It includes classes,
which encapsulate variables (states) and functions
(methods). VHDL C++ SystemC

signal x1, x2, y:
 bit_vector (15 downto 0);
...
y <= x1 + x2;

int x1, x2, y;

...
y = x1 + x2;

sc_signal<int>
 x1, x2, y;
...
y = x1 + x2;

(5) Template subset is a subset for expressing the
meta-programming concepts. This subset describes the
generic functions and classes. Template keyword is
used to declare the generic parameters or types.
Templates are evaluated during program compilation.

Note that operator “+” was overloaded in VHDL
and SystemC for simplicity.

Additionally, SystemC has the HW design-speci-
fic subset as follows:

These three fragments, despite belonging to the
different domains and languages, have many common
features. First, variables (signals) are declared, with
the explicit declaration of their type. Second, the
required computations are described. Third, the value
of the result is assigned. These fragments demonstrate
the behavioural (arithmetic) subset. Note that VHDL
and SystemC use the HW-specific data types, whereas
C++ uses the SW-specific data types.

(6) HW-specific subset – a subset for expressing
the HW design concepts. It includes modules, pro-
cesses, channels, HW-specific data types (e.g., sc_bit,
sc_logic, etc.), signals and operations with them.

The subsets of C++ and SystemC are summarised
in Table 2.

Table 2. Subsets of C++ and SystemC

Language
Subset

Language
Statements Paradigm

Target
Object

Arithmetic

Natural data types,
variables, arrays,

expressions,
assignments

Algorithmic Machine code
(assembler)

Structural for/while loops,
if/case statements Structural Statements

Function Functions Component-
based

Collection of
statements

Object Classes Object-
oriented

Collection of
variables and

functions

Template Templates Meta-
programming

Functions,
classes

HW-
specific1

Signals, HW-specific
data types, over-

loaded operations
Algorithmic Collection of

HW objects

Now, we extend the basic functionality with the
structural subset to implement the selection of the
particular calculator operation as follows:

VHDL C++/SystemC
constant ADD: integer:=1;
constant MULT: integer:=2;
signal op: integer;
...
if (op = ADD) then
 y <= x1 + x2;
end if;
if (op = MULT) then
 y <= x1 * x2;
end if;

enum OPERATION
 {ADD, MULT};
OPERATION op;
...
if (op == ADD)
 y = x1 + x2;

if (op == MULT)
 y = x1 * x2;

The relationship between the different subsets of
the design languages is summarised in Figure 2.

The presented fragments demonstrate that the
structural subset is very similar in all three languages.

Next, we demonstrate the implementation of the
generic calculator model for an arbitrary number of
the operands as follows (only addition case is shown).
We have substituted a collection of variables with an

1 SystemC only

52

A Subset-Based Comparison of Main Design Languages

array (C++, SystemC) or a vector (VHDL). We used a
vector type instead of an array in VHDL because of
the synthesisability issues.

VHDL C++/SystemC
variable temp: bit_vector (15 downto 0);
...
temp := x(15 downto 0);
for i in 2 to NUM loop
 temp:=temp + x (i*16 downto (i-1)*16);
end loop;
y <= temp;

const NUM = 3;
...
int temp = x[0];
for(int i=1;i<NUM;i++)
 temp = temp+x[i];

y = temp;

Next, we construct a design unit using the
component subset of the languages. We develop a
function in SystemC and C++, and an entity in VHDL
as follows. SystemC function has no inputs and
outputs specified, because it is not allowed for
processes. VHDL port declaration considers the
different lengths of the output signal depending on the
operation specified.

VHDL C++/SystemC
entity Calculator is
 port (a: in bit_vector(NUM*16-1 downto 0);
 c: out bit_vector
 ((OP-1)*(NUM-1)*16+15 downto 0));
end Calculator;

architecture model of Calculator is
 begin
-- calculator functionality
end model;

int result (int num,
 int op, int *x) {
// calculator
// functionality
}

void Result() {
// calculator
// functionality
}

The component subset allows separating compo-
nent interface from its functionality and hiding the
implementation details.

Next, we introduce the object subset to encapsu-
late variables and functions into a class. Since VHDL
has no support for the object-oriented programming,
we present a package, which can encapsulate type
declarations, constants, procedures, and component
declarations, instead. In C++/SystemC, the object sub-
set is implemented using the class construct. SystemC
class inherits a standard sc_module class, which
implements the HW design concepts. Its constructor is
defined using a library macro SC_CTOR. A process is
registered using a library macro SC_METHOD.

Next, we introduce the meta-programming subset
to describe the generic design units.

VHDL provides generics for writing the parame-
terised models. The generic component specification
represents a set of possible component implemen-
tations or instantiations. A particular instance is
generated when the instance-specific parameter values
are passed into a generic component. The use of ge-
nerics for parameterisation of structure and behaviour
helps to create reusable design blocks.

VHDL provides the generate statement for gene-
rating the repetitive structures. These are the concur-
rent VHDL constructs that may contain further

concurrent statements for replication, and help to
effectively produce the iterative structures of a design.
The repetitive form of generate statement specifies a
discrete range of values, and for each of these it
generates an instance of the statements in the body of
the generate statement. The conditional form includes
a Boolean expression, which governs whether the
statements comprising the body of that generate state-
ment are included. The generics provide a level of
abstraction that allows isolating many implementation
details when developing a HW system as well as
reduce the risk of introducing errors when components
are reused.

VHDL SystemC
package calc_pack is
 subtype op_type is
 integer range 1 to 2;
 constant ADD: op_type:=1;
 constant MULT: op_type:=2;

 component Calculator
 -- port declaration
 end component;
end calc_pack;

class Calculator:
 public sc_module {
 void Result();
public:
 sc_in<T> x [NUM];
 sc_out<T> y;
 SC_CTOR(Calculator) {
 SC_METHOD(Result);
 }
};

C++ templates provide the ability to write code
generators and perform static computations. The temp-
late specifies only a generic skeleton for a class (or
function) declaration. To complete the declaration, a
programmer must supply a concrete value for each of
the template’s parameters. These parameters must be
known at compile time. This causes the template to be
instantiated: replacing all occurrences of the para-
meter with its value creates an instance of the temp-
late. C++ templates resemble a two-level language,
where a metalanguage (i.e. templates) manipulates
with the base code (classes and functions). Control
structures (e.g., if/else, for) can be realised in temp-
lates using the template recursion technique [32] as a
looping construct, and the class template specializa-
tion as a conditional construct.

The reasons behind the introduction of the gene-
ric parameters are as follows: (1) to express the gene-
ralisation of a model, when new generic parameters
are introduced, and (2) to perform the customisation
of a model, when a specific instance is derived de-
pending on the values of the generic parameters. For
example, a parameter OP (see below) generalises ex-
pressions regardless of the implementation, whether it
is a variable or a generic parameter. However, in case
of the generic implementation, only one specific ex-
pression is instantiated (adder or multiplier), whereas
in a non-generic implementation both design units will
be created. Therefore, genericity allows achieving
larger reusability, as well as better performance.

Since the C++ metaprogramming subset has no
repetitive and conditional generation constructs, we
use template specialization for conditional generation
and template recursion for repetitive generation of

53

R. Damaševičius

54

entity Calculator is -- component
 generic (-- generic

WIDTH : integer := 16; -- behavioral
NUM : integer :=2; -- behavioral
OP : integer := ADD); -- behavioral

 port (-- component
x: in std_logic_vector (NUM*WIDTH-1 downto 0); -- behavioral
y: out std_logic_vector -- behavioral

((OP-1)*(NUM-1)*WIDTH+WIDTH-1 downto 0)); -- behavioral
end Calculator; -- component

architecture model of Calculator is -- component
 begin -- component
 g1: if OP = ADD generate -- generic
 process (x) -- structural
 variable temp: std_logic_vector (WIDTH-1 downto 0); -- behavioral
 begin -- structural
 temp := x(WIDTH-1 downto 0); -- behavioral
 for i in 2 to NUM loop -- structural

temp := temp + x(i*WIDTH-1 downto (i-1)*WIDTH); -- behavioral
 end loop; -- structural
 y <= temp; -- behavioral
 end process; -- structural
 end generate g1; -- generic
 g2: if OP = MULT generate -- generic
 process (x) -- structural
 variable temp: std_logic_vector -- behavioral

((OP-1)*(NUM-1)*WIDTH+WIDTH-1 downto 0); -- behavioral
 begin -- structural
 temp(WIDTH-1 downto 0) := x(WIDTH-1 downto 0); -- behavioral
 for i in 2 to NUM loop -- structural

temp(i*WIDTH-1 downto 0) := -- behavioral
temp((i-1)*WIDTH-1 downto 0) * -- behavioral
x(i*WIDTH-1 downto (i-1)*WIDTH); -- behavioral

 end loop; -- structural
 y <= temp; -- structural
 end process; -- structural
 end generate g2; -- generic
end model; -- component

Figure 4. Generic calculator implementation in VHDL with
a decomposition into subsets

code. The conditional generation is performed as
follows:

VHDL C++
g1: if OP = ADD generate

 process (x)
 begin
-- adder
-- functionality
 end process;

end generate g1;

enum OPERATION {ADD, MULT};
template<OPERATION OP>
 class Calculator2x { };
class Calculator2x<ADD> {
public:
 static inline int Result (int a, int b) {
 return a+b;
 }
};

For VHDL and SystemC models, we introduced
an additional generic parameter WIDTH, to specify
data path width. For C++, we can not specify the size
of the type directly, therefore, we introduced generic
parameter T to specify a data type, thus indirectly
specifying data size.

SystemC supports C++ templates without restric-
tions for modeling only, whereas the usage of
templates for design of synthesizable HW models is
not allowed. The implementations of the template
class (C++/SystemC) and the generic entity (VHDL)
are as follows:

VHDL C++/SystemC
entity Calculator is
 generic (WIDTH: integer;
 NUM: integer;
 OP: op_type);
-- port declaration
end Calculator;

template <class T, int NUM,
 OPERATION op>
class Calculator:
 public sc_module {
/* variable (signal) and
 process (method) declarations */
}; 5. Experimental results

A sample of the modeling results for the SystemC
implementation of the generic calculator model is
presented in Figure 6. The model is not synthesizable
due to the usage of the template subset, therefore, no
synthesis results are given.

enum OPERATION {ADD, MULT};

template <class T, int NUM, OPERATION op> // template
class Calculator: public sc_module { // object
 // Process
 void Result() { // functional
 T temp = x[0]; // arithmetic
 if (op == ADD) // structural
 for (int i = 1; i < NUM; i++) // structural
 temp = temp + x[i]; // arithmetic
 if (op == MULT) // structural
 for (int i = 1; i < NUM; i++) // structural
 temp = temp * x[i]; // arithmetic
 y = temp; // arithmetic
 } // functional
public: // object
 // Signals
 sc_in<T> x[NUM]; // HW-specific
 sc_out<T> y; // HW-specific
 sc_in<bool> clk; // HW-specific
 // Constructor
 SC_CTOR(Calculator) { // HW-specific
 SC_METHOD(Result); // HW-specific
 sensitive_pos << clk; // HW-specific
 } // HW-specific
}; // object

Figure 3. Generic calculator implementation in SystemC
with a decomposition into subsets

Table 3. VHDL calculator synthesis results

Parameter values Synthesis results
Data
width,
bits

Op.
type

No. of
operands

Area,
cells

Delay,
ns

Estimated
power
usage

2 68 12.09 76.4425 uW
3 136 14.56 169.2122 uW8 +
4 204 17.07 266.3093 uW
2 152 25.88 171.8903 uW
3 304 28.38 387.6492 uW16 +
4 456 30.87 612.3716 uW
2 337 54.11 385.3689 uW
3 666 56.98 857.5363 uW32 +
4 995 59.94 1.3466 mW
2 665 28.79 736.7024 uW
3 2093 65.59 3.2794 mW8 *
4 4153 95.46 6.6230 mW
2 2805 68.34 4.3473 mW
3 8419 130.09 14.5581 mW16 *
4 16888 185.35 29.9051 mW
2 11640 137.03 19.2108 mW
3 35253 246.40 64.3500 mW32 *
4 16888 185.35 29.9051 mW

Finally, we present the results of our design ef-
forts. The generic implementations of the calculator
model are presented in Figures 3, 4, & 5, for SystemC,
VHDL, and C++, respectively. Comments describe the
subset to which the particular language statement
belongs. Note that the generic/template subsets of the
languages are shown in bold.

A Subset-Based Comparison of Main Design Languages

enum OPERATION {ADD, MULT};

// this class is never instantiated
template <OPERATION OP>
class Calculator2x { };

// template specialization for OP = ADD
class Calculator2x <ADD> {
public:
 template <class T>
 static inline T Result(T a, T b){

return a+b;
 }
};

// template specialization for OP = MULT
class Calculator2x <MULT> {
public:
 template <class T>
 static inline T Result(T a, T b){

return a*b;
 }
};

template <int NUM, OPERATION OP>
class Calculator {
public:
 template <class T>
 static inline T Result(T *a){ return Result(a,a+1); }
 template <class T>
 static inline T Result(T *a, T *b){
// template recursion to mimic the for loop
 return Calculator2x<OP>::Result(*a,

Calculator<NUM-1,OP>::Result(b,b+1)); }
};
// recursion boundaries for NUM=2 and OP=ADD
class Calculator <2, ADD> {
public:
 template <class T>
 static inline T Result(T *a, T *b){
 return Calculator2x<ADD>::Result(*a, *b); }
};
// recursion boundaries for NUM=2 and OP=MULT
class Calculator <2, MULT> {
public:
 template <class T>
 static inline T Result(T *a, T *b){
 return Calculator2x<MULT>::Result(*a, *b); }
};

Figure 5. Generic calculator implementation with C++ templates: a 2-operand generic operation implementation (on the left),

and generalised for an arbitrary number of operations (on the right)

Figure 6. Modeling results of SystemC calculator:
3-operand adder (above), and 3-operand multiplier (below)

The synthesis results (we use Synopsys tools;
0.35um technology) for the VHDL implementation of
the generic calculator model are presented in Table 3
(area optimisation was applied).

6. Discussion

SoC design raises new problems to the HW
designers: the increased complexity, the interoperabi-
lity between HW and embedded SW, and the require-
ments for the high-level system models and reusable
design descriptions. In order to solve these and many
other problems, the HW designers are trying to adopt
the concepts and solutions from the SW domain such
as object-oriented design, UML [33], design patterns,
separation of concerns, metaprogramming, etc.

SystemC promises to bridge both SW and HW
domains by providing (1) a modeling environment and
simulation kernel for HW design, (2) the power and
functionality of C++ for SW design, and (3) multiple
abstraction levels for the system-level design. How-
ever, only some of the capabilities of SystemC are
currently supported for synthesis to RTL implemen-
tation. Therefore, the research continues in adapting

the existing synthesizable HDLs such as VHDL to the
increased requirements for SoC design.

Currently, design of a large-scale system is
usually performed as follows. (1) High level specifica-
tion of a system using UML diagrams and a set of the
pre-defined design patterns. (2) Development of a
system model using C++/SystemC. (3) Verification of
a system model using SystemC simulation environ-
ment. (4) Automatic translation (if possible) or manual
conversion of a system model to the synthesizable
HDL (VHDL, Verilog) specification for further syn-
thesis.

The problem with this approach is that conversion
of UML diagrams to SystemC code and further to the
standard HDL specification is not straightforward and
is a time-consuming and error-prone task. Automatic
solutions are not always possible due to the complexi-
ty of the domain and a lack of the necessary abstrac-
tions (e.g., UML lacks timing concept). The available
tools usually support only the translation of a limited
subset of the high-level language. For example, often
designers have to manually rewrite SystemC models
to make them convertible to VHDL and synthesizable.
In such cases, domain analysis and thorough know-
ledge of the design languages is essential. The exis-
tence of similar abstractions or subsets in the langua-
ges helps to implement such a translation more easily.
However, more research is needed in mapping the
advanced SW design concepts such as design patterns
to the synthesizable HDL abstractions.

7. Conclusions and future work

VHDL, C++, and SystemC languages show a
great deal of similarity, despite different domains of
their application. Language subsets and their roles are
comparable. The usage of the metaprogramming-
oriented language subset allows achieving greater
reusability and better performance in the domain.

55

R. Damaševičius

56

However, the application of templates for developing
generic SystemC models is still hindered by the limi-
tations of the synthesis tools.

Future work will focus on further research on the
convergence of SW and HW design methodologies,
including the application of the object-oriented design
techniques, UML class diagrams and design patterns
for HW design.

References
 [1] A. A Jerraya, M. Romdhani, P. Le Marrec, F. Hes-

sel, P. Coste, C. Valderrama, G. F. Marchioro, J.
M. Daveau, N.-E. Zergainoh. Multi-language Speci-
fication for System Design and Co-design. In A. A.
Jerraya, J. Mermet (eds.), System Level Synthesis,
Kluwer Academic Publishers, 1999.

 [2] R. Damaševičius, V. Štuikys. Separation of Concerns
in Multi-language Specifications. INFORMATICA,
Vol. 13, No. 3, Institute of Mathematics and Informa-
tics, Lithuanian Academy of Sciences, Vilnius, 2002,
255-274.

 [3] IEEE. VHDL Interactive Tutorial: A Learning Tool
for IEEE Std. 1076 VHDL. IEEE, CD-ROM, 1996.

 [4] T. Kropf. The Verilog Hardware Description Lan-
guage. Kluwer, 1996.

 [5] S. M. Loo, B. Earl Wells, N. Freije, J. Kulick. Han-
del-C for Rapid Prototyping of VLSI Coprocessors for
Real Time Systems. Proc. of the Southeastern Sym-
posium on System Theory SSST-2002, March 18-19,
Huntsville, AL, 6-10.

 [6] Y. Li, M. Leeser. HML: An Innovative Hardware De-
scription Language and Its Translation to VHDL.
Proc. of the IFIP Int. Conference on Computer Hard-
ware Description Languages and Their Applications
(CHDL’1995), August 1995, Chiba, Japan, 691-696.

 [7] P. Bellows, B. Hutchings. JHDL – an HDL for recon-
figurable systems. Proc. of the IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM’98), April 1998, Napa, CA, USA, 175-185.

 [8] M. Radetzki, W. Putzke-Röming, W. Nebel. Objec-
tive VHDL: Tools and Applications. Proc. of Forum
on Design Languages (FDL), 1998.

 [9] J. Zhu, D. D. Gajski. OpenJ: An Extensible System
Level Design Language. Proc. of Design Automation
and Test Conference in Europe (DATE 1999), 9-12
March 1999, Munich, Germany, 480-484.

[10] P. Alexander, D. Barton. An Introduction to Rosetta.
Invited tutorial at HDLCon00, March 2000, San Jose,
CA, USA.

[11] W. Glunz, T. Kruse, T. Rössel. System-Level Hard-
ware Design with SDL. Proc. of the 6th SDL Forum
SDL '93, October 1993, Darmstadt, 17 – 28.

[12] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S.
Zhao. SpecC: Specification Language and Methodo-
logy. Kluwer Academic Publishers, Dordrecht, 2000.

[13] P. J. Ashenden, P. A. Wilsey, D. E. Martin.
SUAVE: Extending VHDL to Improve Modeling Sup-
port. IEEE Design and Test of Computers, Vol. 15, No.
2 (April-June 1998), 34-44.

[14] P. Flake, S. Davidmann. Superlog, a Unified Design
Language for System-on-Chip. Proc. of the Asia and
South Pacific Design Automation Conference (ASP-
DAC’2000), January 25-28, 2000, Yokohama, Japan.

[15] S. Swan. An Introduction to System Level Modeling
in SystemC 2.0. White paper, OSCI, May 2001.

[16] R. Siegmund, D. Müller. SystemCSV - An Extension
of SystemC for Mixed Multi-Level Communication
Modeling and Interface-Based System Design. Proc.
of Design Automation and Test Conference in Europe
DATE 2001, March 13-16, Munich, Germany, 26-30.

[17] J. O. Coplien. Multi-Paradigm Design. Ph.D. Thesis.
Vrije Universiteit, Brussels, Belgium, 2000.

[18] A. Gabrielli, E. Gandolfi, M. Masetti. Design of a
Very High Speed Fuzzy Processor by VHDL Lan-
guage. European Design & Test Conference, User
Forum, 11-14 March 1996, Paris, France, 121-125.

[19] R. Allen, D. Gajski. The case for C/C++ design.
EEDesign, June 9, 2000.

[20] D. J. Smith. VHDL & Verilog Compared & Contras-
ted – Plus Modeled Example Written in VHDL, Veri-
log and C. Proc. of the 33rd Design Automation Confe-
rence (DAC’1996), June 3-7, Las Vegas, Nevada,
USA, 1996, 771-776.

[21] A. Gerstlauer, S. Zhao, D.D. Gajski. VHDL+/SpecC
Comparisons – A Case Study. Technical Report ICS-
98-23, Department of Information and Computer
Science, University of California, 1998.

[22] A. Bunker, S. A. McKee, G. Gopalakrishnan. An
Overview of Formal Hardware Specification Lan-
guages. Proc. Grace Hopper Celebration of Women in
Computing (GHC2002), October 9-12 2002, British
Columbia, Canada.

[23] E.A. Bezerra. Selecting a Hardware Description Lan-
guage for the Design of an On-board Scientific
Instrument Processing Module. 2nd U.K. ACM SIGDA
Workshop on Electronic Design Automation, 16-17
September 2002, Bournemouth University, UK.

[24] G. Bonanome. Hardware Description Languages
Compared: Verilog and SystemC. Technical Report,
Department of Computer Science, Columbia Univer-
sity, New York, USA, 2001.

[25] N. Agliada, A. Fin, F. Fummi, M. Martignano, G.
Pravdelli. On the Reuse of VHDL Modules into
SystemC Designs. Forum on Design Languages (FDL
2001), 3-7 September 2001, Lyon, France.

[26] L. Charest, E. M. Aboulhamid. A VHDL/SystemC
Comparison in Handling Design Reuse. Proc. of 2002
Int. Workshop on System-on-Chip for Real-Time
Applications, July 6-7 2002, Banff, Canada, 79-85.

[27] H. Ossher, P. Tarr. Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In M. Aksit
(ed.), Software Architectures and Component Techno-
logy: The State of the Art in Software Development.
Kluwer Academic Publishers, 2000.

[28] P.J. Ashenden. The Designer’s Guide to VHDL. Mor-
gan Kaufmann Publishers, San Francisco, 1996.

[29] K.C. Chang. Digital Design and Modeling with
VHDL and Synthesis. IEEE Computer Society Press,
1997.

[30] W. Műller, W. Rosenstiel, J. Ruf. SystemC: Metho-
dologies and Applications. Kluwer Academic Publi-
shers, 2003.

[31] Synopsys Inc., CoWare Inc., Frontier Design, Inc. Sys-
temC User's Guide, 2000. Available at:
http://www.systemc.org

[32] T. L. Veldhuizen. Using C++ template metaprograms.
C++ Report 7(4), 1995, 36-43.

[33] G. Booch, I. Jacobson, J. Rumbaugh, J. Rum-
baugh. The Unified Modeling Language User Guide.
Addison-Wesley, 1998.

