
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2011, Vol.40, No.3

ENTERPRISE KNOWLEDGE BASED SOFTWARE
REQUIREMENTS ELICITATION

Aurelijus Morkevičius1, Saulius Gudas1, 2

1Kaunas University of Technology, Faculty of Informatics, Information Systems Department,
Studentu St. 50-313a, LT-51368 Kaunas, Lithuania,

e-mail: aurelijus.morkevicius@stud.ktu.lt,
2Vilnius University, Kaunas Faculty of Humanities,

Muitines St. 8, LT-44280 Kaunas, Lithuania,
e-mail: gudas@vukhf.lt

Abstract. One of the ways to capture enterprise knowledge is Enterprise Architecture (EA). EA allows inden-
tifying the majority of software “to-be” requirements for information systems (IS) engineering. However, the transition
between enterprise architecture model and IT resource design still lacks a clear approach and tools for implementing it
in practice. The paper presents an approach for the enterprise knowledge based software requirements elicitation. The
suggested approach is based on the Unified profile for Ministry of Defence Architecture Framework (MODAF) and
Department of Defense Architecture Framework (DoDAF), System Modeling Language (SysML) requirements model,
and a Semantics of Business Vocabulary and Business Rules (SBVR) standard as a formal background for elicited soft-
ware requirements. A real world example is presented to validate the suitability of the approach.

Keywords: UPDM, SysML, Enterprise Architecture, SBVR, Requirements Elicitation, Enterprise Knowledge,
Software Requirements Specification.

1. Introduction

Enterprise Architecture (EA) has been a hot topic
since 1980-ies [1]. However, it was not very widely
applied in practices due to lack of modeling languages
and tools suitable for EA [1]. The EA movement was
reinforced with the successful adoption of the Unified
Modeling Language (UML) [2]and the Model-Driven
Architecture (MDA) [3]. There have been multiple
attempts to apply Unified Modeling Language (UML)
for Enterprise Architecture (EA) modeling [4], but
many modelers found it too complicated and non-
natural for solving their domain-specific problems [5].
In 2005, the Unified profile for MODAF and DoDAF
(UPDM) initiative has been started in Object Manage-
ment Group (OMG), but the first version of UPDM
was released only in 2009, four years later [6]. As
soon as the UPDM has been officially released, US
Department of Defense mandated UPDM as Informa-
tion Technology Standard and Profile Registry (DISR)
standard. As UPDM is a profile of UML, it has been
easily adopted by the majority of UML tool vendors.
The versatility of UML and its compatibility with its
profiles allows integrating UPDM with the other
OMG standards based on UML, such as System Mo-
deling Language (SysML), Service Oriented Architec-
ture Modeling Language (SoaML), etc [7]. This

enables creating large and versatile EA models to pre-
serve enterprise knowledge [8] in order to solve a
range of problems: business transformation into know-
ledge-based business, business and IT alignment, and
the computerization of business management tasks
[9].

Enterprise Knowledge allows indentifying the
majority of software “to-be” requirements. However,
first of all, enterprise knowledge models should be
verified in accordance to the meta-knowledge of the
enterprise. In case correctness and completeness of the
enterprise knowledge models are sufficient enough,
software requirements can be elicited or existing
software requirements can be verified in accordance to
enterprise knowledge. We can state that the enterprise
knowledge can be either:

• A source for requirements elicitation [10],

• A constraint for requirements verification.

The purpose of this paper is to propose a new
technique for software requirements elicitation from
preserved enterprise knowledge.

The subject of the research is the software require-
ments model based on preserved enterprise know-
ledge. The rest of this paper is structured as follows: in
section 2, the related works are analyzed; in section 3,

181

http://dx.doi.org/10.5755/j01.itc.40.3.626

mailto:gudas@vukhf.lt

A. Morkevičius, S. Gudas

the proposed approach is presented; in section 4,
experimental evaluation of the proposed approach on a
small real world EA model is described; in section 5,
the achieved results, conclusions, and future work
directions are indicated.

2. Related Work

Several authors have emphasized the importance
of enterprise modeling before requirements elicitation
[11, 12 13]. Enterprise models capture the structural
and the behavioral aspects of an organization and are
very useful in helping software engineers properly
understand the organizational environment and the
requirements that the information system must fulfill.

Requirements elicitation techniques are described,
analyzed, classified and evaluated by Zheying Zhang
in [14]. The author separates conversational, observa-
tional, analytical and synthetic methods. We will focus
only on analytical model based techniques providing
ways to explore the existing enterprise knowledge.
According to the observation of related works, we
have classified such techniques into solution oriented
such as based on UML, BPMN and problem oriented
based on KAOS, i*, EDK, Control View (Figure 1).

Figure 1. The taxonomy of analytical software requirements
elicitation techniques

Authors using UML are De la Vara [15], Eriksson
[16], Silingas [5] and Marshall [17].

Software requirements elicitation method from
business process models based on the BPMN notation
and UML use case model has been proposed in [15].
The approach transforms business process model to
the goal tree. Goal tree leaves are then transformed to
use cases and presented as the requirements for the
software system. However the main objective of this
proposal is the extension of OO-Method 0, which is a
methodology for automatic software generation based
on conceptual modeling (solution oriented approach).
We are mostly focusing to the problem orientted
approach; to the requirements elicitation where human
factor matters such as i* 0, KAOS [19], EKD [20],
and Control View based [21].

Another attempt to extract functional software re-
quirements from the enterprise model has been pro-
posed in [22]. The approach aims at the use case
model extraction from business function described
using Enterprise Meta-Model (EMM). However, the
approach focuses only on functional user-level
requirements; the same as Control View Based

Elicitation of Functional Requirements proposed in
[21]. The approach in [21] is the knowledge-based
(KB) and concerns usage of formally defined manage-
ment and control view based structural component of
Enterprise model. KB construct of Enterprise model is
formally defined in [23] as Elementary Management
Cycle (EMC), and comprises management informa-
tion transformations of any Enterprise management
function. The semantics of Enterprise management
function correlates with the definition of Primary
Activity of the M. Porter’s Value Chain Model [9].
According to [21], the KB requirements elicitation
methods should be related with the KB enterprise
modeling techniques.

The KAOS methodology is aimed at supporting
the whole process of requirements elaboration, start-
ing from the high-level goals to be achieved and
finishing with the requirements, objects, and opera-
tions to be assigned to the various agents in the
composite system. Each construct in the KAOS
language has a two-level generic structure: an outer
semantic net layer for declaring a concept, its attri-
butes, and its links to other concepts; an inner formal
assertion layer for formally defining the concept [24].
The declaration level is used for conceptual modeling
(through concrete graphical notation), requirements
traceability (through semantic net navigation), and
specification reuse (through queries) [19]. The asser-
tion level is usually written in a real-time temporal
logic described in [25].

Tropos has also an associated formal specification
language called Formal Tropos (FT) for adding const-
raints, invariants, pre- and post- conditions capturing
more of the subject domain’s semantics to the gra-
phical models in the i* notation [26]. FT has been
designed to supplement i* models with a precise
description of their dynamic aspects. In FT, the focus
is not only on the intentional elements themselves, but
also on the circumstances in which they arise, and on
the conditions that lead to their fulfillment [27].

We think both the KAOS temporal logic and the
FT languages are barely readable by humans other
than IT experts. This limits the awareness of the stake-
holders of the aspects that are not captured in gra-
phical KAOS and i* notation. For this reason we have
discovered a human and machines readable format
that allows capturing software requirements in a for-
mal way which is called SBVR and is defined in [28].

Semantics of Business Vocabulary and Business
Rules (SBVR) standard is targeted to capture business
concepts and business rules in a language close
enough to ordinary language (such as Structured Eng-
lish) to permit business people to read them, and at the
same time formal enough (based on predicate and
common logic) to be suitable for interchanging among
software tools. Formalized methods such as SBVR
could ensure avoiding of many mistakes when ap-
plying it in practice for IS engineering [29].

There are multiple attempts to capture enterprise
knowledge expressed in SBVR in UML models

182

Enterprise Knowledge Based Software Requirements Elicitation

supplemented with OCL constraints [30, 31, 32] and
in BPMN models [31]. However only in [30, 33]
authors deal with the behavioral aspect by trans-
forming SBVR rules to the BPMN process, UML
activity, and UML sequence models. Though our work
is focusing on reverse transformation, the ideas
presented in [30, 31, 32, 33] are captured and reused
where applicable in this paper.

Further the requirements elicited can be a source
for the automated business rules transformation to
software design models realizing the MDA transfor-
mation of the context independent model to the plat-
form independent model. However this is out of the
scope for this paper.

3. Requirements Elicitation from Enterprise
Models

Standards, patterns, and techniques for the sug-
gested approach of requirements elicitation from pre-
served enterprise knowledge are discussed in this
section.

3.1. Enterprise Knowledge

Requirements elicitation is recognized as one of
the most critical, knowledge-intensive activities of
software development [34]; poor execution of elicita-
tion will almost guarantee that the final project is a
complete failure. The early requirements analysis or in
other words requirements elicitation process as a pos-
sible source of Software Requirements states domain
experts, documents, existing system, etc. According to
Wiegers, documents describe corporate or industry
standards that must be followed or regulations and
laws with which the product must comply. Descrip-
tions of both present and future business processes
also are helpful [10]. The other wider concept used to
describe what Wiegers described as sources for requi-
rements specification is domain knowledge. There are
multiple ways to record domain knowledge within
enterprise. One of the ways to capture domain know-
ledge is Enterprise Architecture. Schekkerman defines
Enterprise Architecture as “an emerging approach for
capturing complex knowledge about organizations and
technology” [35]. It is obvious that an EA is the
source of knowledge for requirements elicitation pro-
cess.

To be more concrete (Figure 2), EA usually cap-
tures enterprise goals, business processes within an
enterprise, business rules, business and IT objects.
Goals can be directly translated to requirements. If we
are looking deeper into requirement tree, goals can
even be either functional, or non-functional software
requirements [36, 37]. Processes, as we will take a
more detailed look later in this paper, can also be
directly translated to software functional requirements,
for example, in a form of use cases or enterprise goals
[15]. Business rules are both the non-functional and
functional requirements for the software [10].

Figure 2. Software requirements elicitation form EA model

Business objects and IT objects act as supportive
entities for requirements elicitation from enterprise
knowledge models. For example, business objects
could be the actors for the derived use case model and
IT components can be used for requirements grouping.

The quality of the process of software require-
ments model derivation directly depends on the
quality of knowledge. Quality of knowledge depends
on the quality of meta-knowledge. To ensure quality
of meta-knowledge it should be validated according to
the domain knowledge. It might be done by evaluation
of domain experts. Quality of meta-knowledge can be
also ensured by picking the best practice configuration
within the domain.

3.2. UPDM based Enterprise Model

The Unified Profile for MODAF and DoDAF
(UPDM) defines a set of UML and optional SysML
stereotypes and model elements and associations.
UPDM is not an architectural framework. It is a
language dedicated to build MODAF and DoDAF
requirements meeting enterprise architecture models
[6].

We will use UPDM language based models to de-
monstrate our proposed technique. The main reason
for the choice of UPDM is UML, especially when we
are using SysML; other UML based modeling lan-
guage. The integrity of both would make the starting
point easier; integrated OMG metamodels allow
designing various enterprise systems in one CASE
tool [38]. The other obvious reason is the support of
DoDAF and MODAF: emerging enterprise architect-
ture frameworks. However the proposed approach is
planned to be extended to meet TOGAF and Archi-
mate requirements in the future.

UPDM consists of seven viewpoints: all views,
strategic, acquisition, operational, service oriented,
systems and technical [6]. We will focus on opera-
tional and systems viewpoints. A suite of operational
viewpoint products are used to describe a requirement
for a to-be architecture in logical terms. Systems view-
point specifies a requirement for a System without
delving deep into systems design [39].

Software requirements engineering usually sepa-
rates two or more types of functional requirements

183

A. Morkevičius, S. Gudas

184

according to their origin. Authors in [10, 40], and [41]
separate requirements into user requirements (user
needs in [41]) and system requirements. System re-
quirements are also called as functional [10] or simply
software requirements [7]. Based on this classification
and the definition of the DoDAF viewpoints, we can
state that the Operational viewpoint model is the
source to elicit user requirements and the systems
viewpoint model is the source to elicit system
requirements.

UPDM closely enough to other enterprise model-
ing languages defines the concepts of operational
activity and function. Operational activity is perform-
able by logical entity called Node and the function by
the physical entity called Resource. It is also im-
portant to note that both the operational activities and
the functions consume and produce the information
we need to capture during the requirements elicitation
from the enterprise model.

3.3. SBVR Transformation Patterns

Object Management Group (OMG) has published
the Semantics of Business Vocabulary and Business
Rules (SBVR) specification [28] that defines the
metamodel for documenting the semantics of business
vocabulary, business facts and business rules. SBVR is
targeted to capture business concepts and business
rules in a language close enough to ordinary language
(such as Structured English) to permit business experts

to read them, and at the same time formal enough
(based on predicate and common logic) to be suitable
for interchanging among organizations or software
tools. Thus, SBVR is specially suited for acting as an
intermediate representation between the stakeholders
and the designers.

Enterprise model transformation to human
readable SBVR format consists of two phases:

 Transformation of user (operational in defense
frameworks) requirements, and

 Transformation of system requirements.

The proposed approach does not support full trans-
formation of the model yet. Currently it deals with
activities, information flows, activity performing enti-
ties, and data ignoring state and interaction models of
the performing entities.

Suggested patterns are formed according to [31,
33, 30, 31]. Patterns are common for both the opera-
tional model and the systems model of the enterprise.
A single unit of transformation is activity (an ope-
rational activity or a function dependent on the enter-
prise viewpoint). In UPDM, activity is performed by
performer [6]. It also produces and consumes ex-
change items and participates in the sequential activity
flow model usually comprised of more than one ac-
tivity. These aspects semantically differentiate UPDM
activity models from the UML ones.

Figure 3. The example of the transformation pattern as the instance of SBVR MOF metamodel

During the transformation activities, performers
and exchange items are transformed to concepts,
performs relationship is transformed to the fact type

“<performer> performs <activity>”, consumption of
exchange item is transformed to the fact type
“<activity> consumes <data>”, and production of the

Enterprise Knowledge Based Software Requirements Elicitation

exchange item is transformed to the fact type
“<activity> produces <data>”.

Using basic set of logical operations provided in
SBVR standard there is no way to express first order
logic such as before/after relationship. In order to in-
volve temporal meanings the introduction of new key-
word after is required into SBVR structured English
[33]. The pattern supporting introduced keyword after
is provided bellow.

after <antecedent> then <consequent>.

Note that both <antecedent> and <consequent> are
binary fact types and both after and then are keywords
[33].

Activity preceding the transformed activity is
added as the antecedent in the SBRV statement. In
case only the start node is before the activity,
after/then pattern won’t be used. Complete SBVR
structured English pattern for the activity producing
an exchange item is:

[Obligation formulation]
[Performer.name] performs
[Activity.name] that produces
[ExchangeItem.name] after
[Performing_preceding_activity_Perfo
rmer.name] performs
[Preceding_Activity.name]

SBVR sentences are written in a different font and
color to make it easier to read. The “Perfor-
mer.name” font is devoted for object types; the
“performs” font renders fact types and “after”
font is for keywords. The notation has been taken
from [28].

As an instance of the SBVR MOF-based meta-
model, the rule pattern representing the activity that
does not produce and does not consume an exchange
item is displayed in Figure 3. Note that there is only a
core fragment of the pattern displayed: fact type forms
are not shown.

Activities consuming exchange items are trans-
formed in the same manner. In case the activity is
producing and consuming an exchange item, both
clauses will be added and separated by the logical
conjunction operation.

Sample SBVR based statement definition is:

It is obligatory that the
administration performs send_invoice
that produces the invoice after the
administration performs
prepare_invoice

Activity that is not consuming and producing an
exchange item will be transformed using the following
pattern:

[Obligation
formulation][Performer.name]
performs [Activity.name] after the
[Performing_preceding_activity_Perfo

rmer.name] performs [Preceding_Ope-
rationalActivity.name]

Sample SBVR based requirement definition is:

It is obligatory that the administration performs
cancel_order after the administration performs re-
ceive_order.

In both cases above, activity control nodes such as
decision, merge, fork and join are also supported. In
case of decision before the activity, guard condition is
added as the fact type underlying logical conjunction
in combination with the preceding activity fact type.

In case of merge node, number of preceding activi-
ties is added in the logical disjunction operation.

In case of join node, number of preceding acti-
vities is added in the logical conjunction operation.

In case of the fork node, operational activities
following the node are transformed to two or more
sentences separated by the logical conjunction
operations.

3.4. SysML Requirements Model

SysML is a systems modeling language based on
UML [42]. Both SysML and UML languages are
based on the same metametamodel, the OMG Meta
Object Facility (MOF) [43]. SysML is considered both
a subset and an extension of UML [42].

Besides other features we will not discuss in this
paper, SysML provides multiple ways for capturing
requirements and their relationships, in both graphical
(SysML Requirements diagram) and tabular notations.
A requirement that is captured in text is represented in
SysML using the Requirement model element [44]. It
can be related to other model elements through a set of
relationships: containment, derive, satisfy, verify, re-
fine and trace [42]. Relationships used in our approach
are briefly explained below.

A containment relationship in UML expresses
ownership and is very rarely represented in UML dia-
grams. In SysML it is frequently used to express
requirements hierarchy. Meanwhile, a deriveReqt (de-
rivation) relationship is a dependency between two
requirements in which a client requirement can be
derived from the supplier requirement. For example, a
system requirement may be derived from a user re-
quirement, or a business requirement etc [42]. We will
also use refine relationship to establish traces between
requirements and the behavioral architecture elements
that the requirement is directly elicited from.

SysML Requirements model in the scope of the
proposed requirements elicitation technique is the re-
pository for the generated SBVR sentences. For each
SBVR sentence requirement model element is created.
Requirement text property represents the SBVR
structured English sentence. Activities that are of
higher abstraction level (non-atomic) within the enter-
prise model will be converted directly to grouping
requirements. The name of the grouping requirement
is the name of the process or function and the text is

185

A. Morkevičius, S. Gudas

186

2. Identify processes for transformation. The tech-
nique will not be discussed in this paper.

“Requirements for <Operational Activity / Function.
name> Business Process / Application Function”. The
grouping requirement contains other requirements
transformed from lower level activities. Only the re-
quirements representing atomic activities are repre-
senting SBVR sentences. Such requirements will al-
ways be the leaf requirements in the requirements tree.

3. Transform Business Processes to SBVR model.
The transformation will be made according to the
proposed transformation patterns.

4. Transform SBVR model to structured English.
5. Build requirements tree using SysML require-

ments model and notation. Derivation relationship will be created between
user requirements and system requirements in case the
application function represented by system require-
ment implements the process represented by user
requirement in the UPDM based enterprise model.

6. Identify Application Functions for transformation.
7. Transform Application Functions to SBVR mo-

del. The transformation will be made according to
the proposed transformation patterns.

8. Transform SBVR model to structured English. 3.5. The process of Requirements Elicitation from
Enterprise model 9. Build software requirements tree using SysML re-

quirements model and notation.
As all the techniques required for requirements

elicitation from enterprise model have been discussed
separately, it requires a clear workflow definition of
how to associate these techniques together to achieve
the desired results.

10. Add traces between different layers of require-
ments and requirements and architecture ele-
ments.

11. Generate software requirements specification
(SRS) document according to the predefined re-
port template. The process of applying the proposed approach

consists of several steps:
Summarizing the process of the proposed approach
step by step, overview diagram is provided in Figure 4
that covers the process of eliciting user and system
requirements from the enterprise architecture model.

1. Verify enterprise model to make sure the model is
correct and complete. The technique for Enter-
prise Model verification will not be discussed in
this paper. The model we use in the experimental
section is treated as verified.

Figure 4. The process of requirements elicitation from the enterprise architecture model

Figure 5. The process of consulting

Enterprise Knowledge Based Software Requirements Elicitation

4. Experimental Evaluation

Let us define a simple operational and systems
viewpoint fragments of UPDM based Enterprise Ar-
chitecture in order to demonstrate the proposed
enterprise knowledge based software requirements
elicitation approach.

The given EA fragment represents IT consulting
enterprise. The consulting process shown in Figure 5
is defined as operational activity composed of two
atomic operational activities accept order and accom-
plish order. Consulting operational activity has one
input and one output. The input is order and the output
is course; both representing information. Atomic ope-
rational activity accept order is performed by Admi-
nistration business entity and the operational activity
accomplish order is performed by the Trainer.

Accept order operational activity is implemented
by function called Accept order in the systems view-
point. The function is decomposed into multiple ato-
mic Functions in Figure 6.

EA fragment, according to the defined SBVR
transformation patterns and following the defined

process steps, is transformed to the SysML require-
ments model:

 First, the accept order and accomplish order ope-
rational activities are transformed to user Require-
ments. The SysML user requirements model con-
taining SBVR sentences is shown in Figure 7.

 Second, the accept order function and only its sub
functions performed by the Course Management
IS (CMIS) are transformed to system Require-
ments. The SysML system requirements model
containing SBVR sentences is shown in Figure 7.

 Third, the derivation relationships are created bet-
ween related user and system requirements.

 Finally the refine relationships are created bet-
ween the requirements and the operational acti-
vity/function the requirement has been elicited
from.

Functions performed by the human resource
Manager are not transformed to the requirements
model directly; however, the functions are used when
transforming following functions performed by CMIS.

Figure 6. Accept order functionality description diagram

5. Conclusions and Future works

We have presented an approach for requirements
elicitation from EA models based on a new UPDM
standard. Elicited requirements are based on the emer-
ging SBVR standard. SysML Requirements model is
generated and SysML Requirements Diagram is used
to visualize it. The proposed approach has been im-
plemented in MagicDraw and has been evaluated on a
small illustrative fragment of real world EA model.

Based on the experience on implementing and eva-
luating the proposed approach, we can make the
following conclusions:

 An approach currently enables user and system
requirements elicitation from verified UPDM
based EA models; business requirements elicit-
tation from the strategic aspect of the architecture
will be considered supporting in the future.

187

A. Morkevičius, S. Gudas

Figure 7. Transformation outcome: SysML user and system requirement models

 Elicited Requirements are stored into the same
UML based repository the UPDM models are.
Such an integrated repository ensures integrity
and traceability between the architecture models
and several different abstraction layers of
software requirement models; integrated UML
based repository is supported by the most of
CASE tools.

 Compared to others, the proposed approach is
both human and machine readable; readability by
machines allows performing automated software
design generation directly from the requirements
model (MDA).

 The proposed approach currently elicits
requirements from behavioral activity based
UPDM models only; support of data models,
business rules and state machines will be
considered in the future.

 Verification of enterprise model and techniques of
process categorization are subjects to the future
works improving the proposed approach.

The proposed approach is a starting point for the
more detailed future works on performing the require-
ments elicitation from preserved enterprise know-
ledge.

Acknowledgement

The authors would like to thank No Magic, Inc,
especially the MagicDraw product team and professor
Lina Nemuraite from Kaunas University of Techno-
logy for the comprehensive support.

References

 [1] J.A. Zachman. A Framework for Information Sys-
tems Architecture. IBM Systems Journal, 26(3), 1987,
276-292.

 [2] OMG. Unified Modeling Language (OMG UML)
Infrastructure. v2.1.2. Needham, MA, USA: Object
Management Group, 2007.

 [3] OMG. MDA Guide Version 1.0.1. Object Manage-
ment Group, Needham, MA, USA: Object Manage-
ment Group, 2003.

 [4] M. Dalgarno, M. Fowler. UML vs. Domain-Specific
Languages. Methods and Tools , 16(2), 2008, 2-8.

 [5] D. Silingas, R. Butleris. Towards customizing UML
tools for enterprise architecture modeling. Information
Systems 2009: proceedings of the IADIS international
conference, Barcelona, Spain, 2009, 25-27.

 [6] OMG. Unified Profile for the Department of Defense
Architecture Framework (DoDAF) and the Ministry of
Defence Architecture Framework (MODAF).

188

Enterprise Knowledge Based Software Requirements Elicitation

Needham, MA, USA: Object Management Group,
2009.

 [7] D. Šilingas, R. Butleris. Towards Implementing a
Framework for Modeling Software Requirements in
MagicDraw UML. Information Technology and
Control, 38(2), 2009, 153 – 164.

 [8] A. Morkevicius, S. Gudas, D. Silingas. Model-Dri-
ven Quantitative Performance Analysis of UPDM-
Based Enterprise Architecture. Proceedings of the
16th International Conference on Information and
Software Technologies. Kaunas, 2010, 218-223.

 [9] S. Gudas. Enterprise knowledge modelling domains
and aspects. Technological and economical develop-
ment of Economy, 15(2), 2009, 281-293.

[10] K.E. Wiegers. Software Requirements, Second Edit-
ion. Redmond, Washington: Microsoft Press, 2003.

[11] E. Kavakli, P. Loucopoulos. Goal Modeling in Re-
quirements Engineering: Analysis and Critique of Cur-
rent Methods. Information Modeling Methods and
Methodologies, 2004, 102-124.

[12] G. Regev, A. Wegmann. Defining Early IT System
Requirements with Regulation Principles: The Light-
switch Approach. Proc. 12th IEEE International Re-
quirements Engineering Conference (RE’04), 2004.

[13] E. Yu. Towards Modelling Strategic Actor Relation-
ships for Information Systems Development – With
Examples from Business Process Reengineering. Pro-
ceedings of the 4th Workshop on Information Techno-
logies and Systems, Vancouver, B.C., Canada, 1994,
21-28.

[14] Z. Zheying. Effective Requirements Development - A
Comparison of Requirements Elicitation techniques.
INSPIRE, Tampere, Finland, 2007.

[15] J. L. De la Vara González, J.S. Díaz. Business pro-
cess-driven requirements engineering: a goal-based
approach. Proceedings of the 8th Workshop on Busi-
ness Process Modeling, 2007.

[16] H. Eriksson, M. Penker. Business Modeling with
UML: Business Patterns at Work. John Wiley and
Sons, 2000.

[17] C. Marshall. Enterprise Modeling with UML. Addi-
son-Wesley, 2001.

[18] E. Yu. Towards Modeling and Reasoning Support for
Early-Phase Requirements Engineering. 3rd Interna-
tional Symposium on Requirements Engineering
(RE’97), Washington, USA. 1997.

[19] R. Darimont, E. Delor, P. Massonet, A. Van Lams-
weerde. GRAIL/KAOS: An Environment for Goal-
Driven Requirements Engineering. Proc. ICSE’98 –
20th Int’l Conf. Software Eng., Kyoto, Japan, 1998,
58-62.

[20] S. Zaharova, J. Stirna. Using Organizational Patterns
as a Technique for Knowledge Management. 5th
CAiSE/IFIP8.1 International Workshop on Evaluation
of Modeling Methods in Systems Analysis and Design
(EMMSAD'00), Stockholm, Sweden, 2000.

[21] A. Lopata, S. Gudas. Control View Based Elicitation
of Functional Requirements. Business Information
Systems Workshops, BIS 2009 International Work-
shops, Poznan, Poland, April 27-29, 2009, Revised
Papers Series: Lecture Notes in Business Information
Processing, 2009.

[22] S. Gudas, A. Lopata. Meta-Model Based Develop-
ment of Use Case Model for Business Function.
Information Technology and Control, 36(3), 2007,
302-309.

[23] S. Gudas. A framework for research of information
processing hierarchy in enterprise. Mathematics and
Computers in Simulation, 33, 1991, 281-285.

[24] A. Van Lamsweerde, R. Darimont, E. Letier. Ma-
naging Conflicts in Goal-Driven Requirements Engi-
neering. IEEE Transactions on Software Engineering,
24(11), 1998, 908-926.

[25] R. Koymans. Specifying Message Passing and Time-
Critical Systems with Temporal Logic. Springer-
Verlag, 1992.

[26] A. Fuxman, M. Pistore, J. Mylopoulos, P. Traver-
so. Model Checking Early Requirements Specifi-
cations in Tropos. 5th International Symposium on
Requirements Engineering (RE’01). Toronto, Canada.
2001.

[27] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M.
Roveri, P. Traverso. Specifying and analyzing early
requirements in Tropos. Requirements Engineering,
9(2), 2004, 132-150.

[28] OMG. Semantics of Business Vocabulary and
Business Rules (SBVR), v1.0. Needham, MA, USA:
Object Management Group, 2008.

[29] S. Gudas, A. Lopata. Workflow Models Based Ac-
quisition of Enterprise Knowledge. Information Tech-
nology and Control, 36(1A), 2007, 103-109.

[30] L. Ceponiene, L. Nemuraite, G. Vedrickas. Seman-
tic business rules in service oriented development of
information systems. 15th International Conference on
Information and Software Technologies, IT 2009,
Kaunas, Lithuania, 2009, 404–416.

[31] L. Nemuraite, T. Skersys, A. Sukys, E. Sinkevicius,
L. Ablonskis. VETIS Tool for Editing and Trans-
forming SBVR Business Vocabularies and Business
Rules into UML & OCL Models. 16th International
Conference on Information and Software Technolo-
gies, Kaunas: Kaunas University of Technology, 377-
384, 2010.

[32] J. Cabot, R. Pau, R. Raventós. From UML/OCL to
SBVR specifications: A challenging transformation.
Information Systems. 35(4), 2010, 417-440.

[33] R. Eder, T. Kurz, A. Filieri, A. Margarito. D2.3 -
Extended vocabulary and rule set for an existing
scenario. OPAALS Project, 2008.

[34] A. M. Hickey, A. M. Davis. Requirements Elicitation
and Elicitation Technique Selection: A Model for Two
Knowledge-Intensive Software Development Proces-
ses. Proceedings of the 36th Annual Hawaii Inter-
national Conference on System Sciences (HICSS'03).
Washington, DC, USA: IEEE Computer Society, 2003,
96.

[35] J. Schekkerman. Enterprise Architecture Tool Selec-
tion Guide v5.0. Institute for Enterprise Architecture
Developments. 2009.

[36] A. Caplinskas. Requirements Elicitation in the Con-
text of Enterprise Engineering: A Vision Driven
Approach. Informatica , 20(3), 2009, 343–368.

[37] A. Van Lamsweerde, L. Willemet. Inferring Decla-
rative Requirements Specifications from Operational
Scenarios. IEEE Trans. Software Eng., 24, 1998,
1089-1114.

189

A. Morkevičius, S. Gudas

190

[38] S. Pavalkis, L.Nemuraite, P.Tarvydas, A. Noreika.
Specification of finite element model of electronic
device using model-driven Wizard-based guidance.
Electronics and Electrical Engineering, 2(98), 2010,
59-62.

[39] Department of Defence. DoD Architecture Frame-
work Version 2.0. Volume 2: Architectural Data and
Models Architect’s Guide. USA, 2009.

[40] N. Maiden. User Requirements and System Require-
ments. Software, IEEE. 25(2), 2008, 90 – 91.

[41] R.R. Young. The requirements engineering
handbook. Nordwood, MA, USA: Artech House,
2004.

[42] OMG. Systems Modeling Language, Version 1.1.
Needham, MA, USA: Object Management Group,
2008.

[43] OMG. Meta Object Family Specification (MOF),
Needham, MA, USA: Object Management Group,
2002.

[44] S. Friedenthal, S., A. Moore, A., R. Steiner. A Prac-
tical Guide to SysML. Burlington, MA, USA: Elsevier.
2008.

Received February 2011.

