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Abstract. This paper introduces identification results of human response to virtual 3D face stimuli. Observations 
of human reactions are done using preprocessed EEG (electroencephalogram) signals: excitement, meditation, 
frustration, engagement/boredom. Virtual 3D face features – distance between eyes, nose width, and chin width – are 
used as stimuli. Cross-correlation analysis demonstrated that dynamical relations between human reactions and stimuli 
exist. Input-output models describing relations between stimuli and corresponding human reactions are built. A new 
input-output model building method is proposed that allows building stable models with the least output prediction 
error. Models’ validation results demonstrate relatively high prediction accuracy of human reactions. 

Keywords: 3D face stimuli; human reaction; cross-correlation analysis; input-output model; model parameter 
estimation; model validation. 

 

1. Introduction 
Virtual environments are becoming a part of our 

daily life including computer games, work tasks, 
various mental and physical training programs,  
e-learning, online shopping, and specialized software. 
These environments affect the users in different 
extents and ways. The influence can be both  
positive and negative. Various studies introduce 
investigations, where human state observation is an 
important task. Several of them concentrates on  
stress evaluation and training when using virtual 
environments for military purposes and curing  
post-traumatic stress disorder [15]. Other focuse on 
neuro-marketing [11], [12], adaptive virtual mediator 
services [14], social networks [22], and learning 
applications [1], [4]. 

In order to protect people from various harmful 
effects to their health (e.g. stress) that virtual 
environment can cause [17], to create training 
applications, or to implement/use virtual mediator 
services [7], control mechanisms of virtual 
environment object features and the interactions have 
to be modeled [5], [10]. 

The most effective way to observe a state of a 
person in a real time is to monitor human bio-signals 
[19]. A variety of human bio-signals such as galvanic 
skin response, pulse, magnetoencephalography 
(MEG), heart rate, EEG, etc. are used for this  
purpose and plenty of methods and techniques help to 

measure and analyze the signals [23]. We have chosen 
to use EEG-based signals for human affective state 
monitoring because of the reliability and quick 
response [18], [6]. 

In this research, a virtual 3D face was used as  
a stimulus for eliciting human reaction. It is known 
that the majority of information to another person 
when communicating is transferred by face features 
[13]. A person is used to react to the smallest  
face feature changes during a very short time [21].  
We have created and used a realistic virtual 3D  
face model. Human reactions when he/she is 
observing visual stimuli (3D face changes) were 
investigated. 

Our previous investigations on the dependencies 
between virtual stimuli and human affective responses 
demonstrated that in certain circumstances the 
dependencies exist and there is a need of further 
research [20]. 

Three types of stimuli in virtual 3D face (distance 
between eyes, nose width and chin width) were used 
for human reaction elicitation and four response 
signals (excitement, meditation, engagement/boredom, 
and frustration) were observed. The aim of the 
investigation is to identify the relationships between 
stimuli and reactions to them and to describe those 
using mathematical models that can predict human 
reactions in high accuracy and can be used for human 
state control systems design. 
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2. Observations and data 
Features of virtual 3D face (distance between eyes, 

nose width, and chin width) were used for input and 
EEG-based human reaction signals (excitement, 
meditation, frustration, engagement/boredom) of a 
person were measured as output (Fig. 1). These output 
signals were chosen as important features in learning, 
and stress regulation. The output signals were 
recorded using Emotive Epoc device.The device 
records EEG inputs from 14 channels (according to 
international 10-20 locations): AF3, F7, F3, FC5, T7, 
P7, O1, O2, P8, T8, FC6, F4, F8, AF4 [3]. 

 
Figure 1. Input-Output scheme for the experiments 

Seven 3D woman faces were created using 
Autodesk MAYA. One 3D woman face was used as a 
“neutral” one (Fig. 2, middle). The other faces were 
formed by changing face features in an extreme 
manner: large and small distance between eyes (Fig. 2, 
left and right, top), wide and thin nose (Fig. 2, left and 
right, middle), wide and thin chin (Fig. 2, left and 
right, bottom). After importing the 3D faces into Unity 
3D engine, the transitions between the same kind of 
features in the face were programmed using morph 
target’s method.  

 

 

 
 

 

 

 

 
 

 

  

Figure 2. A “neutral” 3D woman face (middle) and limit 
cases of features: the largest (left top) and the smallest (right 
top) distance between eyes, the widest (left middle) and the 
thinnest (right middle) nose, the widest (left bottom) and the 

thinnest (right bottom) chin 

There were two types of input signals used. 
TYPE 1 input signals (Fig. 3, top) were formed when 
neutral face was equal to 0, the largest (widest) feature 
was equal to 1.8 and the smallest (thinnest) feature 
was equal to -1.8. The values in-between were 
changed linearly. Time interval between 

largest/smallest value and zero (normal face) was 10 s. 
The features were changing continuously: from 
normal to extremely wide, then back to normal and to 
extremely thin, then again to normal and to extremely 
wide and again back to normal. The animated tests 
were prepared for every of three features: distance 
between eyes, nose width and chin width.  

 
Figure 3. TYPE 1 and TYPE 2 input signals: values 
variation of corresponding face feature modifications 

TYPE 2 input signals (Fig. 3, bottom) were formed 
when changing the 3D face features suddenly. “Small 
distance-between-eyes”, “thin nose” or “thin chin” 
was shown for some period of time, then the picture 
was suddenly changed to “normal” and after some 
time to “large distance-between-eyes”, “wide nose” or 
“wide chin” and again to “normal”. It was repeated 
two times with different time steps between each 
change. “Neutral” face was equal to 0, “largest dis-
tance-between-eyes”, “widest nose” or “widest chin” 
were equal to 1.25 and the smallest features – to -1.25. 

Output signals – excitement, meditation, 
frustration and engagement/boredom – varied from 0 
to 1. If excitement, meditation, frustration and engage-
ment were low, the value was 0 or close to 0 and if 
they were high, the values of parameters were 1 or 
close to 1. The signals were recorded with the 
sampling period of T0=0.5 s. 

Five volunteers (volunteers no. 1-3 were female, 
and volunteers no. 4-5 were male) were tested. A 
volunteer was watching three animated scenes of 
approximately 1 minute one after another, and  
EEG-based signals were measured simultaneously 
using Emotiv Epoc device. The recorded preprocessed 
signals were stored for later analysis.  

3. Correlation analysis 
To estimate the possible relations between virtual 

stimuli and human reaction signals, a cross-correlation 
analysis between stimuli (3D virtual face features) and 
response (EEG-based reaction) signals was performed.  

Cross-covariation functions between input and 
output signals and auto-covariation functions of input 
and output signals are used for this purpose [16]: 
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𝑁
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  (2) 

are the averages of input and output, τ = 0, ±1, … and 
N=115. 

Cross-correlation functions between both types of 
input signals (TYPE 1 and TYPE 2) and all output sig-
nals for volunteer no. 1 are demonstrated in Figs. 4−6.  

 
Figure 4. Cross-correlation functions between distance 
between eyes input feature and all output features for 

volunteer no.1. Solid line denotes input Type 1,  
dotted line denotes input Type 2 

 
Figure 5. Cross-correlation functions between nose width 

input feature and all output features for volunteer no.1. Solid 
line denotes input Type 1, dotted line denotes input Type 2 

 
Figure 6. Cross-correlation functions between chin width 

input feature and all output features for volunteer  
no.1. Solid line denotes input Type 1,  

dotted line denotes input Type 2 

 

Maximum cross-correlation function values  

max
𝜏
�𝑟𝑦𝑥[0]� = max

𝜏
�

𝑅𝑦𝑥[𝜏]

�𝑅𝑦𝑦[0]𝑅𝑥𝑥[0]
� (3) 

were estimated for each stimulus and the 
corresponding response signal pair. The estimates of 
the maximum cross-correlation function values are 
shown in Table 1 and Table 2. 

 

Table 1. Maximum cross-correlation function values when 
Type 1 input signal is used 
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1 

Distance between eyes 0.55 0.75 0.88 0.81 
Nose width 0.51 0.55 0.53 0.55 
Chin width 0.73 0.57 0.59 0.63 

2 
Distance between eyes 0.47 0.30 0.44 0.38 
Nose width 0.73 0.51 0.47 0.66 
Chin width 0.35 0.75 0.43 0.37 

3 
Distance between eyes 0.54 0.52 0.58 0.46 
Nose width 0.30 0.67 0.80 0.62 
Chin width 0.38 0.74 0.43 0.38 

4 
Distance between eyes 0.76 0.69 0.64 0.44 
Nose width 0.47 0.65 0.59 0.66 
Chin width 0.40 0.64 0.43 0.55 

5 
Distance between eyes 0.30 0.57 0.54 0.69 
Nose width 0.71 0.68 0.75 0.82 
Chin width 0.70 0.66 0.54 0.62 

 
The shift of the maximal values of cross-

correlation functions in relation to 𝑟𝑦𝑥 [0] allow stating 
that there exist dynamic relations between virtual 
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stimuli and human reactions to them. High cross-
correlation values justify a possibility to use linear 
dynamic models. 

Table 2. Maximum cross-correlation function values when 
Type 2 input signal is used 
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1 

Distance between eyes 0.45 0.57 0.49 0.56 
Nose width 0.54 0.47 0.45 0.68 
Chin width 0.53 0.56 0.47 0.38 

2 
Distance between eyes 0.46 0.54 0.56 0.43 
Nose width 0.49 0.41 0.43 0.61 
Chin width 0.63 0.56 0.57 0.38 

3 
Distance between eyes 0.48 0.45 0.33 0.63 
Nose width 0.47 0.49 0.47 0.68 
Chin width 0.55 0.40 0.42 0.57 

4 
Distance between eyes 0.61 0.59 0.43 0.44 
Nose width 0.50 0.44 0.46 0.41 
Chin width 0.53 0.63 0.64 0.54 

5 
Distance between eyes 0.36 0.37 0.45 0.60 
Nose width 0.43 0.50 0.45 0.52 
Chin width 0.46 0.56 0.36 0.48 

 

4. Mathematical model building 
All dependencies between virtual object stimuli 

and human reactions are described by input-output 
structure models [8]: 

𝐴(𝑧−1)𝑦𝑡 = 𝐵(𝑧−1)𝑥𝑡 + 𝜀𝑡 (4) 

𝐵(𝑧−1) = �𝑏𝑗𝑧−𝑗 ,
𝑚

𝑗=0

     𝐴(𝑧−1) = 1 + �𝑎𝑖𝑧−𝑖
𝑛

𝑖=1

 (5) 

where 𝑦𝑡  is an output (excitement, engagement/ 
boredom meditation, frustration or) and 𝑥𝑡 is an input 
(distance between eyes, nose width, chin width) 
signals respectively calculated as  

𝑦𝑡 = 𝑦(𝑡𝑇0),   𝑥𝑡 = 𝑥(𝑡𝑇0) (6) 

with sampling period 𝑇0 , 𝜀𝑡  corresponds to noise 
signal and z-1 is the backward-shift operator (z−1xt =
xt−1). 

Eq. (4) can be expressed in the following form: 

𝑦𝑡 = �𝑏𝑗𝑥𝑡−𝑗

𝑚

𝑗=0

−�𝑎𝑖𝑦𝑡−𝑖

𝑛

𝑖=1

+ 𝜀𝑡 . (7) 

Model parameters (coefficients of the polynomials 
(5)) and model order (degrees m and n of polynomials 
(5)) are unknown. They have to be estimated 

according to the observations obtained during the 
experiments with the volunteers.  

It is not difficult to show that in the case of using 
the model, the following relationship exists between 
covariation functions: 

𝑅𝑦𝑥[𝜏] = �𝑏𝑗

𝑚

𝑗=0

𝑅𝑥𝑥[𝜏 − 𝑗] −�𝑎𝑖

𝑛

𝑖=1

𝑅𝑦𝑥[𝜏 − 𝑖] .(8) 

Equation (8) can be expressed as a linear 
regression equation: 

𝑅𝑦𝑥[𝜏] = 𝜷𝜏𝑇𝒄 (9) 

where  

𝜷𝜏𝑇 = [  𝑅𝑥𝑥[𝜏],𝑅𝑥𝑥[𝜏 − 1], … ,𝑅𝑥𝑥[𝜏 − 𝑚], 

−𝑅𝑦𝑥[𝜏 − 1], … ,−𝑅𝑦𝑥[𝜏 − 𝑛]  ] 
(10) 

𝒄𝑇 = �𝑏0, 𝑏1, … , 𝑏𝑚,𝑎1, 𝑎2, … , 𝑎𝑛� (11) 

and T is a vector transpose sign.  
For the estimation of unknown parameter vector c 

we use a method of least squares [8]:  

𝒄� = 𝑸−1𝒒 (12) 

𝑸 = � 𝜷𝜏𝜷𝜏𝑇
𝑀
𝜏=−𝑀 ,   𝒒 = � 𝑅𝑦𝑥[𝜏]𝜷𝜏

𝑀
𝜏=−𝑀  (13) 

where M is the number of covariation function values 
used. 

Model parameter estimates’ vector 𝒄�  is calculated 
when M=0, 1, … and model stability condition is 
verified [8]. It means that the following polynomial 

�̂�𝑀(𝑧) = 𝑧𝑛�̂�𝑀(𝑧−1) = 𝑧𝑛 + �𝑎�𝑖𝑧𝑛−𝑖
𝑛

𝑖=1

 (14) 

roots 

𝑧𝑖𝐴:     �̂�𝑀(𝑧) = 0, 𝑖 = 1, 2, … ,𝑛 (15) 

have to be in the unit disk 

�𝑧𝑖𝐴� ≤ 1 (16) 

In that way, we get a subset 𝛺𝑀  with M values 
where the models are stable. From this subset we 
choose 

𝑀� :     𝑚𝑖𝑛{𝜎𝜀[𝑀|𝑚,𝑛],   𝑀𝑀𝛺𝑀} (17) 

where  

𝜎𝜀[𝑀|𝑚,𝑛] = �
1
𝑁
�𝜀�̂�2[𝑀|𝑚,𝑛]
𝑁

𝑡=1

  (18) 

is one step output prediction error standard deviation, 

𝜀�̂�[𝑀|𝑚,𝑛] = 𝑦𝑡 − 𝑦�𝑡|𝑡−1[𝑀|𝑚,𝑛] (19) 

is one step output prediction error, 
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𝑦�𝑡|𝑡−1[𝑀|𝑚,𝑛] = 

= 𝑧�1 − �̂�𝑀(𝑧−1)�𝑦𝑡−1 + 𝐵�𝑀(𝑧−1)𝑥𝑡 
 (20) 

is one step output prediction [9] and z is the forward-
shift operator (zyt = yt+1). 

Figs. 7-8 demonstrate examples of prediction error 
standard deviations with every M value for each 
output signal (when the same input signal is used).  

 
Figure 7. Prediction error standard deviation, nose width 
input (Type 2), volunteer no. 4, model order m=1, n=1. 

Lines: solid thick– excitement, dotted– meditation,  
solid thin– frustration, dashed– engagement/boredom 

 
Figure 8. Prediction error standard deviation, distance-

between-eyes input (Type 2), volunteer no. 1,  
model order m=0, n=2. Lines: solid thick– excitement, 

dotted– meditation, solid thin– frustration,  
dashed– engagement/boredom 

The circles indicate M values where the error 
standard deviations were the smallest in each output 
case. If models are not stable with certain M values, 
the error standard deviations are not estimated and 
there are discontinuities in the error standard 
deviations signal. 

Estimates of the model orders – 𝑚�  and 𝑛�  – are 
defined from the following conditions: 

𝑛� :      �
𝜎𝜀�𝑀�|𝑚,𝑛 + 1� − 𝜎𝜀�𝑀�|𝑚,𝑛�

𝜎𝜀�𝑀�|𝑚,𝑛�
� ≤ 𝛿, 

𝑛 = 1,2, … 

𝑚� :      �
𝜎𝜀�𝑀�|𝑚 + 1,𝑛� − 𝜎𝜀�𝑀�|𝑚,𝑛�

𝜎𝜀�𝑀�|𝑚,𝑛�
� ≤ 𝛿, 

𝑚 = 0,1, … ,𝑛 

 (21) 

where 𝛿 > 0 is a chosen constant value. Usually in the 
practice of identification 𝛿 ∈ [0,001 ÷ 0,01]  what 

corresponds to a relative variation of prediction error 
standard deviation from 0,1% to 1%.  

This way a stable input-output model is built that 
ensures the best one step output signal prediction. 

Figs. 9-10 demonstrate prediction error standard 
deviations for an input-output pair when n=1, 2 and 
m=0, 1, 2 for each model. Fig. 9. shows error standard 
deviation when distance-between-eyes input (Type 1) 
and engagement/boredom output is used for prediction 
for every of five models. Fig. 10. shows the same with 
chin width input (Type 2) and excitement output 
signal.  

 
Figure 9. Prediction error standard deviation, volunteer 

no. 2, distance-between-eyes input signal (Type 1), 
engagement/boredom output signal 

 
Figure 10. Prediction error standard deviation, volunteer 

no. 3, chin width input signal (Type 2),  
excitement output signal 

5. Models validation 
Every stimuli type requires 12 input-output models 

for each volunteer. Each model is selected from five 
possible models (when n=1, 2; m=0, …, n) using the 
rule (21). Two types of stimuli for each of five 
volunteers were used, so 120 models were analyzed. 
The analysis of five volunteers’ data showed that 
relations between each of three stimuli (distance 
between eyes, nose width, and chin width) and 
excitement output signal can be modeled when model 
order is 𝑚� = 0 and 𝑛� = 1. Relations between each of 
three stimuli and meditation, frustration and 
engagement/boredom output signals are best modeled 
when model order is 𝑚� = 0 and 𝑛� = 2. 

Every model was validated through the output 
signal (excitement, meditation, engagement/boredom, 
frustration) prediction analysis. The predicted output 
signals have the following expression [8]: 
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𝑦�𝑡+1|𝑡 = 𝑧�1 − �̂�(𝑧−1)�𝑦𝑡 + 𝐵�(𝑧−1)𝑥𝑡+1 = 

= −�𝑎�𝑖𝑦𝑡+1−𝑖 +
𝑛�

𝑖=1

�𝑏�𝑗𝑥𝑡+1−𝑗

𝑚�

𝑗=0

 
 (22) 

Prediction accuracies were evaluated using the 
following measures:  

• prediction error standard deviation 

𝜎𝜀 = �1
𝑁
� �𝑦𝑡+1 − 𝑦�𝑡+1|𝑡�

2𝑁−1

𝑡=0
 (23) 

• relative prediction error standard deviation 

𝜎�𝜀 = �1
𝑁
� �𝑦𝑡+1−𝑦

�𝑡+1|𝑡

𝑦𝑡+1
�
2

𝑁−1

𝑡=0

∗ 100% (24) 

• and average absolute relative prediction error 

|𝜀|̅ = 1
𝑁
� �𝑦𝑡+1−𝑦

�𝑡+1|𝑡

𝑦𝑡+1
�

𝑁−1

𝑡=0
∗ 100% (25) 

Measures of prediction accuracy (23) - (25) are 
given in Tables 3-7. 

Table 3. Prediction accuracy measures, volunteer no. 1 

Input 
stimulus 

Output 
reaction 

Input TYPE 1 Input TYPE 2 

𝝈𝜺 
𝝈�𝜺, 
% 

|𝜺�|, 
% 𝝈𝜺 

𝝈�𝜺, 
% 

|𝜺�|, 
% 

Distance 
between 

eyes 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.044 
0.006 
0.011 
0.010 

11.5 
1.9 
2.1 
1.6 

7.79 
1.5 
1.4 
1.5 

0.054 
0.010 
0.023 
0.010 

13.8 
3.0 
4.0 
1.7 

8.6 
2.6 
2.8 
1.7 

Nose 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.038 
0.005 
0.017 
0.003 

16.0 
2.0 
4.9 
0.6 

10.5 
1.4 
3.3 
0.5 

0.031 
0.007 
0.019 
0.013 

16.1 
2.2 
7.4 
2.4 

9.4 
1.7 
5.0 
2.2 

Chin 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.026 
0.007 
0.017 
0.004 

10.9 
2.7 
4.1 
0.8 

7.0 
1.7 
2.9 
0.5 

0.017 
0.005 
0.016 
0.014 

8.2 
2.6 
4.8 
2.9 

5.2 
1.7 
3.6 
2.8 

 

Table 4. Prediction accuracy measures, volunteer no. 2 

Input 
stimulus 

Output 
reaction 

Input TYPE 1 Input TYPE 2 

𝝈𝜺 
𝝈�𝜺, 
% 

|𝜺�|, 
% 𝝈𝜺 

𝝈�𝜺, 
% 

|𝜺�|, 
% 

Distance 
between 

eyes 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.057 
0.037 
0.016 
0.005 

10.8 
1.1 
3.4 
0.7 

8.3 
1.0 
2.5 
0.5 

0.041 
0.005 
0.023 
0.008 

20.3 
1.4 
7.4 
1.4 

15.4 
1.1 
5.2 
1.1 

Nose 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.062 
0.002 
0.016 
0.005 

18.3 
0.8 
4.7 
0.8 

12.3 
0.7 
3.4 
0.6 

0.055 
0.008 
0.024 
0.007 

12.2 
2.5 
3.8 
1.8 

8.0 
2.4 
2.6 
1.2 

Chin 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.040 
0.002 
0.015 
0.006 

18.7 
0.8 
4.5 
1.0 

11.8 
0.6 
3.3 
0.8 

0.077 
0.005 
0.020 
0.006 

20.6 
1.6 
3.9 
1.3 

14.4 
1.2 
2.9 
0.9 

 

Table 5. Prediction accuracy measures, volunteer no. 3 

Input 
stimulus 

Output 
reaction 

Input TYPE 1 Input TYPE 2 

𝝈𝜺 
𝝈�𝜺, 
% 

|𝜺�|, 
% 𝝈𝜺 

𝝈�𝜺, 
% 

|𝜺�|, 
% 

Distance 
between 

eyes 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.027 
0.007 
0.009 
0.013 

10.6 
4.1 
2.0 
1.5 

8.7 
2.9 
1.4 
1.2 

0.025 
0.010 
0.014 
0.015 

9.2 
5.2 
3.3 
1.7 

7.4 
4.2 
2.8 
1.0 

Nose 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.026 
0.006 
0.010 
0.010 

9.1 
2.8 
1.9 
1.2 

7.3 
1.7 
1.5 
0.9 

0.033 
0.006 
0.021 
0.011 

11.0 
3.2 
3.3 
1.5 

8.2 
2.2 
2.4 
1.2 

Chin 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.040 
0.002 
0.015 
0.006 

18.7 
0.8 
4.5 
1.0 

11.8 
0.6 
3.3 
0.8 

0.040 
0.006 
0.025 
0.010 

11.8 
3.3 
4.4 
1.4 

9.7 
2.3 
3.6 
1.0 

 

Table 6. Prediction accuracy measures, volunteer no. 4 

Input 
stimulus 

Output 
reaction 

Input TYPE 1 Input TYPE 2 

𝝈𝜺 
𝝈�𝜺, 
% 

|𝜺�|, 
% 𝝈𝜺 

𝝈�𝜺, 
% 

|𝜺�|, 
% 

Distance 
between 

eyes 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.052 
0.002 
0.021 
0.008 

11.5 
0.7 
4.2 
1.2 

8.7 
0.5 
2.8 
0.9 

0.060 
0.011 
0.026 
0.011 

17.1 
3.5 
7.3 
2.0 

12.7 
3.3 
4.8 
1.3 

Nose 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.057 
0.003 
0.022 
0.010 

17.0 
0.9 
5.8 
1.7 

12.4 
0.7 
4.1 
1.1 

0.064 
0.006 
0.033 
0.012 

12.4 
1.6 
5.7 
2.9 

10.1 
0.9 
3.8 
1.8 

Chin 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.066 
0.004 
0.021 
0.008 

13.4 
1.2 
5.7 
1.4 

10.6 
0.9 
3.5 
1.0 

0.063 
0.005 
0.033 
0.010 

16.6 
1.8 
7.9 
2.0 

11.6 
1.1 
5.6 
1.6 

 

Table 7. Prediction accuracy measures, volunteer no. 5 

Input 
stimulus 

Output 
reaction 

Input TYPE 1 Input TYPE 2 

𝝈𝜺 
𝝈�𝜺, 
% 

|𝜺�|, 
% 𝝈𝜺 

𝝈�𝜺, 
% 

|𝜺�|, 
% 

Distance 
between 

eyes 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.053 
0.002 
0.015 
0.010 

16.9 
0.9 
5.2 
2.8 

12.4 
0.6 
3.4 
1.6 

0.068 
0.005 
0.012 
0.012 

10.2 
1.4 
3.1 
2.7 

7.9 
1.2 
2.2 
2.3 

Nose 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.062 
0.003 
0.015 
0.012 

15.6 
1.0 
4.4 
3.0 

10.2 
0.8 
2.7 
2.0 

0.048 
0.006 
0.014 
0.014 

14.6 
1.9 
3.0 
3.6 

9.9 
1.6 
2.2 
2.6 

Chin 
width 

Excitement 
Meditation 
Frustration 
Eng/Bor 

0.059 
0.005 
0.009 
0.008 

18.3 
1.6 
2.7 
1.5 

10.8 
1.2 
1.9 
1.1 

0.054 
0.005 
0.018 
0.012 

18.8 
1.5 
4.1 
3.0 

13.5 
1.0 
2.7 
2.1 

 
Figs. 11-22 demonstrate observed output signals, 

their predictions and prediction errors. 
Figs. 11-16 demonstrate observed output signals, 

their predictions and prediction errors of female 
volunteer when Type 1 and Type 2 inputs are used. 
Figs. 17-22 demonstrate the same signals of a male 
volunteer when Type 1 and Type 2 inputs are used. 
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Figure 11. Volunteer no. 1 (female), distance between eyes 

TYPE 1 input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction error 

between observed and predicted signal 

 
Figure 12. Volunteer no. 1 (female), nose width TYPE 1 

input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction  

error between observed and predicted signal 

 
Figure 13. Volunteer no. 1 (female), chin width TYPE 1 

input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction  

error between observed and predicted signal 

 
Figure 14. Volunteer no. 1 (female), distance between eyes 

TYPE 2 input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction  

error between observed and predicted signal 

 
Figure 15. Volunteer no. 1 (female), nose width TYPE 2 

input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction  

error between observed and predicted signal 

 
Figure 16. Volunteer no. 1 (female), chin width TYPE 2 

input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction  

error between observed and predicted signal 
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Figure 17. Volunteer no. 4 (male), distance between eyes 
TYPE 1 input. Solid thick line – observed signal, dotted  

line – predicted signal, solid thin line – prediction  
error between observed and predicted signal 

 
Figure 18. Volunteer no. 4, (male) nose width TYPE 1 

input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction  

error between observed and predicted signal 

 
Figure 19. Volunteer no. 4 (male), chin width TYPE 1 

input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction  

error between observed and predicted signal 

 
Figure 20. Volunteer no. 4 (male), distance between eyes 
TYPE 2 input. Solid thick line – observed signal, dotted  

line – predicted signal, solid thin line – prediction  
error between observed and predicted signal 

 
Figure 21. Volunteer no. 4 (male), nose width TYPE 2 

input. Solid thick line – observed signal, dotted  
line – predicted signal, solid thin line – prediction  

error between observed and predicted signal 

 
Figure 22. Volunteer no. 4(male), chin width TYPE 2 input. 

Solid thick line – observed signal, dotted line – predicted 
signal, solid thin line – prediction error between  

observed and predicted signal 
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Results of model validation demonstrate that 
average absolute relative prediction errors of 
meditation and engagement/boredom signals in all 
five volunteer cases were less than 1.5 %, frustration – 
less than 3.5 %, and excitement – less than 10 %. The 
corresponding relative error standard deviation 
averages are less than 2 % for meditation and 
engagement/boredom, less than 4.5 % for frustration 
and less than 15 % for excitement output signals. 

Predictive models are necessary in the design of 
predictor-based self-tuning control systems [2], [9]. 
High prediction accuracies of the built models allow 
expecting that they can be a basis for this type control 
systems of human reactions to virtual stimuli. Such 
systems could serve as a mean for regulation of 
human attention level in learning applications as well 
as in computerized workplaces for dispatchers. 

6. Conclusions 
Cross-correlation analysis demonstrated that there 

is a relatively high correlation between stimuli (input) 
and human response (output) and that evidences the 
existence of linear dynamic relations between them. 

When using cross- and auto-correlation functions, 
a new method for building an input-output model was 
proposed. It allows building a stable model for output 
signal prediction with the least prediction error. The 
models allow describing the dynamic dependencies 
between virtual 3D face that changes during time and 
the reactions to it.  

Validation results of the models demonstrate that 
every volunteer reacted to the stimuli individually and 
the reactions are described by input-output models 
with different estimates of polynomial coefficient. 

The models describe the dependencies between 
every input signal (distance between eyes, nose width 
and chin width) and every corresponding output signal 
(excitement, meditation, engagement/boredom, and 
frustration) in high accuracy: averages of absolute 
relative prediction errors of engagement/boredom and 
meditation signals in five volunteer cases were less 
than 1.5 %, frustration – less than 3.5 %, and 
excitement – less than 10 %. 
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