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Abstract. This paper presents a fuzzy sequential pattern mining algorithm based on independent pruning strategy 

for parameters optimization of ball mill pulverizing system. Based on the Apriori-alike process, the proposed algorithm 

uses the independent pruning strategy to mine the fuzzy sequential patterns, which could enhance the efficiency of the 

algorithm. Then, the optimal values of the process variables are determined by a searching method with the mined 

sequential patterns. The improved fuzzy sequential pattern support and the fuzzy sequential pattern confidence are 

adopted to ensure the accuracy of the mined sequential patterns. Moreover, the sliding time window technique is used to 

ensure the completeness of mining results. The experimental results for parameters optimization of ball mill pulverizing 

system also verify that the proposed algorithm could determine the optimal values correctly and the running time is not 

long. In addition, the proposed algorithm has been put into practice successfully and the statistic data show that the 

pulverizing capability of ball mill pulverizing system is increased and the energy consumption would be reduced. 

Keywords: ball mill pulverizing system; parameters optimization; data mining; fuzzy sequential pattern mining; 

independent pruning strategy. 

 

1. Introduction 

Energy saving is very necessary with the increase of 

the development demand and the energy crisis [1]. Ball 

mill pulverizing system of the thermal power plant 

is a typical high energy consumption equipment. It 

provides the pulverized coal powder for the boiler and 

uses 15-25% of the whole energy consumption of the 

thermal power plant [2]. Moreover, ball mill pulveri-

zing system has been used in more than sixty percent 

thermal power plants in China for its adaptability to 

various kinds of coal [3]. Therefore, optimizing the 

ball mill pulverizing system is of important theoretical 

significance and practical motivation for the serious 

situation of coal and power shortages [4]. 

To optimize the ball mill pulverizing system is to 

let it work on the optimal state, namely, the process 

variables of ball mill pulverizing system are set as their 

optimal values respectively. Some fuzzy technique ba-

sed algorithm have been applied for ball mill pulve-

rizing system. A new self-tuning fuzzy controller is 

proposed and the coefficients of the deviation and its 

differential can be adjusted automatically [5]. A 

Takagi-Sugeno fuzzy modeling based on subtraetive 

clustering is presented for ball mill pulverizing system 

and may be beneficial for the design of the advanced 

model-based controller [6]. An interpolation-based 

fuzzy controller is proposed and it uses the Newton 

interpolation algorithm to improve the control precision 

[7]. Although these methods are applied in field 

sucessfully, they control the plant based on the fixed 

setpoints. If the setpoints are set unsuitably, namely, 

they are far away from the optimal values of process 

variables, the controller would result in high energy 

costs of ball mill pulverizing system [8]. In general, 

the optimal values of process variables are the design 

values supplied by the manufacturer. Nevertheless, the 

ball mill pulverizing system is a multi-variable com-

plex system [9], and the optimal values would shift 

with the change of coal hardness, the shatter of the 

steel ball, the abrasion of the mill wall, and so on. 

Although the optimal values of process variables 

could be calibrated by the periodical field experi-

ments, the working strength of operators would be 

increased and the boiler may be disturbed by the field 

experiments. To deal with the disadvantages of the 

field experiment, a steady state optimization strategy 

[10] and a grid search method [11] are presented. 

These methods could be used effectively when there 

is sufficient knowledge of the mathematics model of 

the ball mill pulverizing system. Hill-climbing method 
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could be implemented for ball mill pulverizing system 

conveniently [12,13], but the initial points and the 

searching direction always affect the optimization 

results. Particle swarm optimization (PSO) [14] and 

genetic algorithm (GA) [15] are the heuristics algo-

rithms. However, PSO and GA may be trapped in the 

premature convergence. Hill-climbing method, PSO 

and GA perform based on a fitness function, and a 

precision optimization function for a complex industrial 

process may not be built easily. Because the industrial 

process always has large inertia, large delay and time-

variance, the optimization function modeled by the 

history field data would become unsuitable with the 

working condition changing. Since these approaches 

would cost long time, the optimal values of process 

variables determined according to the fitness function 

only may represent the history working condition and 

may not be used for the current working condition. 

Furthermore, Hill-climbing method, PSO and GA 

usually try the different values of process variables and 

the efficiency of the industrial process would be 

affected. Especially, for PSO and GA, the initial values 

are selected randomly, and some initial values of 

process variables at the same time for representing the 

system states may not be exist in reality. Hence, the 

realization of these optimization algorithms would be 

limited in field. In addition, optimizing the industrial 

process is generally a multi-variables optimization task, 

and the coupling between the process variables would 

limit the application of these methods. If the system 

state of industry process could be represented by some 

form of knowledge, for example, linguistic rules, the 

feasibility of industry process optimization in field 

would be improved in a certain extent. 

Sequential pattern mining is an important activity 

in data mining. It finds frequently occurring ordered 

events or subsequences as patterns [16] and has found a 

variety of applications, such as touring guiding service 

[17], web page access analysis [18], customer relation-

ship management [19], etc. For an industrial process, 

such as the ball mill pulverizing system, the values of 

the process variables are typically measured at equal 

time intervals and recorded in the field database, and 

the database could be seemed as a sequence database. 

We perform the sequential pattern mining on the field 

data to obtain the sequential patterns and let them be 

represented in the form of the association rules, that 

the process values of variables are expressed by lin-

guistic terms in the antecedent, and the steady-state 

values of variables and the optimization goal are 

expressed by linguistic terms in the consequence. 

Then, according to the mined sequential patterns and 

the measurement values, the optimal values of the 

process variables on the current working condition 

would be determined without tedious searching 

process. The sequential pattern mining algorithm is 

first introduced in [20] and some improved algorithms 

are presented recently [21-23]. 

However, they could not be adopted for the indus-

trial process optimization directly. The current algo-

rithms mainly focus on detecting all frequent sequential 

patterns rather than estimation of the association rules 

for optimization. Not all of mined sequential patterns 

are suitable for optimization, for example, the fre-

quent sequential patterns denoting the relationship of a 

variable at different time would be useless. Although 

we could remove the unnecessary frequent sequential 

patterns in the postprocessing, some necessary fre-

quent sequential patterns may not be found in mining 

process with the unsuitable threshold of the minimum 

support. Moreover, the field database of industrial 

process includes the measured values of the variables 

on the different working conditions. If the number of 

records in the database on any working condition is 

less, the sequential patterns of the working condition 

would be ignored because the supports of them are 

smaller. 

In the paper, we propose a fuzzy sequential pattern 

mining algorithm based on independent pruning strate-

gy for parameters optimization of ball mill pulverizing 

system. The algorithm partitions the quantitative attri-

butes by the membership functions and uses an Apriori-

alike process to mine the fuzzy sequential patterns 

based on the independent pruning strategy, which 

could enhance the efficiency of the algorithm. Then, 

the algorithm determines the optimal values of the 

process variables by a searching method with the mined 

sequential patterns. Furthermore, the sliding time 

window technique is adopted to ensure the complete-

ness of mined results, and the improved fuzzy sequential 

pattern support and the fuzzy sequential pattern confi-

dence are proposed to ensure the accuracy of the mined 

sequential patterns. The organization of this paper is as 

follows: In Section 2, the characteristics of ball mill 

pulverizing system are introduced. The proposed algo-

rithm is explained in detail in Section 3. In Section 4, 

the experiments are presented to verify the effecti-

veness and the practicability of the proposed algo-

rithm. Finally, Section 5 concludes the paper. 

2. Ball Mill Pulverizing System 

The schematic representation of a ball mill 

pulverizing system is shown in Fig. 1. The ball mill is 

fed with raw coal, and at the same time, the hot air 

and the recycle air are blown into the ball mill to dry 

and deliver the coal powder. After pulverizing, the coal 

powder is transferred into the coarse classifier and the 

fine classifier. The unqualified powder is fed back for 

further pulverizing while the accepted powder is stored 

in the pulverized coal bunker finally. 

Pulverizing capability is the most important measu-

rement for the efficiency of ball mill pulverizing system 

and is related to ball mill load [24]. The ball mill load 

is the ratio between the volume of coal powder in the 

mill and the interstitial volume of the static ball charge. 

The characteristics of ball mill pulverizing system are 

shown in Fig. 2. 𝑙 is ball mill load, functions 𝑝(𝑙) and 
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𝑝𝑐(𝑙)  versus 𝑙  represent the power of ball mill motor 

and the pulverizing capability, respectively. 𝑝𝑚  and 

𝑝𝑐𝑚  are the maximum values of 𝑝(𝑙)  and 𝑝𝑐(𝑙) , 

respectively. For 𝑙 < 𝑙1, the pulverizing capability is so 

small that the ball mill works inefficiently and the lower 

level of the ball mill load leads to the mill wall worn 

faster. For 𝑙 > 𝑙2 , the ball mill works in the unstable 

region and the higher level of the ball mill load may 

lead the ball mill to be clogged. For 𝑙 is in the interval 

( 𝑙1, 𝑙2 ), the pulverizing capability is larger and the 

change of the power of ball mill motor becomes less, so 

the ball mill works efficiently. However, for enhancing 

the pulverizing capability, it is no use merely increasing 

the coal feed based on the ball mill load, and the outlet 

temperature and the inlet negative pressure should be 

controlled in the suitable value respectively. For 

example, if the outlet temperature is too low, the drying 

will not be sufficient with the coal feed increasing and 

the pulverizing capability would be decreased. 

Furthermore, letting the outlet temperature be higher 

would be a risk that the coal powder in the mill might 

be ignited [25]. The inlet negative pressure affects the 

delivery of coal powder. If the value of the inlet 

negative pressure is not enough high with the coal feed 

increasing, the pulverized coal powder would not be 

transferred efficiently and the pulverizing capability 

could not be increased. Moreover, increasing the inlet 

negative pressure blindly would make some coal 

powder be released outside the ball mill causing 

environmental pollution and bodily injury. Therefore, 

to optimize the ball mill pulverizing system is to 

determine the optimal values of the ball mill load, the 

outlet temperature and the inlet negative pressure 

respectively with the pulverizing capability being 

maximal.  

3. The Algorithm 

In this section, the proposed algorithm will be dis-

cussed in detail. The proposed algorithm includes two 

procedures. One is the fuzzy sequential patterns mining 

algorithm based on independent pruning strategy, the 

other is the optimal values searching method based on 

the mined fuzzy sequential patterns. Some notations 

would be explained beforehand. For an industrial pro-

cess, 𝑥1, 𝑥2, … , 𝑥𝑝 are the process variables and 𝑝 is the 

number of process variables. 𝑦1, 𝑦2 , … , 𝑦𝑞   are the 

regulation variables, which are used for adjusting the 

actuators, and 𝑞 is the number of regulation variables. 

𝓏  is the optimization goal variable. We assume that 

𝑠𝑥1, 𝑠𝑥2, … , 𝑠𝑥𝑝  are the steady-state values of 

𝑥1, 𝑥2, … , 𝑥𝑝, respectively. Since the mined sequential 

pattern should be represented in the form of the rules, 

𝐴𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑝 , 𝑦1, 𝑦2 , … , 𝑦𝑞}  and 𝐶𝑆 = {𝑧, 𝑠𝑥1,

𝑠𝑥2, … , 𝑠𝑥𝑝}  could be regarded as the antecedent set 

and the consequent set, respectively. If these variables 

are deemed as the dimensions of the sequence database, 

the database used for sequential pattern mining is 𝐷 =
{𝑥1, 𝑥2, … , 𝑥𝑝 , 𝑦1, 𝑦2 , … , 𝑦𝑞 , 𝓏, 𝑠𝑥1, 𝑠𝑥2, … , 𝑠𝑥𝑝}. 

 

Figure 1. Ball mill pulverizing system 

 

Figure 2. Characteristics of ball mill pulverizing system 

Procedure 1. Fuzzy Sequential Patterns Mining 

Algorithm Based on Independent Pruning Strategy. 

Input: 𝐷 , the minimum support 𝜎(𝑠𝑢𝑝) , the 

minimum confidence 𝜎(𝑐𝑜𝑛𝑓), the size of sliding time 

window 𝑤𝑠, the gap of sliding time window 𝑤𝑔. 

Output: fuzzy sequential patterns. 

Step 1. Transforming the 𝐴𝑆 to 𝐴𝑆∗ by considering 

the changes of the variables. 

In the actual working, the operators always adjust 

the regulation variables according to the working 

condition and the industrial process would be from one 

steady state to the other steady state. Consequently, the 

changes of the process variables and the regulation 

variables should be considered for fuzzy sequential 

pattern mining. The antecedent set 𝐴𝑆 is trans formed 

to 𝐴𝑆∗, which is 

𝐴𝑆∗ = {𝑥1, 𝑥2, … , 𝑥𝑝, 𝑦1, 𝑦2, … , 𝑦𝑞 , ∆𝑥1, ∆𝑥2, 

… , ∆𝑥𝑝, ∆𝑦1, ∆𝑦2, … , ∆𝑦𝑞} 

where ∆𝑥1, ∆𝑥2, … , ∆𝑥𝑝 , represent the changes of 𝑥1,

𝑥2, … , 𝑥𝑝  and ∆𝑦1, ∆𝑦2, … , ∆𝑦𝑞  , represent the changes 

of 𝑦1, 𝑦2, … , 𝑦𝑞. 

Because the variables are recorded in the database 

at equal time intervals, the changes could be calculated 

based on a record with its next neighbor record. For 

example, 𝑥1(𝑡) and 𝑥1(𝑡 + 1) are the measured values 

of 𝑥1  at time 𝑡  and 𝑡 + 1 , respectively, and △ 𝑥1 =
𝑥1(𝑡 + 1) − 𝑥1(𝑡). 
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Then the sequence database 𝐷 becomes 𝐷∗, which 

is  

𝐷∗ = {𝑥1, 𝑥2, … , 𝑥𝑝, 𝑦1, 𝑦2, … , 𝑦𝑞 , ∆𝑥1, ∆𝑥2, … ,

∆𝑥𝑝, ∆𝑦1, ∆𝑦2, … , ∆𝑦𝑞 , 𝓏, 𝑠𝑥1, 𝑠𝑥2, … , 𝑠𝑥𝑝}. 

The number of dimensions of 𝐷∗ is (3𝑝 + 2𝑞 + 1). 

Step 2. Partitioning the quantitative dimensions  

of 𝐷∗. 

For fuzzy sequential patterns mining, we use an 

Apriori-alike process which could be implemented in 

field easily. Since every dimensions of 𝐷∗ are quantita-

tive, they should be partitioned firstly. Nevertheless, the 

sharp boundary may under-emphasize or over-

emphasize the objects near the boundaries of intervals 

in the mining process. To deal with the problem, fuzzy 

sets are used in partitioning [26]. 

We assume that the linguistic variables of 𝑥1, 𝑥2, … ,
𝑥𝑝, 𝑦1, 𝑦2, … , 𝑦𝑞 , 𝓏, 𝑠𝑥1, 𝑠𝑥2, … , 𝑠𝑥𝑝  are 𝑋1, 𝑋2, … , 𝑋𝑝,

𝑌1, 𝑌2, … , 𝑌𝑞 , 𝑍, 𝑆𝑋1, 𝑆𝑋2, … , 𝑆𝑋𝑝, respectively. To faci-

litate the quantitative dimension partition, they use the 

same fuzzy universe and the linguistic terms. The 

unified fuzzy universe is [0, 1], and the set of fuzzy 

linguistic terms are {S, RS, M, RB, B}, where S, RS, 

M, RB and B represent smallest, relatively smaller, 

middle, relatively bigger, biggest, respectively. More-

over, the triangular function is adopted as membership 

function and the variables use the same membership 

function shown in Fig. 3. 

 

Figure 3. Membership function of the variables 

It is assumed that the linguistic variables of ∆𝑥1,
∆𝑥2, … , ∆𝑥𝑝, ∆𝑦1, ∆𝑦2, … , ∆𝑦𝑞   are ∆𝑋1, ∆𝑋2, … , ∆𝑋𝑝,

∆𝑌1, ∆𝑌2, … , ∆𝑌𝑞 , respectively, and the unified fuzzy 

universe of them are all [-1, 1]. The set of fuzzy lin-

guistic terms is {NB, NS, ZO, PS, PB}, where NB, NS, 

ZO, PS and PB represent negative big, negative small, 

zero, positive small and positive big, respectively, and 

they use the same membership function shown in 

Fig. 4. 

 

Figure 4. Membership function of the change-variables 

After the quantitative dimensions are partitioned, 

each dimension of 𝐷∗  is extended to a set of sub-

dimensions. For example, the sub-dimensions of 𝑥1 are 

𝑥1
𝑆 , 𝑥1

𝑅𝑆, 𝑥1
𝑀, 𝑥1

𝑅𝐵  and 𝑥1
𝐵 , respectively, and the sub-

dimensions of ∆𝑦2  are ∆𝑦2
𝑁𝐵 , ∆𝑦2

𝑁𝑆 , ∆𝑦2
𝑍𝑂 , ∆𝑦2

𝑃𝑆  and 

∆𝑦2
𝑃𝐵, respectively. 

The partitioned sequence database is named �̃� .  

�̃� = {𝑥1
𝑆, 𝑥1

𝑅𝑆, 𝑥1
𝑀, 𝑥1

𝑅𝐵 , 𝑥1
𝐵, … , 𝑥𝑝

𝑆, … , 𝑥𝑝
𝐵, 𝑦1

𝑆 , … , 𝑦1
𝐵 , … ,

𝑦𝑞
𝑆, … , 𝑦𝑞

𝐵 , ∆𝑥1
𝑁𝐵, ∆𝑥1

𝑁𝑆, ∆𝑥1
𝑍𝑂 , ∆𝑥1

𝑃𝑆, ∆𝑥1
𝑃𝐵, … , ∆𝑥𝑝

𝑁𝐵 , … ,

∆𝑥𝑝
𝑃𝐵, ∆𝑦1

𝑁𝐵 , … , ∆𝑦1
𝑃𝐵 , … , ∆𝑦𝑞

𝑁𝐵 , … , ∆𝑦𝑞
𝑃𝐵 , 𝓏 𝑆, … , 𝓏𝐵 , 𝑠𝑥1

𝑆,

… , 𝑠𝑥1
𝐵, … , 𝑠𝑥𝑝

𝑆, … , 𝑠𝑥𝑝
𝐵}. Since the number of dimen-

sions of 𝐷∗  is (3𝑝 + 2𝑞 + 1 ), the number of dimen-

sions of �̃� is 5 ⋅ (3𝑝 + 2𝑞 + 1). 

Moreover, each object in 𝐷∗ is transformed into the 

fuzzy membership value. 𝑑1
∗  is an object in 𝐷∗ , and 

𝑑1
∗ = {𝑣(𝑥1), … , 𝑣(𝑥𝑝), 𝑣(𝑦1), … , 𝑣(𝑦𝑞), 𝑣(∆𝑥1), … ,

𝑣(∆𝑥𝑝), 𝑣(∆𝑦1), … , 𝑣(∆𝑦𝑞), 𝑣(𝓏), 𝑣(𝑠𝑥1), … , 𝑣(𝑠𝑥𝑝)}, 

where 𝑣(⋅) represents the measured value of the corres-

ponding variable. 𝑑1
∗  is transformed into the fuzzy 

membership values and becomes 𝑑1. 𝑑1 = {𝜇𝑆(𝑣(𝑥1)),
𝜇𝑅𝑆(𝑣(𝑥1)), 𝜇𝑀(𝑣(𝑥1)), 𝜇𝑅𝐵(𝑣(𝑥1)), 𝜇𝐵(𝑣(𝑥1)), … ,
𝜇𝑆(𝑣(𝑥𝑝)), … , 𝜇𝐵(𝑣(𝑥𝑝)), 𝜇𝑆(𝑣(𝑦1)), … , 𝜇𝐵(𝑣(𝑦1)),

… , 𝜇𝑆(𝑣(𝑦𝑞)), … , 𝜇𝐵(𝑣(𝑦𝑞)), 𝜇𝑁𝐵(𝑣(∆𝑥1)),

𝜇𝑁𝑆(𝑣(∆𝑥1)), 𝜇𝑍𝑂(𝑣(∆𝑥1)), 𝜇𝑃𝑆(𝑣(∆𝑥1)), 𝜇𝑃𝐵(𝑣(∆𝑥1)),
… , 𝜇𝑁𝐵(𝑣(∆𝑥𝑝)), … , 𝜇𝑃𝐵(𝑣(∆𝑥𝑝)), 𝜇𝑁𝐵(𝑣(∆𝑦1)),

… , 𝜇𝑃𝐵(𝑣(∆𝑦1)), … , 𝜇𝑁𝐵 (𝑣(∆𝑦𝑞)) , … , 𝜇𝑃𝐵 (𝑣(∆𝑦𝑞)), 

 𝜇𝑆(𝑣(𝓏)), … , 𝜇𝐵(𝑣(𝓏)), 𝜇𝑆(𝑣(𝑠𝑥1)), … , 𝜇𝐵(𝑣(𝑠𝑥1)),

… , 𝜇𝑆 (𝑣(𝑠𝑥𝑝)) , … , 𝜇𝐵(𝑣(𝑠𝑥𝑝))}, where, for example, 

μS(v(x1)) represents the membership value with res-

pect to v(x1) for the fuzzy linguistic term 𝑆. 

Step 3. �̃�  is divided into several sub-sequence 

datasets by the sliding time window. 

Since �̃� records the field data of different working 

conditions, the longer time span for sequence pattern 

mining may reduce the significance of the pattern and 

weaken the strength of the implication of the pattern 

[27]. Moreover, if the number of the records of any 

working condition is relatively small, namely, the 

support values is small, the sequence pattern for the 

working condition may not be detected. Therefore, the 

sliding time window is adopted to ensure the 

completeness of mining results, and �̃�  would be 

divided into several sub-sequence datasets. The 𝑚 th 

sub-sequence dataset could be written as 𝐷𝑆𝑚 =
{𝑑(𝑚−1)𝑤𝑔+1, 𝑑(𝑚−1)𝑤𝑔+2

, … , 𝑑(𝑚−1)𝑤𝑔+𝑤𝑠
}, where 

𝑚 ∈ {1, 2, … , 𝑀} , 𝑀  is the number of subsequence 

datasets, and 𝑑𝑐 , 𝑐 ∈ {(𝑚 − 1)𝑤𝑔  + 1, (𝑚 −  1)𝑤𝑔 +

2, … , (𝑚 − 1)𝑤𝑔 + 𝑤𝑠}, is an object in 𝐷𝑆𝑚.  

Step 4. Load the first sub-sequence dataset 𝐷𝑆1 and 

perform the following steps on 𝐷𝑆1. 

Step 5. Choose only one sub-dimension from the 

sub-dimensions set of 𝑥𝑖  and ∆𝑥𝑖 , respectively, where 

𝑖 ∈  {1, 2, … , 𝑝}, and join them to be a candidate se-

quence pattern antecedent (CSPA). For example, 

{𝑥1
𝑆, ∆𝑥1

𝑁𝐵}  and {𝑥1
𝑅𝑆, ∆𝑥1

𝑍𝑂}  are two different CSPAs. 

The fuzzy sequential pattern support (SSup) of the 

CSPA is calculated as given below: 

SSup(CSPA) = ∑ [∏ 𝜇(𝑜𝑘)
𝑂𝑘∈CSPA

]
𝑤𝑠

𝑘=1
  

where 𝑜𝑘 is an element of CSPA for the 𝑘th object in 

the sub-sequence dataset, ∏ 𝜇(𝑜𝑘)
𝑂𝑘∈CSPA

  is the 
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product of the membership value with respect to each 

element of the CSPA. 

If SSup(CSPA) ≥ 𝜎(𝑠𝑢𝑝) , the CSPA is the strong 

sequence pattern antecedent(SSPA). The strong 

sequence pattern antecedent set of 𝑥𝑖 is SSPAS(𝑥𝑖) and 

could be obtained by the ergodic process of all possible 

combinations of the sub-dimensions set of 𝑥𝑖 and ∆𝑥𝑖 , 

where 𝑖 ∈ {1, 2, … , 𝑝} . Because both 𝑥𝑖  and ∆𝑥𝑖  have 

five sub-dimensions, the number of all possible 

combinations of the sub-dimensions set of 𝑥𝑖 and ∆𝑥𝑖  

is 25. 

Step 6. By the same way as in Step 5, the strong 

sequence pattern antecedent sets of all process 

variables would be obtained and they are SSPAS(𝑥1), 
SSPAS (𝑥2) ,…,  SSPAS (𝑥𝑝) . The strong sequence 

pattern antecedent sets of all regulation variables would 

be obtained also and they are SSPAS(𝑦1), SSPAS(𝑦2), , 

SSPAS(𝑦𝑞). 

Step 7. Choose one SSPA form SSPAS (𝑥1) , 

SSPAS(𝑥2) , … , SSPAS(𝑥𝑝 ), SSPAS(𝑦1 ), SSPAS(𝑦2 ), 

… , SSPAS (𝑦𝑞)  respectively, and join them to be a 

candidate combination sequence pattern antecedent 

(CCSPA). If the SSup value of the CCSPA is larger than 

or equal to 𝜎(𝑠𝑢𝑝), the CCSPA is strong combination 

sequence pattern antecedent (SCSPA). After doing the 

ergodic process of all possible combination of SSPA of 

SSPAS(𝑥1 ), SSPAS(𝑥2) , … , SSPAS(𝑥𝑝 ), SSPAS(𝑦1 ), 

SSPAS(𝑦2 ), … , SSPAS(𝑦𝑞 ), we could get the strong 

combination sequence pattern antecedent set 

(SCSPAS). 

The Apriori Principle is an important theorem and it 

means that if an itemset is infrequent, then all of its 

supersets must be infrequent too [28]. Therefore, for 

Steps 5-7, we determine SSPA of every two antecedents 

firstly and then obtain SCSPAS based on the Apriori 

Principle, that would decrease the complexity of the 

proposed algorithm. 

Step 8. Choose only one sub-dimension from the 

sub-dimensions set of 𝓏, 𝑠𝑥1, 𝑠𝑥2, … , 𝑠𝑥𝑝  respectively, 

and join them to be a candidate combination sequence 

pattern consequence (CCSPC). If the SSup value of the 

CCSPC is larger than or equal to 𝜎(𝑠𝑢𝑝), the CCSPC 

is the strong combination sequence pattern consequen-

ce (SCSPC). The strong sequence pattern consequence 

set (SCSPCS) could be obtained by the ergodic process 

of all possible combinations for the sub-dimensions set 

of 𝓏, 𝑠𝑥1, 𝑠𝑥2, … , 𝑠𝑥𝑝. 

Step 9. Join one CCSPA of SCSPAS, which is re-

presented by 𝐴, and one CCSPC of SCSPCS, which is 

represented by 𝐵, to be a candidate sub-sequence pat-

tern (CSSP). The fuzzy sequential pattern confidence 

(SConf) of CSSP could be computed as given below: 

SSup(CSPA) =

∑ [∏ 𝜇(𝑎𝑘)𝑎𝑘∈𝐴 × ∏ 𝜇(𝑏𝑘)𝑏𝑘∈𝐵 ]
𝑤𝑠

𝑘=1

∑ [∏ 𝜇(𝑎𝑘)𝑎𝑘∈𝐴

𝑤𝑠

𝑘=1
]

 

where 𝑎𝑘  is an element of 𝐴  for the kth object in the 

sub-sequence dataset, 𝑏𝑘 is an element of 𝐵 for the kth 

object in the sub-sequence dataset, ∏ 𝜇(𝑎𝑘)𝑎𝑘∈𝐴  is the 

product of the membership value with respect to each 

element of 𝐴 , ∏ 𝜇(𝑏𝑘)𝑏𝑘∈𝐵   is the product of the 

membership value with respect to each element of 𝐵, 

and “×" is the product operation. 

If the SConf value of the CSSP is larger than or 

equal to 𝜎(𝑐𝑜𝑛𝑓), the CSSP is the strong subsequence 

pattern(SSSP), and the strong sub-sequence pattern 

set(SSSPS) would be obtained by doing the ergodic 

process of all possible combinations of CCSPA of 

SCSPAS and CCSPC of SCSPCS. 

For Steps 5-9, we present the independent pruning 

strategy on the antecedent set and the consequent set 

respectively, that not only ensures the standardization 

of mined sequence patterns but also enhances the 

efficiency of the algorithm. 

Step 10. Slide the time window and load the next 

sub-sequence dataset. Repeating Steps 5-9, we can 

obtain other strong sub-sequence pattern sets. 

Step 11. If all of sub-sequence datasets have been 

loaded, then do the next step, otherwise, go to Step 10. 

Step 12. Merge all strong sub-sequence pattern sets 

of every sub-sequence dataset to get the fuzzy 

sequential patterns of 𝐷 and output the results. 

Let 𝑚𝑓𝑠𝑝𝑡 , 𝑡 ∈ {1, 2, … , 𝑁}  represent a mined 

fuzzy sequential pattern and 𝑁 be the number of mined 

fuzzy sequential patterns. So, the set including all 

mined fuzzy sequential patterns is represented by 

MFSP. In the field, the following procedure could be 

implemented easily for determining the optimal values 

of 𝑥1, 𝑥2, … , 𝑥𝑝. 

Procedure 2. Optimal Values Searching method 

with Fuzzy Sequential Patterns 

Input: MFSP. 

Output: the optimal values of 𝑥1, 𝑥2, … , 𝑥𝑝. 

Step 1. We assume that 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑝
′ , 𝑦1

′ , 𝑦2
′ , … , 𝑦𝑞

′  

are the measurement values of 𝑥1, 𝑥2, … , 𝑥𝑝 , 𝑦1, 𝑦2 , … ,

𝑦𝑞  respectively on the current working condition. 

Fuzzificate 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑝
′ , 𝑦1

′ , 𝑦2
′ , … , 𝑦𝑞

′   based on the 

membership functions shown in Fig. 3 and Fig. 4, 

respectively. Then, combine the linguistic terms of 

them to obtain some initial antecedents. An initial 

antecedent is represented by {𝑋1
′ , 𝑋2

′ , … , 𝑋𝑝
′ , 𝑌1

′, 𝑌2
′, … ,

𝑌𝑞
′} , where 𝑋1

′ , 𝑋2
′ , … , 𝑋𝑝

′ , 𝑌1
′, 𝑌2

′, … , 𝑌𝑞
′  are the corres-

ponding linguistic terms of 𝑥1
′ , 𝑥2

′ , … , 𝑥𝑝
′ , 𝑦1

′ , 𝑦2
′ , … , 𝑦𝑞

′  , 

respectively. 

Step 2. Scan the MFSP, the sequential pattern 

including {𝑋1
′ , 𝑋2

′ , … , 𝑋𝑝
′ , 𝑌1

′, 𝑌2
′, … , 𝑌𝑞

′} is named as the 

initial sequential pattern (ISP), namely, ISP ⊃
{𝑋1

′ , 𝑋2
′ , … , 𝑋𝑝

′ , 𝑌1
′, 𝑌2

′, … , 𝑌𝑞
′}. 
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Step 3. The linguistic terms of ∆𝑥1, ∆𝑥2, … , ∆𝑥𝑝 in 

ISP are ∆𝑋1, ∆𝑋2, … , ∆𝑋𝑝, respectively. Defuzzificating 

∆𝑋1
′ , ∆𝑋2

′ , … , ∆𝑋𝑝
′  and transferring them to the corres-

ponding real value ranges could obtain ∆𝑥1
′ , ∆𝑥2

′ ,
… , ∆𝑥𝑝

′ . It is assumed that the temporary optimal values 

of 𝑥1, 𝑥2, … , 𝑥𝑝  are (𝑥1
′ + ∆𝑥1

′ ), (𝑥2
′ + ∆𝑥2

′ ), … , (𝑥𝑝
′ +

∆𝑥𝑝
′ ) respectively. 

Step 4. Operate the actuators according to these 

temporary optimal values. If there is a controller for the 

industrial process in the field, the set values of 𝑥1, 𝑥2,
… , 𝑥𝑝  are adjusted to be (𝑥1

′ + ∆𝑥1
′ ), (𝑥2

′ + ∆𝑥2
′ ), … ,

(𝑥𝑝
′ + ∆𝑥𝑝

′ ) respectively. 

Step 5. After the industrial process enters the other 

steady state again, the change of the optimization goal 

𝓏  is evaluated. For example, the optimization goal is 

pulverizing capability. The larger the value of pulveri-

zing capability, the better the optimization goal. If 𝓏 

becomes better, then calculate the current values of 

∆𝑦1, ∆𝑦2, … , ∆𝑦𝑞  , which are named as ∆𝑦1
′ , ∆𝑦2

′ , … ,

∆𝑦𝑞
′  , respectively. Fuzzificate ∆𝑦1

′ , ∆𝑦2
′ , … , ∆𝑦𝑞

′   to 

obtain their linguistic terms ∆𝑌1
′, ∆𝑌2

′, … , ∆𝑌𝑞
′, respecti-

vely. 

Step 6. Scan MFSP to find the sequential pattern 

including {𝑋1
′ , 𝑋2

′ , … , 𝑋𝑝
′ , 𝑌1

′, 𝑌2
′, … , 𝑌𝑞

′, ∆𝑌1
′, ∆𝑌2

′, … ,

∆𝑌𝑞
′},  which is named as the candidate sequential 

pattern (CSP), namely, CSP ⊃ {𝑋1
′ , 𝑋2

′ , … , 𝑋𝑝
′ , 𝑌1

′, 𝑌2
′,

… , 𝑌𝑞
′, ∆𝑌1

′, ∆𝑌2
′, … , ∆𝑌𝑞

′}, then the CSP is recorded in 

the target sequential pattern set (TSPS). 

Step 7. Scan the MFSP based on {𝑋1
′ , 𝑋2

′ , … , 𝑋𝑝
′ , 𝑌1

′,

𝑌2
′, … , 𝑌𝑞

′}, and find other ISP. Repeating Steps 3-6, we 

would obtain other CSP. 

Step 8. If no new ISP is found, then do the next step, 

otherwise, go to Step 7. 

Step 9. If the ergodic process of all possible initial 

antecedents has been completed, then do the next step, 

otherwise, go to Step 2. 

Step 10. If TSPS = 𝜙, it means that the industrial 

process has been in proximity to the optimal state for 

the current working condition. If TSPS ≠ 𝜙, then de-

fuzzificate the corresponding linguistic terms of 

𝑆𝑋1, 𝑆𝑋2, … , 𝑆𝑋𝑝 and transfer them to their real value 

range. So, the optimal values of 𝑥1, 𝑥2, … , 𝑥𝑝  for the 

current working condition would be obtained. 

By the proposed algorithm, the optimal values of 

process variables are determined and the optimization 

for industrial process is realized. For the optimal values 

searching procedure of the proposed algorithm, the 

optimization goal must be evaluated after the industrial 

process enters the steady state. Because the number of 

ISP is small, the proposed algorithm would not spend 

much time. In Section 4, we will use the experiment 

results based on the real data and the field curves of ball 

mill pulverizing system to further verify the effective-

ness of the proposed algorithm. 

4. Experimental Results 

In this section, we present some experiments to 

evaluate the effectiveness of our algorithm. We would 

compare our algorithm with the hill-climbing method, 

PSO and GA for the ball mill pulverizing system. The 

field database of QinLing Thermal Power Plant is used 

for the experiments. All algorithms are implemented in 

MATLAB 7.0.4 and the running environment is an 

Athlon64 X2 3600+ machine with 1 GB of RAM and 

running Windows XP Professional. In addition, our 

proposed algorithm has been put into practice in 

QinLing Thermal Power Plant and the results of field 

operation would be presented. 

For the ball mill pulverizing system, the ball mill 

load, the outlet temperature and the inlet negative pre-

ssure are process variables and represented by 𝑙, 𝑜𝑡 and 

𝑛𝑝, respectively. The opening degree of hot air damper 

and the opening degree of recycle air damper are regu-

lation variables and represented by 𝑢ℎ and 𝑢𝑟, respecti-

vely. Because the objective of optimization is to maxi-

mize the efficiency of ball mill pulverizing system, 

pulverizing capability ( 𝑝𝑐 ) is the optimization goal 

variable. Hence, the sequence database used for 

sequential pattern mining is {𝑙, 𝑜𝑡, 𝑛𝑝, 𝑢ℎ , 𝑢𝑟 , 𝑝𝑐, 𝑙𝑠 , 𝑜𝑡𝑠,
𝑛𝑝𝑠} , where 𝑙𝑠 , 𝑜𝑡𝑠  and 𝑛𝑝𝑠  represent the steady state 

value of 𝑙, 𝑜𝑡  and 𝑛𝑝 , respectively. { 𝑙, 𝑜𝑡, 𝑛𝑝, 𝑢ℎ, 𝑢𝑟} 

and {𝑝𝑐, 𝑙𝑠, 𝑜𝑡𝑠, 𝑛𝑝𝑠}  are the antecedent set and the 

consequent set, respectively. 

Although our algorithm does not need the fitness 

function, hill-climbing method, PSO and GA need a 

fitness function. Therefore, for analyzing and compa-

ring our algorithm with hill-climbing method, PSO and 

GA expediently, the model of 𝑝𝑐  on 𝑙 , 𝑜𝑡  and 𝑛𝑝 , 

which is named as 𝑝𝑐(𝑙, 𝑜𝑡, 𝑛𝑝) , would be built and 

used as the fitness function for the hill-climbing 

method, PSO and GA. The data used for modeling are 

chosen from the field database of QinLing Thermal 

Power Plant and shown in Table 1. The data are the 

average value of the variables for different steady states 

and the ranges of 𝑝𝑐(𝑙, 𝑜𝑡, 𝑛𝑝)  are[0, 100]%, [0, 

300]°C and [-1000, 0]Pa, respectively. When ball mill 

pulverizing system works stably, it accords with the 

rule of indestructibility of matter, namely, the coal feed 

per unit of time equals the quantity of pulverized coal 

powder per unit of time. Although 𝑝𝑐  could not be 

measured directly, it equals the coal feed per unit of 

time in the steady state. Therefore, we adopt the coal 

feed per unit of time to represent the pulverizing capa-

bility and the range is [0, 100]ton/h. In Table 1, the 

pulverizing capability of ID.6, 49.3ton/h, is largest 

among the data, namely, 79.5%, 95.1°C and -657.4Pa 

are the optimal values of 𝑙 , 𝑜𝑡  and 𝑛𝑝 , respectively. 

Moreover, the least square support vector machine [29] 

is adopted for modeling. 

According to different initial values, we perform the 

hill-climbing method on 𝑝𝑐(𝑙, 𝑜𝑡, 𝑛𝑝)  to search the 

optimal values. The experiment results are shown in 

Table 2. For the hill-climbing method, the step size is 

0.1 and the initial values are the real data in Table 1 
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Table 1. Real data of ball mill pulverizing system for 

modeling 

ID 𝒍(%) 𝒐𝒕(°C) 𝒏𝒑(Pa) 𝒑𝒄(ton/h) 

1 76.1 109.5 -730.8 40.7 

2 71.9 125.4 -807.9 38.7 

3 78.2 102.7 -549.4 45.3 

4 77.1 107.9 -907.4 44.7 

5 82.0 111.6 -585.7 42.3 

6 79.5 95.1 -657.4 49.3 

7 81.2 101.6 -926.6 48.3 

8 83.7 109.3 -887.1 42.0 

9 86.3 108.8 -944.8 38.0 

10 65.9 122.5 -928.3 38.0 

11 75.1 95.6 -945.3 41.7 

12 69.1 110.0 -894.1 43.0 

13 67.9 113.5 -794.8 42.3 

14 69.0 102.3 -742.8 44.3 

15 68.7 101.2 -842.2 43.7 

 

except the ID.6. In Table 2, for the initial value of 𝑙, 𝑜𝑡 

and 𝑛𝑝 being 78.2 %, 102.7°C and-549.4Pa, respecti-

vely, the optimal value of 𝑙 , 𝑜𝑡  and 𝑛𝑝  are 79.3%, 

96.1°C and -654.3Pa, respectively, and the calculation 

value of 𝑝𝑐 is 49.13ton/h, which approximates the real 

maximum, 49.3ton/h, namely, the hillclimbing method 

succeeds in finding the approximate optimal values. 

However, for other initial values, the hill-climbing me-

thod could not find the optimal values for the calcula-

tion value of 𝑝𝑐  approximating the real maximum. 

Especially, for the initial values of 𝑙, 𝑜𝑡 and 𝑛𝑝 being 

71.9%, 125.4°C and -807.9Pa, the calculation value of 

𝑝𝑐 is only 42.26ton/h and the corresponding values of 

𝑙, 𝑜𝑡 and 𝑛𝑝, which are 90.1%, 130.1°C and -807.8Pa, 

respectively, would not be the real optimal values. 

Therefore, although the hill-climbing method could 

find the optimal values for a certain initial values, the 

local optimization problem would impact the 

optimization effectiveness of the ball mill pulverizing 

system. Furthermore, since the minimum value of 

running time is 0.085 second and the maximum value 

of running time is 5.044 second, the running time of the 

hill-climbing method would be affected by the initial 

values greatly.

 

Table 2. Optimization results of the hill-climbing method 

ID 
The initial values of  

(%), 𝒐𝒕(°C), 𝒏𝒑(Pa) 

The search results of  

𝒍(%), 𝒐𝒕(°C), 𝒏𝒑(Pa) 

The calculation  

value of pc(ton/h) 

Running  

time (s) 

1 76.1, 109.5, -730.8 84.3, 96.4, -674.4 46.88 2.566 

2 71.9, 125.4, -807.9 90.1, 130.1, -807.8 42.26 0.760 

3 78.2, 102.7, -549.4 79.3, 96.1, -654.3 49.13 3.756 

4 77.1, 107.9, -907.4 79.2, 101.4, -897.8 47.91 0.599 

5 82.0, 111.6, -585.7 85.5, 95.7, -665.9 46.06 3.304 

7 81.2,101.6, -926.6 80.8, 100.7, -894.5 48.48 1.143 

8 83.7, 109.3, -887.1 79.1, 101.3, -892.4 47.85 0.596 

9 86.3, 108.8, -944.8 78.3, 102.1, -900.3 47.29 1.953 

10 65.9, 122.5, -928.3 64.9, 105.4, -794.6 44.02 5.044 

11 75.1, 95.6, -945.3 82.3, 99.8, -889.9 48.28 2.200 

12 69.1, 110.0, -894.1 67.7, 105.8, -803.3 44.12 3.198 

13 67.9, 113.5, -794.8 64.9, 104.0, -788.9 44.06 0.619 

14 69.0, 102.3, 742.8 68.0, 101.1, -742.9 44.33 0.085 

15 68.7, 101.2, -842.2 66.9, 104.8, -792.9 44.23 1.812 

 

Table 3. Optimization results of GA and PSO 

Algorithm 
The search results of  

(%), 𝒐𝒕(°C), 𝒏𝒑(Pa) 

The calculation  

value of 𝒑𝒄(ton/h) 

Running  

time (s) 

GA 79.4, 98.3, -634.5 48.5 71.527 

PSO 78.9, 98.6, -673.6 48.3 35.591 

 

 

The operating parameters of PSO and GA are set 

according to the values used in [14] and [15], 

respectively. The maximum number of iterations is 200 

and the size of the initial population is 100. For PSO, 

the acceleration coefficients, 𝑐1 and 𝑐2, are both 2, and 

the inertia weight, 𝑤 , is calculated by 𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑛𝑚𝑎𝑥
⋅ 𝑛 , where 𝑤𝑚𝑎𝑥  is the maximum value of 

𝑤 and equals 0.9, 𝑤𝑚𝑖𝑛   is the minimum value of 𝑤 and 
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equals 0.4, 𝑛𝑚𝑎𝑥 is the maximum number of iterations, 

and 𝑛  is the 𝑛 th iteration. For GA, the crossover and 

mutation factors are 0.6 and 0.1, respectively. We 

perform the PSO and GA based on 𝑝𝑐(𝑙, 𝑜𝑡, 𝑛𝑝), and 

the initial values of populations of PSO and GA are 

both random within the known range of 𝑙, 𝑜𝑡 and 𝑛𝑝. 

The optimization results of GA and PSO are presented 

in Table 3, and the optimization process of GA and PSO 

is shown in Fig. 5. The experimental results show that 

the effectiveness of GA is relatively better than that of 

PSO, and PSO has faster convergence speed. However, 

the unsuitable parameters, for example, the maximum 

number of iterations, would affect the optimization 

results of the GA and PSO. For instance, in Fig. 5, the 

fitness function values of PSO and GA are still 

relatively small until the 80th iterations and PSO and 

GA begin convergence after about the 100th iterations. 

Although the experimental results verify that both PSO 

and GA outperform the hill-climbing method, the 

running time of PSO and GA is much larger than that 

of hill-climbing method. Moreover, for PSO and GA, 

more than one initial point is selected randomly. 

Nevertheless, for a real industrial process, such as ball 

mill pulverizing system, searching from multi-initial 

points at the same time can not be operated. Moreover, 

random initialization would let some initial values 

represent the states which do not exist in reality. Hence, 

the actual situation of the field would limit the 

application of the kinds of optimization algorithms. 

 

Figure 5. Optimization process of GA and PSO 

For our algorithm, the time complexity of the pro-

posed fuzzy sequential pattern mining algorithm is far 

less than that of current sequential pattern mining algo-

rithm. Hence, we firstly evaluate the time performance 

and the scalability of the proposed fuzzy sequential 

pattern mining algorithm. The field data of the ball mill 

pulverizing system of QinLing Thermal Power Plant 

are adopted as the test dataset and it includes 10000 ob-

jects. Let 𝜎(𝑠𝑢𝑝) = 1 , 𝜎(𝑐𝑜𝑛𝑓) = 1 , 𝑤𝑠 = 1000  and 

𝑤𝑔 = 500. Experimental results with the number of 

objects increasing are shown in Fig. 6. With the number 

of objects increasing from 500 to 10000, the running 

time increases about only 0.1 second. For the number 

of objects being 10000, the running time is only 0.223 

second. Therefore, the proposed algorithm has better 

performance. To evaluate the scalability of the mini-

mum support, the number of objects in the field dataset 

is fixed at 10000. Let 𝜎(𝑐𝑜𝑛𝑓) = 1 , 𝑤𝑠 = 1000  and 

𝑤𝑔 = 500 . Experimental results with 𝜎(𝑠𝑢𝑝)  increa-

sing from 0.01 to 1 are shown in Fig. 7. When 𝜎(𝑠𝑢𝑝) 

changes from 0.01 to 0.8, the size of SSPA, SCSPA and 

SCSPC becomes smaller gradually with 𝜎(𝑠𝑢𝑝)  in-

creasing, and the running time decreases greatly. When 

𝜎(𝑠𝑢𝑝)  changes from 0.8 to 1, the size of SSPA, 

SCSPA and SCSPC does not change significantly, and 

the running time barely changed at all. To evaluate the 

scalability of the minimum confidence, the number of 

objects in the field dataset is still fixed at 10000. Let 

𝜎(𝑠𝑢𝑝) = 1, 𝑤𝑠 = 1000 and 𝑤𝑔 = 500. Experimental 

results with 𝜎(𝑐𝑜𝑛𝑓)  increasing from 0.01 to 1 are 

shown in Fig. 8. When 𝜎(𝑐𝑜𝑛𝑓)  changes from 0.01 

to 1, the running time decreases about only 0.04 

second. Because the size of SCSPA and SCSPC would 

determine the size of CSSP, they affect the running time 

greatly. Since 𝜎(𝑐𝑜𝑛𝑓) is only used for obtaining SSSP 

from CSSP, 𝜎(𝑐𝑜𝑛𝑓)  would not affect the running 

time. Hence, the proposed algorithm has better 

scalability for 𝜎(𝑠𝑢𝑝) and 𝜎(𝑐𝑜𝑛𝑓). 

 

Figure 6. Running time with the number of objects 

increasing 

 

Figure 7. Scalability of the minimum support 
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Table 4. Mined fuzzy sequential patterns 

IF          THEN 

𝐿 𝑂𝑇 𝑁𝑃 𝑈ℎ 𝑈𝑟  ∆𝐿 ∆𝑂𝑇 ∆𝑁𝑃 ∆𝑈ℎ ∆𝑈𝑟 𝑃𝐶 𝐿𝑠𝑣 𝑂𝑇𝑠𝑣 𝑁𝑃𝑠𝑣 

RB RB M RB M PS PS NS NS PS RS M M M 

RB B RB M PS PS PS NS NS PS RS RB RB M 

RB RS M B RB PS PS NB PS NB RB RB RB RB 

RB RS M M RS PS NS ZO NS PS RB B RS RB 

RB RS B RS RS PS ZO PB ZO PB RB B RS RB 

B M RB RS M ZO ZO NS ZO NS M RB M M 

B RB M RB B PS NB NB PS PS RB RS M RB 

B S M RB RB PS NS NS PS PB B RS RB M 

B B M RS M NB PS NB NS NS B RB RB RS 

B M M M M NB NS NS PS PS RB B M RS 

M M RS M RB NS PS NS PS NS B B RB RB 

M M RB S S PB NS PS NS PB M RB M M 

M B M M M NS NB NB NS NS M M M B 

M S B M RB PS NS NS NB NS S M RS M 

M RS B RB RB PS PS PS NS PS S M RB RB 

M M S M RS PS NS PS NS NS B RB M M 

RS M S M B PS PS NS PS NB B RB M RS 

RS S M RB B PS PB NS PB NS B M M RB 

RS M M M M PS PS NS ZO NS M M RS RS 

RS RS M RB RS PS RS PB NS PS RS M S M 

S S M RB S PB PS NS NB PB RS RB M RB 

S S B M S PB PS NS PS PS S B RB M 

S RB M RB RB PS PS PS PB NS RS M RB RS 

S B M RB B PS PS NS NS NS RS RS M M 

 

Table 5. Optimization results of our algorithm 

ID 
The initial values of  

(%), 𝒐𝒕(°C), 𝒏𝒑(Pa) 

The search results of  

𝒍(%), 𝒐𝒕(°C), 𝒏𝒑(Pa) 

The calculation  

value of 𝒑𝒄(ton/h) 

Running  

time (s) 

1 76.1, 109.5, -730.8 79.7, 97.0, -657.0 48.98 0.966 

2 71.9, 125.4, -807.9 81.2, 97.0, -657.3 48.70 0.881 

3 78.2, 102.7, -549.4 79.8, 95.4, -656.0 49.17 0.821 

4 77.1, 107.9, -907.4 79.5, 96.9, -657.0 49.01 0.930 

5 82.0, 111.6, -585.7 80.4, 96.7, -655.7 48.97 0.883 

7 81.2, 101.6, -926.6 80.4, 95.5, -656.1 49.09 0.858 

8 83.7, 109.3, -887.1 81.4, 96.2, -655.6 48.75 0.956 

9 86.3, 108.8, -944.8 81.0, 95.6, -656.6 48.93 0.907 

10 65.9, 122.5, -928.3 79.6, 97.0, -656.2 48.98 0.949 

11 75.1, 95.6, -945.3 80.2, 96.3, -655.7 49.07 0.960 

12 69.1, 110.0, -894.1 81.3, 95.6, -656.1 48.83 0.891 

13 67.9, 113.5, -794.8 80.0, 96.6, -656.5 49.05 0.902 

14 69.0, 102.3, 742.8 79.6, 96.2, -656.7 49.13 0.888 

15 68.7, 101.2, -842.2 79.7, 96.8, -655.7 49.03 0.851 

 

 

For evaluating the effectiveness of our algorithm, 

we firstly perform our fuzzy sequential pattern mining 

algorithm on the field database of ball mill pulverizing 

system of QinLing Thermal Power Plant, which inclu-

des 10000 objects, and let 𝜎(𝑠𝑢𝑝) = 1, 𝜎(𝑐𝑜𝑛𝑓) = 1, 

𝑤𝑠 = 1000 and 𝑤𝑔 = 500. Then, we could obtain the 

fuzzy sequence patterns for the optimization of ball mill 

pulverizing system. Some fuzzy sequence patterns, 

which are represented by the sequential association 

rules, are shown in Table 4. In addition, the running 

time of mining fuzzy sequential patterns is about 0.223 

second. 
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Figure 8. Scalability of the minimum confidence 

Based on the mined fuzzy sequential patterns, we 

perform our searching method with the same initial 

values as shown in Table 2. Our searching method dose 

not need the fitness function and is used directly on the 

field database of ball mill pulverizing system of 

QinLing Thermal Power Plant. For example, our algo-

rithm could directly obtain the change of 𝑝𝑐, and the 

current values of ∆𝑢ℎ  and ∆𝑢𝑟  by scanning the field 

database. The optimization results of our algorithm are 

shown in Table 5. For evaluating the effectiveness of 

our algorithm, we use the model 𝑝𝑐(𝑙, 𝑜𝑡, 𝑛𝑝) to calcu-

late the value of 𝑝𝑐 . Moreover, the defuzzification is 

accomplished by the centroid of area method. For 

Table 5, the search results show that our algorithm 

could determine the approximate optimal values with 

different initial values. For the initial value of 𝑙, 𝑜𝑡 and 

𝑛𝑝  being 78.2%, 102.7°C and-549.4Pa, respectively, 

our algorithm could find two target sequential patterns, 

which are {RB, RS, M, M, RS, PS, NS, ZO, NS, PS, 

RB, B, RS, RB} and {B, M, RB, RS, M, ZO, ZO, NS, 

ZO, NS, M, RB, M, M}. Defuzzificating the two target 

sequential patterns can obtain the values of 𝑙 , 𝑜𝑡  and 

𝑛𝑝, which are 79.8%, 95.4°C and -656.0Pa, respecti-

vely, and the calculation value of 𝑝𝑐 is 49.17ton/h. For 

the initial value of 𝑙, 𝑜𝑡 and 𝑛𝑝 being 71.9%, 125.4°C 

and -807.9Pa, respectively, we could obtain the target 

sequential patterns, which are {RB, RS, B, RS, RS, PS, 

ZO, PB, ZO, PB, RB, B, RS, RB} and {M, M, RB, S, 

S, PB, NS, PS, NS, PB, M, RB, M, M}. The optimal 

values of 𝑙, 𝑜𝑡 and 𝑛𝑝 are 81.2%, 97.0°C and -657.3Pa, 

respectively, and the calculation value of 𝑝𝑐  is 

48.70ton/h. Since our algorithm includes fuzzificating 

process and defuzzificating process, the search result 

does not absolutely equal the real maximum, that barely 

affect the real effectiveness of the ball mill pulverizing 

system. In addition, the running time of our algorithm 

is not larger than that of the hill-climbing method and 

much smaller than that of PSO and GA. 

Numerical results verify that our algorithm could 

determine the approximate optimal values correctly and 

is not affected by the initial values of process variables. 

Moreover, our algorithm has been put into practice in 

QinLing Thermal Power Plant successfully. Before 

finding the optimal values, the ball mill load, the outlet 

temperature, and the inlet negative pressure are set 

according to the values supplied by the operating rules. 

The running curves of thirty minutes are shown in 

Fig. 9. To facilitate analysis, the measured values of all 

variables are normalized to [0, 1]. In Fig. 9, although 

the ball mill load, the outlet temperature and the inlet 

negative pressure are relatively stable, the coal feed per 

unit of time is not large, namely, the pulverizing capabi-

lity is not high. After our algorithm was performed in 

the field, the ball mill load, the outlet temperature, and 

the inlet negative pressure are set according to the 

results of our algorithm. The running curves of thirty 

minutes are shown in Fig. 10. Similarly, the measured 

values of all variables are normalized to [0, 1]. In 

Fig. 10, the ball mill load, the outlet temperature and 

the inlet negative pressure are almost stable, and the 

coal feed per unit of time becomes larger. The statistic 

data show that the coal feed per unit of time is increased 

about 20%, namely, the pulverizing capability is increa-

sed about 20%, and the energy consumption would be 

reduced. 
 

 

Figure 9. Running curves of real thermal power plant  

before optimization 

 

Figure 10. Running curves of real thermal power plant  

after optimization 
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5. Conclusions 

In the paper, we propose a fuzzy sequential pattern 

mining algorithm based on independent pruning strate-

gy for parameters optimization of ball mill pulverizing 

system. The algorithm uses the independent pruning 

strategy to mine the fuzzy sequential patterns and then 

determines the optimal values of the process variables 

by the searching method with the mined sequential 

patterns. The proposed algorithm has some advantages 

as follows. First, the proposed algorithm could deter-

mine the close enough approximate value of the real 

optimal value of process variables effectively. Second, 

the optimization results of our algorithm are almost not 

affected by the initial values of process variables and 

the running time of our algorithm is smaller than that of 

the other tested algorithms. Third, the proposed algo-

rithm presents the independent pruning strategy to en-

hance the efficiency of the algorithm. Fourth, the pro-

posed algorithm adopts the improved fuzzy sequential 

pattern support and the fuzzy sequential pattern confi-

dence to ensure the accuracy of the mined sequential 

patterns. Fifth, the proposed algorithm uses the sliding 

time window technique to ensure the completeness of 

mining results. The experimental results for parameters 

optimization of ball mill pulverizing system also verify 

the effectiveness of the proposed algorithm. Our 

algorithm has been put into practice successfully and 

the statistic data show that the pulverizing capability is 

increased and the energy consumption is reduced. 

Moreover, the algorithm could be applied in other 

complex industry systems, for example, the mineral 

processing. In the future research work, we will use 

some advance methods to further decrease the running 

time of our algorithm. 
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