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Abstract. In this paper, a new strategy of visualizing Pareto front points is proposed when solving multi-objective 
optimization problems. A problem of graphical representation of the Pareto front points arises when the number of 
objectives is larger than 2 or 3, because, in this case, the Pareto front points are multidimensional. We face the problem 
of multidimensional data visualization. The visualization strategy proposed is based on a combination of clustering and 
dimensionality reduction. Moreover, in the obtained projection of the Pareto front points onto a plane, the points are 
marked according to the Euclidean distance of multidimensional points, corresponding to the points visualized, from 
the ideal point. In the experimental investigation of the paper, neural gas is used for data clustering, and 
multidimensional scaling is applied to dimensionality reduction, as well as to visualizing multidimensional data. The 
strategy can be implemented in a decision support system and it would be useful for a decision maker, who needs to 
review and evaluate many points of the Pareto fronts, for example, obtained by genetic algorithms. 

Keywords: Multi-objective optimization; visualization; clustering; Pareto front; ideal point; neural gas; 
multidimensional scaling; genetic algorithms; NSGA-II. 

 

1. Introduction 
Problems arising in the real world applications are 

often multi-objective. Usually, objectives are 
contradictory. It is necessary to find trade-off 
solutions, i.e., a so-called Pareto solution set has to be 
discovered. Pareto solutions are the solutions that 
cannot be improved in any objectives without 
deteriorating in at least one of other objectives. The 
values of objectives for the Pareto solutions form a 
Pareto front. 

When solving multi-objective optimization 
problems, a decision maker plays an important role. 
He/she has to select preferable solutions from a set of 
the Pareto solutions. If only numerical values of the 
solutions and objectives are given to the decision 
maker, he/she faces difficulties in choosing the 
preferable solutions, especially, if the amount of 
solutions is large, for example, when using genetic 
algorithms in search of the Pareto solutions.  

It is important to have some tools for a graphical 
representation of the Pareto front in order to facilitate 

the choice of solutions for the decision maker. If the 
number of objectives is equal to 2 or 3, the graphical 
representation of the Pareto front is simple. The values 
of objectives can be presented in a 2D or 3D Cartesian 
coordinate system. Difficulties arise when the number 
of objectives is larger, i.e., we face the visualization of 
multidimensional data. 

Moreover, if algorithms for the multi-objective 
optimization find many Pareto solutions, it is difficult 
for the decision maker to evaluate all the solutions. 
So, it is purposeful to cluster the solutions and 
evaluate only the representatives of the clusters, 
regarding that all the solutions in a cluster are similar. 

The aim of the paper is to propose a new strategy 
for visualizing the points of the Pareto front. The 
strategy proposed involves a visualization based on 
dimensionality reduction, clustering, and marking the 
points according to the ideal point. So, the paper 
renders an opportunity for a decision maker to use 
some ways of evaluating the Pareto solutions. This 
opportunity lets him/her select the most preferable 
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solutions faster without looking for numerical values 
of the Pareto front points. 

The rest of the paper is organized as follows. 
Section 2 reviews the techniques for visualizing the 
Pareto front points. In Section 3, a new strategy of 
visualization is proposed and described for evaluating 
the solutions obtained. The visualization results, 
obtained by the strategy proposed, when solving some 
multi-objective optimization test problems, are 
presented in Section 4. Conclusions are drawn in the 
final section. 

2. A review of visualizing the Pareto front 
points 

At first, a multi-objective optimization problem is 
introduced. Let us have 𝑚 objectives, described by the 
functions 𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑚(𝑋),  where 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛)  is a vector of variables (decision 
vector), 𝑛  is the number of variables. A multi-
objective minimization problem is formulated as 
follows: 

min𝑋∈𝐃 𝐅(X) = [𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑚(𝑋)] .   (1) 

Here 𝐃  is a bounded domain (feasible set, decision 
space) in the 𝑛 -dimensional Euclidean space ℝ𝑛 ; 
𝐅(𝑋) ∈ ℝ𝑚  is a vector of objective functions. Each 
vector 𝑋∗ ∈ 𝐃 is called a feasible solution. The vector 
𝐙∗ = 𝐅(𝑋∗) ∈ ℝ𝑚  for a feasible solution 𝑋∗ is called 
an objective vector. A set of the objective vectors 
composes the so-called feasible criterion space 
(feasible region). 

In the multi-objective optimization, there exists no 
feasible solution that minimizes (maximizes) all the 
objective functions 𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑚(𝑋) 
simultaneously, in the case, where the objectives are 
contradictory. Here the Pareto optimal solutions are 
very important. The solution 𝑋∗ ∈ 𝐃 is Pareto optimal 
(non-dominated), if and only if there does not exist 
another solution 𝑋 ∈ 𝐃, such that 𝐅(𝑋) ≤ 𝐅(𝑋∗), and 
𝑓𝑖(𝑋) < 𝑓𝑖(𝑋∗) for at least one objective. The set of all 
the Pareto optimal solutions is called a Pareto set. The 
region defined by the value of all objectives for all the 
Pareto set points is called a Pareto front.  

When solving multi-objective optimization 
problems arising in the real world, usually 
determination of the exact Pareto front is impossible, 
because the front is an infinite set. Therefore, a 
discrete approximation is searched. For simplicity, we 
call this approximation a Pareto front. The point 
𝐅id = �𝑓1id, 𝑓2id, … , 𝑓𝑚id� ∈ 𝐙𝑚  is called an ideal 
objective vector (point), where 𝑓𝑖id(𝑋) =
min𝑋{𝑓𝑖(𝑋) |𝑋 ∈ 𝐃} . In general, the ideal objective 
vector corresponds to a non-existent solution. The 
Euclidean distance between a point of the Pareto front 
and the ideal point is smaller, the solution is more 
preferable for a decision maker, when the importance 
of objectives is the same.  

There are many algorithms for solving multi-
objective optimization problems [1], [2], [3], [4], [5]. 
Recently, the algorithms, based on evolutionary 
computation, have been rapidly developed. They are 
called evolutionary multi-objective optimization 
(EMO) algorithms. The particularity of the algorithms 
is that they generate a large amount of solutions. So, a 
decision maker faces a problem of reviewing the 
solutions obtained, because he/she has to spend a lot 
of time reviewing all solutions. 

One of the most popular algorithms is a non-
dominated sorting genetic algorithm II (NSGA-II) [6]. 
The algorithm is used in the experimental 
investigation of the paper. The main advantage of the 
algorithm is that it manages to solve the problems 
with many objectives and it is not necessary to take 
into account the geometrical characteristics of the 
Pareto fronts, such as concave, convex, and 
disconnecting. It should be noted that solutions, found 
by NSGA-II, are only an approximation of Pareto 
solutions, but not the exact Pareto solutions. The paper 
does not focus on searching for the true Pareto 
solutions, it is aimed at visualization of points of the 
Pareto front or its approximation. 

Thus, in the multi-objective optimization, it is 
important to find Pareto optimal solutions. Moreover, 
when solving multi-objective optimization problems, a 
decision maker plays an important role. The task of 
the decision maker is not easy. He/she has to select the 
most preferable solution from a set of the Pareto 
optimal solutions and to make the final decision. 
When only the numerical values are presented to the 
decision maker, he/she faces a difficulty to select a 
solution such that satisfies his/her preferences, 
especially if the numbers of variables and objectives 
as well as that of the Pareto solutions are large. Proper 
visualization techniques can be helpful to solve the 
problem. 

Visualization is a graphical representation of 
information allowing a viewer to understand the 
information content more easily. Visualization 
techniques are applied in different areas and many 
methods are developed. A comprehensive review of 
methods and applications is presented in [7]. The most 
popular multidimensional data visualization methods 
are a scatter plot, a matrix of scatter plots, 
multidimensional scaling [8], parallel coordinates [9], 
and self-organizing maps [10]. 

Some ways of visualizing the Pareto front points 
have also been proposed. A simple way of 
visualization exists for bi-objective optimization 
problems, i.e., if the number of objectives is equal to 2 
(𝑚 = 2). In this way, the values of objectives 𝑓1(𝑋∗) 
and 𝑓2(𝑋∗)  are plotted in the Cartesian coordinate 
system. In Figure 1, an example of visualization of the 
Pareto front points is presented (the dominated points 
are not shown). Sometimes this visualization is called 
a scatter plot. 
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Figure 1. Points of the Pareto front in the Cartesian 

coordinate system in a bi-objective case 

If the number 𝑚 of objectives is equal to 3, it is 
possible to plot the Pareto front in a 3D Cartesian 
coordinate system, but interpretations of the results are 
more difficult than in the case, where 𝑚 = 2 , 
especially if there is no possibility of rotating the 
coordinate system.  

An even greater problem arises when there are 
more than three objectives, because the ordinary 
Cartesian coordinate system is insufficient. It is 
necessary to search for more sophisticated ways that 
enable us to visualize multidimensional points 
𝑌1,𝑌2, … ,𝑌𝑘 , where 𝑌𝑖 = (𝑦𝑖1 ,𝑦𝑖2, … ,𝑦𝑖𝑚) . 
Multidimensional points are called those points, the 
dimension 𝑚 of which is higher than 2 or 3. 

In solving multi-objective optimization problems, 
in case the number 𝑚 of objectives is larger than 2 or 
3, the Pareto front consists of 𝑚-dimensional points 
𝑌1,𝑌2, … ,𝑌𝑘 , where 𝑌𝑖 = �𝑓1(𝑋𝑖∗), 𝑓2(𝑋𝑖∗), … , 𝑓𝑚(𝑋𝑖∗)� , 
𝑌𝑖 ∈ ℝ𝑚, 𝑖 = 1, … , 𝑘; 𝑘 is the number of points of the 
Pareto front. 

Some techniques of the Pareto front visualization 
are reviewed in this paper. Parallel coordinates are 
used for visualizing the Pareto front in [11]. The 
coordinate axes are shown there as parallel lines that 
represent the coordinates of multidimensional points. 
An 𝑚-dimensional point is represented as an 𝑚 − 1 
line segment, connected to each of the parallel lines at 
the appropriate coordinate value. 

Visualization of the Pareto front by the self-
organizing map (SOM) is investigated in [12]. SOM is 
a type of neural network used for data clustering and 
visualization [8]. In the paper, not only the Pareto 
front, but also variables are visualized by SOM. In 
addition, a hierarchical agglomerative algorithm, 
based on the SOM-Ward distance, is used for 
clustering the points mapped on SOM. 

Instead of the traditional plane SOM, a spherical 
self-organizing map is proposed as a visualization 
technique of Pareto solutions in [13]. Neurons in a 
spherical SOM are placed in a geodesic dome. A 

geodesic dome is a triangulation of a polyhedron that 
produces a close approximation to a sphere. Yoshimi 
et al. [13] ascertained that the spherical SOM allows 
us to find similarities in data otherwise undetectable 
by plane SOM. 

Another graphical representation, called level 
diagrams, is proposed in [14] for 𝑚 -dimensional 
Pareto front analysis. Level diagrams consist of the 
representation of each objective and variable in 
separate diagrams. This technique is based on the 
classification of Pareto front points according to their 
proximity to the ideal point, measured with a specific 
norm of normalized objectives and synchronization of 
objective and variable diagrams. In [14], the parallel 
coordinates and the scatter plot matrix are applied as 
well. 

The so-called hyper-space diagonal counting 
(HSDC) method is developed in [15]. The method 
enables an intuitive and meaningful visualization 
capability of multi-objective optimization problems, 
when the number of objectives is higher than 2 or 3. 

Visualization of Pareto sets in evolutionary multi-
objective optimization is presented in [16]. The main 
characteristic of this technique is that preservation of 
Pareto dominance relations among the individuals be 
as good as possible. The authors have proposed a two-
stage mapping of 𝑚-dimensional points of the Pareto 
front. The first stage is mapping of the points into a 
plane (2D space), and the second stage is mapping of 
the dominated points. 

Interactive decision maps are introduced and 
applied to visualize the Pareto front in [17], [18]. The 
main feature of an interactive decision map is a direct 
approximation of the Edgeworth-Pareto Hull (EPH) 
that is used for a fast interactive visualization of the 
Pareto front as the fronts of two-objective slices of 
EPH.

 
 

3. The visualization strategy proposed 
As mentioned above, if the number 𝑚  of 

objectives is higher than 2  or 3 , the points of the 
Pareto front are multidimensional and they can be 
visualized by the methods of multidimensional data 
visualization [7], for example, by multidimensional 
scaling and principal component analysis. Moreover, 
if the number 𝑘 of Pareto solutions is rather large, it is 
reasonable to cluster the points and, later, to visualize 
the representatives of clusters. Especially the genetic 
algorithms, for example, one of the popular algorithms 
NSGA-II, generate many solutions and it is difficult to 
review them for a decision maker without an 
additional graphical representation. Moreover, after 
reviewing some solutions from a cluster, the decision 
maker will gain information about the particularity of 
solutions of the whole cluster. 

The new strategy for visualizing points of the 
Pareto front proposed here is as follows: 
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1. The Pareto solutions 𝑋1∗,𝑋2∗, … ,𝑋𝑘∗   and points of 
the Pareto front (or its approximation) 
𝑓1(𝑋𝑖∗), 𝑓2(𝑋𝑖∗), … , 𝑓𝑚(𝑋𝑖∗) , 𝑖 = 1, … , 𝑘 , are found 
by using any methods for multi-objective 
optimization, where 𝑘  is the number of points of 
the Pareto front. A set of multidimensional points 
𝑌1,𝑌2, … ,𝑌𝑘  is formed, where 
𝑌𝑖 = �𝑓1(𝑋𝑖∗), 𝑓2(𝑋𝑖∗), … , 𝑓𝑚(𝑋𝑖∗)� , 𝑖 = 1, … , 𝑘 , 
𝑌𝑖 ∈ ℝ𝑚. The ideal point 𝐅id = �𝑓1id, 𝑓2id, … , 𝑓𝑚id� is 
found as well. 

2. The two-dimensional points 𝑉1,𝑉2, … ,𝑉𝑘 , 
corresponding to the multidimensional points 
𝑌1,𝑌2, … ,𝑌𝑘 , are obtained by any dimensionality 
reduction method. The points 𝑉1,𝑉2, … ,𝑉𝑘  are 
presented in the Cartesian coordinate system as a 
scatter plot. 

3. The points 𝑌1,𝑌2, … ,𝑌𝑘  are clustered by any 
clustering method and a set of points 𝑀1,𝑀2, … ,𝑀𝑟 
is obtained, where 𝑟 < 𝑘 , 𝑀𝑖 ∈ ℝ𝑚 , 𝑖 = 1, … , 𝑟 . 
The points 𝑀1,𝑀2, … ,𝑀𝑟 are representatives of the 
clusters. 

4. The multidimensional points 𝑀1,𝑀2, … ,𝑀𝑟  are 
visualized by any method, based on dimensionality 
reduction, and two-dimensional points 𝑉1′,𝑉2′, … ,𝑉𝑟′ 
are obtained. They are presented in the Cartesian 
coordinate system as a scatter plot. 

5. The two-dimensional points 𝑉1,𝑉2, … ,𝑉𝑘  and 
𝑉1′,𝑉2′, … ,𝑉𝑟′ are classified as follows: 

a. The points 𝑉1,𝑉2, … ,𝑉𝑘  are classified into 
some groups depending on Euclidean 
distances from the ideal point 𝐅id =
�𝑓1id, 𝑓2id, … , 𝑓𝑚id�  to the multidimensional 
points 𝑌1,𝑌2, … ,𝑌𝑘 , corresponding to these 
two-dimensional points.  

b. The points 𝑉1′,𝑉2′, … ,𝑉𝑟′  are classified into 
some groups depending on Euclidean 
distances from the ideal point 𝐅id =
�𝑓1id, 𝑓2id, … , 𝑓𝑚id�  to the multidimensional 
points 𝑀1,𝑀2, … ,𝑀𝑟, corresponding to these 
two-dimensional points. 

6. The different groups are marked by different colour 
or marker types on the scatter plots obtained in 
Steps 2 and 4. 

The scheme of a decision making process, using 
the proposed strategy is presented in Figure 2. The 
visualization tool is useful for a decision maker in 
search of the satisfactory solution. The decision maker 
can use some ways to evaluate the Pareto solutions. It 
helps to select the most preferable (satisfactory) 
solution.

 

 
Figure 2. The scheme of a decision making process using the proposed visualization strategy  

 

In the strategy proposed here, it is necessary to 
select methods for multidimensional data clustering 
and visualization, based on dimensionality reduction, 
as well as for searching the Pareto solutions. The k-
means method, self-organizing maps, and neural gas 
can be used for clustering. The principal component 

analysis (PCA) and multidimensional scaling (MDS) 
can be applied to reduce dimensionality, as well as to 
visualize multidimensional data. Here we choose the 
visualization methods based on dimensionality 
reduction, because, as it has been shown in [7], these 
methods allow us to preserve the data structure more 
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precisely, when passing from multidimensional data to 
two-dimensional ones, and the results are 
comprehended and interpreted more easily as 
compared to that obtained by the other visualization 
methods, for example, parallel coordinates, Chernoff 
faces, Andrews curves, etc. 

In Figure 3, the three-dimensional points 
𝑌1,𝑌2, … ,𝑌100 , where 𝑌𝑖 = �𝑓1(𝑋𝑖∗), 𝑓2(𝑋𝑖∗), 𝑓3(𝑋𝑖∗)� , 
𝑖 = 1, … ,100, are visualized on parallel coordinates. 
The coordinates of the points are the values of 
objectives of the Pareto front approximation, 𝑘 =
100. Here the test problem DTLZ2, where 𝑚 = 3 (see 
Table 1), is solved. In Figure 3, a break line 
corresponds to a three-dimensional point. The 
meaning of colours is as follows: blue points mean 
that the Euclidian distances between them and the 
ideal point are the smallest ones; green points mean 
that the distances are average; red points mean that the 
distances are the largest ones. The presented results 
are confusing, and the interpretation is very 
complicated. The results, obtained by Chernoff faces 
and Andrews curves, are more confusing. 

 
Figure 3. The points of the Pareto front for the problem 

DTLZ2 on parallel coordinates 

In the experimental investigation below, we use a 
combination of neural gas and multidimensional 
scaling. Some combinations of multidimensional 
scaling and clustering methods, based on artificial 
neural networks, are proposed and investigated in 
[19], [20], [21]. In [19], multidimensional scaling has 
been combined with the self-organizing map. A 
comparative analysis of the combinations of 
multidimensional scaling with self-organizing maps 
and neural gas has been made in [20], [21]. The 
research has shown that the quantization error, 
obtained by the neural gas method, is smaller than that 
obtained by SOM. The quantization error shows how 
well the representatives of clusters represent all the 
members of the cluster. 

The aim of neural gas [22] is to find a set of points 
𝑀1,𝑀2, … ,𝑀𝑟 that would serve as a representation of 
the set of points 𝑌1,𝑌2, … ,𝑌𝑘 , and the amount of the 
points 𝑀1,𝑀2, … ,𝑀𝑟  should be smaller than that of 
the points 𝑌1,𝑌2, … ,𝑌𝑘, i.e., 𝑟 < 𝑘, 𝑟 is selected freely. 

Thus, the neural gas method can be used for data 
clustering, the points 𝑀1,𝑀2, … ,𝑀𝑟  are 
representatives of the clusters. The algorithm was 
named “neural gas” because of the dynamics of the 
points 𝑀1,𝑀2, … ,𝑀𝑟  during the adaptation process 
(2), which distribute themselves like gas within the 
data space. 

𝑀𝑖(𝑡 + 1) = 𝑀𝑖(𝑡) + 𝐸(𝑡)ℎ𝜆(𝑖, 𝑡)�𝑌𝑙 − 𝑀𝑖(𝑡)�.  (2) 

Here 𝑌𝑙  is a point, presented to the neural gas 
network; 𝑡 is the order number of iteration; 𝐸(𝑡) and 
ℎ𝜆(𝑖, 𝑡)  are functions that control the adaptation 
process [20]. At first, the initial values of 𝑀𝑖 , 𝑖 =
1, … , 𝑟, are selected, usually these values are random 
numbers in the interval (0, 1). In each training step, a 
point 𝑌𝑙 ∈ {𝑌1,𝑌2, … ,𝑌𝑘} is presented to the neural gas 
network and the points 𝑀𝑖 are changed by formula (2). 
The training is continued until the maximal number of 
iterations is not reached. After training the points 
𝑀1,𝑀2, … ,𝑀𝑟  are representatives of the points 
𝑌1,𝑌2, … ,𝑌𝑘, where 𝑟 < 𝑘. 

Multidimensional scaling (MDS) is the most 
popular method for multidimensional data 
visualization, based on dimensionality reduction [8]. 
The aim of multidimensional scaling is to find low-
dimensional points 𝑉1,𝑉2, … ,𝑉𝑘 such that the distances 
between the points in the low-dimensional space ℝ𝑠 
were as close to the distances or other proximities 
between the points in the multidimensional space ℝ𝑚, 
as possible. Stress function (3) is minimized in it. 

𝐸MDS = ∑ �𝑑�𝑉𝑖 ,𝑉𝑗� − 𝑑�𝑌𝑖 ,𝑌𝑗��
2

𝑖<𝑗 . (3) 

Here 𝑑�𝑉𝑖 ,𝑉𝑗�  is a distance between the points 
𝑉1,𝑉2, … ,𝑉𝑘 in the low-dimensional space, 𝑑�𝑌𝑖 ,𝑌𝑗� is 
a distance (or other proximity) between the points 
𝑌1,𝑌2, … ,𝑌𝑘  in the multidimensional space. Usually, 
the Euclidean distance is used. There are many 
algorithms for minimizing stress function (3). In the 
investigation of the paper, we use the SMACOF 
(Scaling by MAjorizing a Convex Function) 
algorithm [8]. Multidimensional scaling differs from 
the other popular dimensionality reduction method – 
the principal component analysis (PCA) – by the fact 
that PCA tries to preserve variances of data, while 
MDS tries to preserve distances (or other proximities) 
passing from the multidimensional space to the lower 
dimensional space. In the case when 𝑚 = 1, we deal 
with unidimensional scaling. 

4. Visualization results 
Two multi-objective problems are used in the 

experimental investigation (Table 1) [24], [25]. These 
problems are commonly used for testing multi-
objective optimization algorithms. In this paper, the 
problems are used in order to demonstrate the 
visualization strategy, proposed in Section 3. The 
problem ZDT1 is bi-objective (𝑚 = 2). The number 𝑛 
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of variables is freely selected. So, the problem is used 
in this investigation to observe that visualization by 
multidimensional scaling preserves the neighbourhood 
of the points where the two-dimensional space ℝ2 is 
changed to the one-dimensional space ℝ1. 

The number of objectives as well as that of 
variables of the problem DTLZ2 is freely selected, 
too. The problem allows us to demonstrate the 
visualization strategy proposed, when visualizing the 

Pareto front points the dimensionality of which is 
more than three. 

The points of the Pareto front approximation are 
obtained by NSGA-II. As mentioned above, only an 
approximation of the Pareto front, but not the exact 
front is found by NSGA-II. The goal of this 
investigation is not to find the approximation as 
accurate as possible, but to demonstrate the 
visualization of the Pareto front (or approximation). 

 

Table 1. Multi-objective optimization problems 

Name Objectives Properties 

ZDT1 𝑔 = 1 + 9∑ 𝑥𝑖𝑛
𝑖=2 (𝑛 − 1)⁄ , 

𝑓1 = 𝑥1, 
𝑓2 = 𝑔�1 −�𝑓1 𝑔⁄ �. 

𝑚 = 2, 𝑛 is freely selected, 𝑥𝑖 ∈ [0, 1]; 
Pareto front is formed with 𝑔(𝑋) = 1. 

DTLZ2 The set of variables {𝑥1, … , 𝑥𝑛} = �𝑥1, … ,𝑥𝑗 , 𝑥𝑗+1, … , 𝑥𝑛� is divided 
into two distinct sets �𝑦1, … , 𝑦𝑗� and �𝑧1, … , 𝑧𝑝� as follows: 
�𝑦1, … ,𝑦𝑗� = �𝑥1, … , 𝑥𝑗�, 
�𝑧1, … , 𝑧𝑝� = �𝑥𝑗+1, … , 𝑥𝑛�. 
𝑔 = ∑ (𝑧𝑖 − 0.5)2𝑝

𝑖=1 , 

𝑓1 = (1 + 𝑔)∏ cos �𝑦𝑖𝜋
2
�𝑚−1

𝑖=1 , 

𝑓𝑟=2:𝑚−1 = (1 + 𝑔) �∏ cos �𝑦𝑖𝜋
2
�𝑚−𝑟

𝑖=1 � sin �𝑦𝑚−𝑟+1𝜋
2

�, 

𝑓𝑚 = (1 + 𝑔)sin �𝑦1𝜋
2
�  . 

𝑚 and 𝑛 are freely selected; 
𝑝 = 𝑛 − 𝑚 + 1; 𝑥𝑖 ∈ [0, 1]. 
Pareto solutions 𝑥𝑖∗ = 0.5, if 𝑥𝑖∗ ∈
{𝑧1, … , 𝑧𝑝} and all objectives satisfy: 
∑ �𝑓𝑗∗�

2𝑚
𝑗=1 = 1. 

 
Since the problem ZDT1 has only two objectives, 

the points of the Pareto front can be presented as a 
scatter plot (Figure 4). Here 𝑛 = 6 , the size of 
population ( 𝑝𝑝𝑝 ) is equal to 20, the number of 
generations ( 𝑔𝑔𝑛 ) is equal to 200, when running 
NSGA-II. The Euclidean distances between the Pareto 
front points and the ideal point (0, 0) are computed 
and the points are coloured according to the distances. 
Blue points mean that the distances between them and 
the ideal point are the smallest ones; green points 
mean that the distances are average; red points mean 
that the distances are the largest ones. The same 
meaning of colours remains in the figures below. 

 
Figure 4. The points of the Pareto front for the problem 

ZDT1 

The two-dimensional points from Figure 4 are 
mapped onto a one-dimensional space (a line) by 
unidimensional scaling. The results obtained are 
presented in Figure 5. We can see that the distances 
between the neighbouring points are preserved when 
passing from the two-dimensional space into the one-
dimensional one. It means that the reduction of 
dimensionality does not distort the data. 

The points from Figure 4 are clustered by the 
neural gas method, and representatives of the clusters 
are visualized by unidimensional scaling (UDS). The 
results obtained are presented in Figure 6. We can see 
that the nearest points in Figures 4 and 5 are 
represented as a point in Figure 6. Here, the aim of 
clustering is reduction of the number of solutions, 
which should be evaluated by a decision maker. In this 
case, the number of solutions decreases from 20 to 10.  

 
Figure 5. The points of the Pareto front for the problem 

ZDT1 mapped by UDS onto a line 

 
Figure 6. The points of the Pareto front for the problem 

ZDT1 mapped by neural gas and UDS onto a line 
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When solving the problem DTLZ2 (𝑚 = 3, 𝑛 = 8, 
𝑝𝑝𝑝 = 100, 𝑔𝑔𝑛 = 200), the Pareto front points are 
presented in a 3D plot in Figure 7. The points are 
distributed in a quarter of the sphere. The number of 
points is equal to 100, 𝑘 = 100 . Multidimensional 
scaling is applied to the three-dimensional points, the 
two-dimensional points are obtained and they are 
presented in a scatter plot (Figure 8). We can see that 
the points are distributed in a triangular area. 
Moreover, the neighbourhood of the points is 
preserved, i.e., the close points of Figure 7 also remain 
close in Figure 8. 

In Figure 9, the results of a combination of neural 
gas and MDS are presented. We can see that the 
nearest points (cluster) of Figure 8 are represented as a 
point in Figure 9. In this case, the number of the 
points visualized decreases from 100 to 47. The 
decision maker has to evaluate about two times less 
points than in the previous case. So, the smaller the 
value of 𝑟 is selected, the smaller the number of points 
(solutions) is presented for a decision maker. The 
decision maker can select various values of 𝑟 , and 
observe the results obtained (see Figure 2).  

When solving the problem DTLZ2 ( 𝑛 = 12 , 
𝑝𝑝𝑝 = 100 , 𝑔𝑔𝑛 = 200), in case of the number of 
objectives 𝑚 being equal to 4, a direct visualization of 
the Pareto front is impossible. The dimensionality is 
reduced from 4 to 2 by multidimensional scaling, and 
the two-dimensional points are represented in a scatter 
plot (Figure 10). In Figure 11, the results of a 
combination of neural gas and MDS are presented. 
Some clusters of the points are obtained. 

The visualization strategy proposed can be applied 
in visualizing the Pareto front points when the number 
of objectives is larger. Moreover, a decision maker 
gets information about distances of the solutions from 
the ideal point. 

 
Figure 7. The points of the Pareto front for the problem 

DTLZ2 (𝑚 = 3) 

 
Figure 8. The points of the Pareto front for the problem 

DTLZ2 (𝑚 = 3) mapped by MDS onto a plane 

 

 
Figure 9. The points of the Pareto front for the problem 
DTLZ2 (𝑚 = 3) mapped by neural gas and MDS onto a 

plane 

 

 
Figure 10. The points of the Pareto front for the problem 

DTLZ2 (𝑚 = 4) mapped by MDS onto a plane 
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Figure 11. The points of the Pareto front for the problem 
DTLZ2 (𝑚 = 4) mapped by neural gas and MDS onto a 

plane 

5. Conclusions 
The necessity of visualizing the Pareto front points 

arises when the number of objectives is larger than 
two or three, and the number of Pareto solutions is 
rather large. If only numerical values of the Pareto 
front points are presented to a decision maker, it is 
difficult to review the whole set of points. Especially 
the genetic algorithms, commonly used for solving 
multi-objective optimization problems, generate many 
solutions. Reviewing and evaluating all the solutions 
is time consuming for a decision maker. In order to 
decrease the work time, a new strategy for visualizing 
the points of the Pareto fronts is proposed in this 
paper. The strategy is based on three items: clustering 
multidimensional points of the Pareto front; visuali-
zing the points based on dimensionality reduction; 
marking the points according to the Euclidean 
distances from the ideal point. The examples with 
some multi-objective optimization problems have 
shown that the structures of Pareto fronts are 
preserved when passing from a multidimensional 
space to a low-dimensional one. In the investigation, 
multidimensional scaling is used as a method for 
dimensionality reduction, and neural gas is applied in 
clustering. However, the other similar methods can be 
used without changing the strategy proposed. 

The visualization strategy proposed should be 
implemented in a decision support system. It would 
assist a decision maker to select interactively the most 
preferable solutions from a huge set of Pareto 
solutions. A combination of the genetic algorithm with 
visualization of the Pareto front points, based on 
dimensionality reduction and clustering of points, 
allows a decision maker to see the generalized 
information on the Pareto fronts. An assumption is 
made that there are similar solutions in a cluster. After 
the review of some solutions from the cluster, a 
decision maker can have his/her opinion about the 
whole cluster. Genetic algorithms usually generate a 

lot of solutions, so the time for reviewing the solutions 
will be saved, if the decision maker searches the most 
preferable ones. The decision support system should 
have possibilities to choose the number of points of 
the Pareto fronts as well as the number of clusters. 
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