
5Information Technology and Control 2019/1/48

A Conceptual Framework for 
Modelling Spatial Relations

ITC 1/48
Journal of Information Technology  
and Control
Vol. 48 / No. 1 / 2019
pp. 5-17
DOI 10.5755/j01.itc.48.1.22246

A Conceptual Framework for Modelling Spatial Relations

Received 2018/12/10 Accepted after revision 2019/01/28

    http://dx.doi.org/10.5755/j01.itc.48.1.22246

Corresponding author: eliseo.clementini@univaq.it

Eliseo Clementini
Department of Industrial and Information Engineering and Economics; University of L’Aquila;  
via G. Gronchi 20, I-67100 L’Aquila, Italy; phone: +39 0862 434438; fax: +39 0862 434403;  
e-mail: eliseo.clementini@univaq.it

Various approaches lie behind the modelling of spatial relations, which is a heterogeneous and interdisciplin-
ary field. In this paper, we introduce a conceptual framework to describe the characteristics of various models 
and how they relate each other. A first categorization is made among three representation levels: geometric, 
computational, and user. At the geometric level, spatial objects can be seen as point-sets and relations can be 
formally defined at the mathematical level. At the computational level, objects are represented as data types 
and relations are computed via spatial operators. At the user level, objects and relations belong to a context-de-
pendent user ontology. Another way of providing a categorization is following the underlying geometric space 
that describes the relations: we distinguish among topologic, projective, and metric relations. Then, we consid-
er the cardinality of spatial relations, which is defined as the number of objects that participate in the relation. 
Another issue is the granularity at which the relation is described, ranging from general descriptions to very 
detailed ones. We also consider the dimension of the various geometric objects and the embedding space as a 
fundamental way of categorizing relations.  
KEYWORDS:  Spatial relations, spatial data, geographic data, geometric invariants, topological relations, projective 
relations, metric relations.

1. Introduction
Spatial relations have been an active research subject 
for thirty years. The theme is interdisciplinary and 
has attracted the interest of the different scientific 
communities, not only in computer science, but in 
linguistics [55], philosophy [13], and psychology [53]. 
In computer science, different domains, such as spa-
tial databases [49], Geographic Information Systems 
(GIS) [38], image databases [4, 10], and Qualitative 

Spatial Reasoning (QSR) [31, 46] involve research 
on spatial relations. Over the years, various mod-
els of spatial relations have been defined: some have 
been transferred to current technology, while others 
remain theoretical contributions. This article is an 
attempt to define a conceptual framework for com-
paring these models in a unifying context. The frame-
work is important to understand the importance of 
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each model and the relationships between different 
approaches and solutions. In addition to including the 
state of the art, the framework can help to identify the 
aspects that have been less investigated so far and can 
still be the subject of future research. The conceptu-
al framework is structured according to “orthogonal 
axes”, that is, according to independent characteris-
tics that allow us to define a categorization of spatial 
relations (Figure 1). Overall, we propose a categoriza-

tion of spatial relations according to six axes: the first 
is the level of representation. The second relates to 
the properties of the geometric space. The third is the 
cardinality of relations. Then, we consider granulari-
ty. The next axis concerns the type of objects and their 
dimension and the latter considers the dimension of 
the embedding space. In the following, each axis is 
discussed in a separate section.

Figure 1
The conceptual framework of spatial relations structured in six orthogonal axes

2. Levels of Representation
Spatial relations can be categorized according to three 
different levels of representation: the geometric level, 
the computational level, and the user level. The geo-
metric level is an abstract representation in math-
ematical terms of objects, where spatial relations 
between them are defined by specific geometric prop-
erties: for example, in the model of the 4 intersections 
(4IM) [35], topological relations are defined on the 

empty and non-empty values of the boundary and in-
terior intersections of the two objects. The geometric 
level can be considered the most primitive level for the 
study of spatial relations, since it allows to find formal 
definitions. The other two levels will relate to the defi-
nition of a spatial relation at the geometric level. 
At the computational level, spatial objects are repre-
sented as spatial data types and spatial relations be-
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tween objects must be computed by spatial operators. 
Although the geometric level can be considered, by 
definition, without errors, the representation of spa-
tial objects at the computational level is intrinsically 
affected by approximation. Real objects are repre-
sented with a simplified model: for example, the his-
torical classification of representations in GIS is in 
raster and vector representations [32]. In raster mod-
els, the approximation is given by the size of the cells, 
whereas in vector models the approximation is given 
by the number of points representative of a curve. In 
the field of spatial database systems, the vector ap-
proach is the most widespread: various proposals of 
database systems supporting spatial data and spatial 
relations have been developed (e.g., [12, 44, 48, 52]). 
The issues that are considered at the computational 
level are mainly related to the system performance in 
computing relations. The recent trend is that spatial 
database systems adhere to the specifications of the 
Open Geospatial Consortium (OGC): systems such as 
Oracle, IBM DB2, and PostgreSQL base their defini-
tion of data types and spatial operators on OGC spec-
ifications for SQL [57]. For example, the following is 
a definition of an operator to calculate a topological 
relation: 
Crosses (g1 Geometry, g2 Geometry): 
Integer

The above operator finds a corresponding definition 
at the geometric level in the “cross” relation of the 
Calculus-Based Method (CBM) [27]. The set of rela-
tions that are part of the OGC specification is limited 
to topological relations. Further work is needed to de-
fine different types of spatial relations that could be 
included in the standard, such as cardinal directions: 
several proposals have been published in the litera-
ture, e.g., [18, 47], to represent cardinal directions be-
tween extended objects.
The problem of approximation in spatial data models 
and the degree of uncertainty that results from this is 
a question of ongoing research and is far from being 
solved. In some approaches, to continue to use the 
same models for topological relations defined at the 
geometric level, new data types have been defined 
which are able to model the uncertainty in the bound-
ary of objects as a two-dimensional band around the 
object itself [15, 25, 30]. In addition, there may be sev-
eral descriptions of the same object according to dif-
ferent levels of accuracy.

The raster model is much more used in the field of im-
age databases. The computation of spatial relations 
in image databases is less direct than in the case of 
spatial databases where each space object is repre-
sented separately, and the relations are computed 
using geometric algorithms. In raster models, to com-
pute relations, first the objects must be extracted, and 
then spatial relations are evaluated with quantitative 
methods, e.g., [4]. No particular effort has been made 
to date in adapting quantitative methods to assess 
spatial relations with qualitative models of spatial re-
lations [14]. In some cases, the models of spatial rela-
tions have been extended to work with raster data [39, 
67]. Other approaches to image databases are devoted 
to establishing blurred measurements of qualitative 
spatial relationships understood as linguistic expres-
sions [1]. These combinations of fuzzy quantitative 
models [10] or probabilistic [33] with qualitative 
models for evaluating spatial relations in images are 
also called hybrid models.
At the user level, objects and spatial relations are 
linked to a specific application context. We can as-
sume that these concepts can be defined in a spatial 
ontology: there are various approaches in the litera-
ture, for example, in the context of urban information 
systems [3] or more generally in conceptual modeling 
[58]. Spatial relations at this level depend strongly of 
various factors, such as the peculiarity of the domain, 
vagueness and imprecision of user terms, and the 
variability of terms in different countries and natural 
languages. To give an example, consider a navigation 
context: a GPS-equipped smartphone is able to give 
indications on the buildings that are visible by the 
user, who moves with a car in the city. This could be 
expressed with the following query: “What are the 
names of the buildings that are to the right and left 
and forward of the user position, for which there is 
no other obstacle between them and which are at a 
reasonable distance?  ». Spatial relations used in this 
example will need to be transferred to the geometric 
level to find the equivalent mathematical definitions 
and at the computational level in terms of appropriate 
geometric types and relations [2]. 
The definition of spatial ontologies describing the 
classes of a specific area of application (e.g., naviga-
tion systems for tourist information) and the possible 
spatial relations between the objects of these classes 
is a question of research. An object at the user level 



Information Technology and Control 2019/1/488

(for example, a stream) can have multiple represen-
tations at the geometric level, since a river can be 
represented as a single line or a complex line, or as a 
two-dimensional region. Therefore, a semantic spa-
tial relations between two streams (for example, one 
river flows into another watercourse) can be mod-
elled with various geometric relations based on the 
adopted representations [63]. There are also archi-
tectural problems on how to interpret ontology at the 
user level in terms of data type and operators at the 
computational level [17]. 
An important aspect that the user ontology on spatial 
relations should consider is the context information. 
For example, a projective relation such as “left_of ” has 
a unique meaning when associated with certain con-
text information. From the point of view of the user, 
the relations must be combined with the presence 
of a reference system to remove ambiguities in the 
meaning of the relation. If the context varies, often the 
meaning of the relation becomes ambiguous: the ex-
pression “the tree to the left of the university”, which 
is unambiguous in a given context, becomes ambigu-
ous if extrapolated from its context (see Figure 2).

Three types of reference systems are distinguished 
in the literature [60]: intrinsic reference systems are 
based on a reference object that determines the origin 
of the coordinate system as well as its orientation. Ex-
trinsic reference systems can also inherit their origin 
from a reference object; However, their orientation is 
determined by external factors such as the direction 
of movement or by a conventional object used as a ref-
erence point. Deictic reference systems involve three 
objects: a primary object, a reference object, and a 
point of view. The orientation of the reference sys-
tem is imposed on the reference object as seen by the 
point of view. From this basic categorization, the user 
ontology must describe more specific reference sys-
tems as well as the possible spatial relations between 
object classes. A more refined ontology of frames of 
reference has been proposed in [18].

3. Geometric Space Properties
We propose to classify spatial relations according to 
three geometric categories: topological, projective, 
and metric, which are based on the properties of the 
topological, projective, and Euclidean space, respec-
tively. While topological relations have been widely 
discussed in the literature, e.g., [22, 27, 29, 37], and the 
evolution of topological relations has invested all the 
orthogonal axes proposed in this article, the other two 
categories are less consolidated. Projective relations 
are a category of spatial relations that can be described 
by projective properties of space without resorting 
to metric properties [20]. Like topological relations, 
projective relations are qualitative in nature because 
they do not need specific measures to be explained 
[38]. In addition, projective relations are more accu-
rate than topological relations and can serve as a ba-
sis for describing relations that are not described by 
topology. Being an intermediate step between metric 
and topology, projective relations are as varied as “to 
the right of ”, “in front of ”, “between”, “along”, “sur-
rounded by”, “before”, “back”, “north of ”, “east of ”, and 
so on. Although specific models have been developed 
for subsets of projective relations, such as cardinal 
directions [45], the orientation relations [50], and 
cardinal directions for extended objects [47], we lack 
a unifying model that is capable of representing all 
variants of projective relations. A starting point for 

Figure 2
Different interpretations of the term “the tree to the left 
of the university” according to the context: (a) the left is 
determined by an intrinsic property of the building, (b) the 
left is determined by a user's point of view

a

b



9Information Technology and Control 2019/1/48

building a general model for projective relations is 
the 5-intersection model [5, 19, 21]. This model gives 
a classification of projective relations between three 
geometric objects in the plane, distinguishing 34 re-
lations that form a JEPD set ( jointly-exhaustive and 
pair-wise disjoint). The latter property is essential for 
developing reasoning systems of relations [6,28]. As 
far as metric relations are concerned, such as the dis-
tance between two points, they are normally meant 
as quantitative relations, but there are qualitative ap-
proaches to describe distances that could be further 
investigated [26].

Figure 3
The hierarchy of geometries 

lowing the axiomatic approach in geometric spaces 
[54], a space can be built from the previous one by 
adding more axioms. If a geometric property is eval-
uated in the topological space, the same property will 
remain valid in the projective space and the Euclide-
an space. The opposite is not true: if we can identify 
a property in the Euclidean space, the same property 
will not necessarily be valid in the projective space 
and the topological space. It would be more accurate 
to say that the property cannot be identified in these 
spaces. Thereafter, we limit ourselves to an informal 
description of the properties of the three spaces. 
For example, let us consider the topological proper-
ty “having a hole” in a two-dimensional region, the 
same object embedded in a projective or Euclidean 
space will maintain the property to have a hole. This 
property is topological because in a topological space, 
we have the formal means to identify it. A topological 
property is also called a topological invariant, because 
the property is valid after the application of any topo-
logical transformation. More formally, a topological 
transformation is a bi-continuous transformation, 
also known as rubber “sheeting” or elastic transfor-
mation, i.e., the topological space is a kind of rubber 
sheet that can be distorted at will as long as you do not 
make a hole and you do not tear. In addition, a topolog-
ical relation between two objects such as “overlap” is 
invariant following a topological transformation.

topology

projective 
geometry

Euclidean 
geometry

The three spaces are not independent between them, 
but they are hierarchically linked (see Figure 3). Fol-

Table 1
Categorization of spatial relations by crossing geometric space and cardinality

Geometric space/ 
cardinality unary binary ternary n-ary

topological
two separate 
components

one hole
A touch B overlap network

projective

concave four points  
of order 0 A inside concavity of B A between B and C surrounded by

metric

four angles of 90° degrees A bigger than B equidistant grid
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If we consider a projective property as “being a trian-
gle”, such a property is true if we include the object in 
a projective or Euclidean space, but not true in a to-
pological space, since the property cannot be defined 
in topology: there is no way to distinguish internally 
such objects (in topology a triangle can be trans-
formed into a circle). Similarly to topological proper-
ties, a projective property can be defined inside a pro-
jective space by saying that a projective property is a 
projective invariant, that is, it does not change after 
a projective transformation. Therefore, a projective 
transformation is a transformation that preserves 
the collinearity of three points in space. An example 
of a projective relation is a point “to the right” of an 
oriented line. This relation is preserved after a projec-
tive transformation. 
Finally, if we consider the metric property of a poly-
gon “having a right angle (90°)”, including the object 
in a projective or topological space, we lose the ability 
to distinguish this property. A right angle is a charac-
teristic that is preserved after roto-translation, but it 
will not be preserved after a projective transforma-
tion or topological transformation. After a projective 
transformation, we will still have a polygon, but the 
measurement of this particular angle will be different 
from 90°. A summary of the examples for the three 
geometric types combined with the cardinality axis of 
the next section is given in Table 1.

4. Cardinality
Spatial relations can be classified with respect to 
their cardinality, i.e., the number of objects involved 
in the relation. While binary relations are the most 
commonly admitted, it is useful and, in some cases, 
necessary to consider other cardinalities. To be com-
plete, we can also consider unary relations, which 
correspond to geometric properties of single spatial 
objects. Mathematically, a binary relation between 
two sets A and B is a subset of the Cartesian product  
A × B. Topological relations are mainly binary because 
they are based on the connection property of two ob-
jects (two sets of points can either have common 
parts or not). Rarely, ternary topological relations 
have been taken into account [40]. Ternary relations 
involve three objects A, B and C. This category is very 

useful for projective relations, which are based on 
three-point collinearity (the fundamental geometric 
invariant in a projective space) [7]. A typical ternary 
relation is “between” [11]. The results on reasoning 
mechanisms with ternary relations, such as composi-
tion tables [46], have yet to be developed. Qualitative 
spatial reasoning on ternary relations is a topic of ac-
tive research [6, 28, 66]. More rarely, in the literature, 
quaternary relations are envisaged: for example, in 
order to illustrate the notion of surrounding [59]. In 
general, when more than three objects are concerned, 
we talk about n-ary relations. In Table 1, we propose 
some examples of spatial relations by combining the 
properties of geometric spaces and cardinality.

5. Granularity
Another issue is the degree of granularity with which 
spatial relations can be described. For example, let 
us consider a topological relation that expresses the 
fact that two regions overlap, the same topological re-
lation can be refined with more granularity by speci-
fying the number of distinct parts in the intersection 
of the regions. For example, in Figure 4, the two cases 
can be described as an ‘overlap’ relation. If we consid-
er the number of separate parts, we are able to make 
a difference between the two cases. Therefore, if we 
limit ourselves to a more abstract level of granulari-
ty, a relation can make a coarse subdivision of possi-
ble geometric configurations without distinguishing 
the more detailed aspects; by adding a more detailed 
property to the relation, we can subdivide the possible 
configurations in different more detailed subclasses.

Figure 4
Effect of adding greater granularity to the “overlap” 
relation with the number of distinct components of the 
intersection of regions: (a) equal to 1; (b) equal to 2 

a b
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Figure 5
The 31 different relations between lines and regions in 
the DE+9IM. Each box contains the cases belonging to the 
same case of the DEM

Figure 6
A decision tree for projective relations between points
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With respect to topological relations, several topo-
logical invariants can be considered to add granular-
ity to the relations [24, 36]. Based on the invariant 
of the content, the model of 9-intersection (9IM) 
is an extension of the 4IM with the addition of the 
concept of external objects, besides the interior and 
the boundary [37]. An important invariant is the di-
mension of the parts of the objects, which produced 
a class of models, called Dimension-Extended, such 
as the  «  Dimension-Extended Method  » (DEM), 
the «  Calculus-Based Method  » (CBM) [27], and the 
DE+9IM [23]. By expressive power of these models, 
we will indicate the number of topological relations 
that the model is able to distinguish. For example, 
the DE+9IM is expressed as a 3 × 3 matrix containing 
the dimension of the interior (λ°), boundary (
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exterior (λ–) of the intersections. The “dim” function 
returns the highest dimension of the intersection 
set. The possible values in 2D space are 0, 1 and 2, for 
non-void intersection of points, lines and regions, re-
spectively, and null (indicated with ‘__’) for the empty 
intersection:
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λ∂  
This model is capable of distinguishing between 87 
real topological relations. In order to illustrate some 
relations, in Figure 5, we present the sequence of 31 
line/region cases for the DE+9IM, grouped by the 
DEM values (upper left of the DE+9IM matrix). 
Regarding projective relations, a similar process can 
be adopted for the construction of a hierarchy of re-
lations, from the most general to the most specif-
ic (Figure 6). For example, the collinearity of three 
points can be refined into the relations “between” and 
“nonbetween”, and in addition, considering a line ori-
entation, the relation “nonbetween” can be refined in 
the “before” and “after” relations. The definitions of 
this set of relations among points are given in Table 2  
(excerpt from [19]). 
In terms of qualitative metric relations, granularity 
is based on the number of sub-divisions of the space 
[26]. For example, in Figure 7(a), the relation between 
A and B is expressed as “far”, since the space is divided 
into two qualitative regions. In Figure 7(b), the same 
relation is expressed as “medium”, since the space is 
divided into three regions.
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Considering cardinal directions with cone-shaped 
subdivisions [45], in Figure 8(a), the relation between 
A and B is “east” with four divisions of space, while in 
Figure 8(b), the relation between the same objects is 
“northeast” if we subdivide the space into eight sec-
tors [51].
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Table 2
The definitions of projective relations between points. The symbols 

 
+
yzHP   −

yzHP    and 

 
+
yzHP   −

yzHP    indicate the half-plane, respectively, 
to the right and left of the yz oriented line. The notations (–∞yz, y), [y, z] and (z, +∞yz)  represent the three intervals in which 
the yz oriented line is subdivided by the two points y and z: these two points belong to the central interval. 

6. Type and Dimension of Objects 
Spatial relations are also classified according to 
the type and dimension of the geometric objects to 
which they refer. The dimension 0, 1, 2 corresponds to 
points, lines, and regions, respectively. Each of them 
can be of a different type: commonly, we distinguish 
between simple and complex objects (see Figure 9). 
The simple regions of the plane are regularly closed, 
with the interior and exterior connected; simple re-
gions are therefore topologically equivalent to a disk. 
The simple lines are lines with only two limit points 
and no self-intersections (they are in a one-to-one 
match with an interval). Complex areas can have sep-
arate parts and holes. Complex lines can have more 
than two border points, separate parts, and intersec-
tions with themselves. The complex points are the 
union of several simple points.
Historically, most models of spatial relations have 
been initially developed for simple objects and then 
extended to complex objects. Depending on the type 

of geometry and the dimension, the models are able 
to distinguish a certain number of relations. For ex-
ample, the 9IM is capable of distinguishing 33 topo-
logical relations between two simple lines. Table 3 is 
a summary of the number of topological relations for 
various models [23]. Relations between regions are 
indicated with R/R, between lines and regions with 
L/R, between points and regions with P/r, between 
lines with L/L, between points and lines with P/L and 
between points with P/P. 
The number of topological relations that models are 
able to distinguish for complex objects is of course 
larger. For example, for the 9IM, the number of differ-
ent relations between two complex lines goes to 82. 
In Table 4, there is a summary of the 9IM applied to 
complex objects [62]. As far as this axis is concerned, 
there is no work on spatial relations other than topo-
logical relations. 
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7. Dimension of the Embedding Space
The dimension of the space where objects are defined 
is very important for the classification of spatial rela-
tions. The reason we are discussing this issue as last 
point is due to the fact that most of the work on spa-
tial relations concerns the 2D plane. The use of other 
spaces is therefore a subject of research. Among the 
existing work on topology, we mention an extension 
of the 9IM to 3D space [68] and another approach 
that also considers the dimension of the parts of the 
objects [9]. The CBM has been extended to 3D space 
in [65]. With regard to projective relations, the 5-in-
tersection model [19] was extended to 3D in [8]. 
In addition to 2D and 3D embedding spaces, there are 
other spaces that are important in some applications. 
For GIS applications, it would be interesting to study 
spatial relations on a spherical surface. There is not 
much work in this research direction, with the excep-

Figure 7
Different granularities for qualitative distances: (a) two 
subdivisions of space; (b) three subdivisions of space.

Figure 9
Examples of objects of different types and dimensions: (a) 
simple point; (b) simple line; (c) simple region, (d) complex 
point; (e) line with more than two boundary points and 
self-intersections; (f ) region with separate parts and holes. 
For the sake of clarity, the point size is exaggerated

Table 3
Summary of topological relations for all models and for all 
dimensions between simple objects

Table 4
Number of topological relations between two complex 
spatial objects for the 9IM

Figure 8
Different granularities for qualitative orientations: (a) four 
subdivisions of space; (b) eight subdivisions of space
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tion of few contributions about topological relations 
[34] and projective relations [16]. In urban applica-
tions, it is important to examine 3D objects that are 
anchored to the Earth’s surface with an added vertical 
direction: work on visibility relations between such 
objects has been preliminary carried out in [41, 43, 64].

8. Conclusion 
In this paper, we have described a conceptual frame-
work for spatial relations modeling. Spatial relations 
find applications in many endeavors, from spatial 
databases to crowdsourced geoinformation [42, 56], 
from geographic information retrieval to indoor nav-
igation [61]. The framework categorizes spatial rela-
tions in six independent criteria (orthogonal axes). 
The proposed categorization is important to place all 
the models in a common framework, to integrate dif-
ferent approaches, and to identify the areas in which 
there is still room to advance the research. 

  

 a b c d e f

Model/group R/R L/R P/R L/L P/L P/P total

4IM 8 11 3 16 3 2 43
9IM 8 19 3 33 3 2 68
DEM 12 17 3 24 3 2 61
DE+9IM≡CBM 12 31 3 36 3 2 87

Model/group R/R L/R P/R L/L P/L P/P total

9IM 33 43 7 82 14 5 184
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With regard to the first axis, it is especially the user 
level that has been less investigated: a user ontology 
approach is suggested to bridge the gap with spatial 
relations at the geometric and computational levels. 
With regard to the second axis, it is the projective and 
metric relations that need more development, since 
topological relations have previously had a major 
role. Regarding cardinality, most of the past work has 
focused on binary relations, while higher cardinali-
ty deserves much attention. Regarding granularity, 

more research is needed because often spatial rela-
tions models are defined at a coarse granularity lev-
el. Regarding the fifth axis (dimension and types of 
objects), it is necessary to extend models that were 
developed for 2D simple regions to other dimensions 
and complex regions and lines. Finally, most models 
considered the 2D plane as embedding space: other 
embedding spaces, such as the sphere and 3D space, 
have been little explored so far.
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