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Generalized assignment problem (GAP) considers finding minimum cost assignment of n tasks to m agents 
provided each task should be assigned to one agent only. In this study, a new Genetic Algorithm (GA) with some 
new methods has been proposed to solve GAPs. The agent-based crossover is based on the concept of dominant 
gene in genotype science and increases the fertility rate of the feasible solutions. The solutions are classified 
as infeasible, feasible and mature with reference to their conditions. The new local searches provide not only 
feasibility in high diversity but high profitability for the solutions. A solution is not given up through matura-
tion-based replacement until it reaches its best. The computational results show that the agent-based cross-
over has much higher fertility rate than classical crossover. Finally, the proposed GA creates either optimal or 
near-optimal solutions.
KEYWORDS: Generalized Assignment Problem; Genetic Algorithm; Agent-Based Crossover.

1. Introduction
GAP is a well-known, NP-complete combinatorial op-
timization problem [23]. It is a type of one-to-many as-
signment problems that recognizes capacity limits [21]. 
GAP considers finding minimum cost assignment of n 
tasks to m agents provided each task should be assigned 
to one agent only. On the other hand, an agent may be as-

signed more than one task, subject to the agents’ avail-
able capacity [22]. The GAP has several applications in 
real life, solved by exact and heuristic algorithms. Never-
theless, heuristic algorithms are more capable of solving 
large-scale GAPs than exact algorithms [5, 19].
Genetic Algorithm (GA) is one type of the heuristic 
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algorithms and there are a few GAP studies involving 
GA. Additional operators are used in these studies as 
standard GA is not capable of solving GAPs. These 
studies roughly proposed various local search meth-
ods to overcome the incapability. The aims of the lo-
cal search methods are that either an infeasible solu-
tion is evolved into feasible one, or a feasible solution 
is evolved into one with its fittest value. In addition, 
classical crossover method is used in the studies even 
though the classical crossover method most probably 
causes to create infeasible solutions from feasible 
ones especially in difficult GAP instances. Moreover, 
a candidate solution can lose its place in population 
at the end of the selection and replacement methods 
without any improvement.
In this study, a new GA has been proposed by develop-
ing some new methods. The methods involve agent-
based crossover, local search methods and maturi-
ty-based replacement. The local search methods aim 
to improve feasibility, efficiency and diversity of the 
solutions. Each candidate solution was evaluated and 
passed through some new improvement processes. 
The agent-based crossover is based on the concept 
of dominant gene in genotype science. When a solu-
tion in population reaches its best fitness value, it is 
judged as a mature solution and agent-based cross-
over is triggered. The offspring solutions are created 
through applying agent-based crossover process to a 
pair of parent. When the mature solution is thrown 
out of the population at the end of the agent-based 
crossover, offspring solution takes its place in popula-
tion. The proposed methods provide diversity of can-
didate solution; thus, a near-optimal solution can be 
obtained in lesser execution time.
Section 2 presents GAP and the previous studies on 
GAP. Section 3 elaborates GA and the new method. 
Section 4 deals with the results of the computation-
al studies. Section 5 is about the experimental results 
and analyses.
 

2. The Generalized Assignment 
Problem
The GAP can be formulated as an integer linear pro-
gram beside its definition presented in the previous 
section: 

Minimize
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Minimize  ∑ ∑ cijxij

n
j=1

m
i=1     (1) 

Subject to: ∑ xij
m
i=1 = 1   j = 1,…,n,   (2) 

  ∑ aijxij
n
j=1 ≤ bi   i = 1,…,m,   (3) 

  xij∈ {0,1} i=1,…,m; j=1,…,n,  (4) 
 
where cij is the cost of assigning agent i to task j, and, if agent i is assigned to task j, xij = 1, else 0; aij is 
the amount of agent i's capacity consumed by task j in case it is assigned to i. Finally, bi is the available 
capacity of agent i. The first constraint indicates that each task is assigned to only one agent; the second 
constraint is that the resource demand of the tasks, which are assigned to an agent, must not exceed the 
capacity of the agent. 
 
Ross and Soland [22] have come up with GAP. Such real life problems as vehicle routing [10], grouping 
and loading for flexible manufacturing systems [17], assigning ships to overhaul [12], assigning jobs to 
computers in computer networks [2], land use allocation [6] relate to GAP. The chief applications and 
algorithms about GAP are presented in the survey study of Cattrysse and Van Wassenhove [4].  
 
Exact algorithms have been proposed to solve GAPs. Branch-and-price algorithm [25], cutting plane 
algorithm [1], branch-and-cut algorithm [18], branch-and-bound [11] have been the significant ones of 
them in the last two decades. The existing exact algorithms are not effective for more difficult large-
scale problems [15].  
 
The large-scale GAPs are currently handled through heuristic and metaheuristic methods to get the most 
near-optimal solutions. Osman [19] designed both tabu search and hybrid simulated annealing/tabu 
search methods for GAP. Moreover, tabu search was used by Diaz and Fernandez [7], dynamic tabu 
search was proposed by Higgins [13] and a hybrid tabu search/branch-and-bound was implemented by 
Woodcock and Wilson [29]. Differential evolution algorithm [27, 14, 26], bees algorithm [20], the 
neighbourhood search algorithm [32] and ejection chain approach [31] are other notable heuristic 
approaches applied to GAP. 
 
The studies which apply GA to GAPs benefit from additional processes [5, 16, 28, 9]. As classical GA 
violates the capacity constraint (3), it creates infeasible solutions in high probability. Chu and Beasley 
[5] used GA involving classical crossover, binary tournament selection and single point mutation 
operators. Authors presented not only fitness function but also unfitness functions to measure 
infeasibility of a solution. They also proposed two local search methods, which were applied to each 
created solution at the end of the crossover method. The first one aim to turn into feasible solutions from 
infeasible ones. The second one aims to reduce the cost of the solution. The local searches are applied to 
the solutions for once and they do not fulfil their aims sufficiently. 
 
Wilson [28] used classical crossover and tournament selection methods. He proposed a 2-phase local 
search method, sharing the similar aims with the local searches of Chu and Beasley [5]. The first phase 
improves the feasibility of the selected solution; the second phase seeks the lower cost value for the 
solution. GA process is interrupted if any feasible solution is obtained. This feasible solution is selected 
for the 2-phase local search. Otherwise, the best solution with the best fitness value is selected at the end 
of the GA process. The local search is only applied to the selected solution if the solution is not feasible. 
It is unlikely to get a near-optimal solution in case a feasible solution is obtained.  
 
Feltl and Raidl [9] proposed several improvements for the study of Chu and Beasley [5]. They presented 
two alternative heuristic methods to increase proportion of feasible individuals in initial population. 
Selection and replacement schemas were suggested to eliminate infeasible individuals while creating an 
initial population. In addition, heuristic mutation solution was used to decrease the probability of turning 
feasible individuals into infeasible ones. They also presented a selection and replacement strategy to 
eliminate infeasible solutions aggressively. In their study, classical crossover method was used to 
generate an offspring where this operation causes infeasible solutions.   
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where cij is the cost of assigning agent i to task j, and, 
if agent i is assigned to task j, xij = 1, else 0; aij is the 
amount of agent i’s capacity consumed by task j in 
case it is assigned to i. Finally, bi is the available ca-
pacity of agent i. The first constraint indicates that 
each task is assigned to only one agent; the second 
constraint is that the resource demand of the tasks, 
which are assigned to an agent, must not exceed the 
capacity of the agent.
Ross and Soland [22] have come up with GAP. Such 
real life problems as vehicle routing [10], grouping 
and loading for flexible manufacturing systems [17], 
assigning ships to overhaul [12], assigning jobs to 
computers in computer networks [2], land use alloca-
tion [6] relate to GAP. The chief applications and algo-
rithms about GAP are presented in the survey study of 
Cattrysse and Van Wassenhove [4]. 
Exact algorithms have been proposed to solve GAPs. 
Branch-and-price algorithm [25], cutting plane algo-
rithm [1], branch-and-cut algorithm [18], branch-and-
bound [11] have been the significant ones of them in the 
last two decades. The existing exact algorithms are not 
effective for more difficult large-scale problems [15]. 
The large-scale GAPs are currently handled through 
heuristic and metaheuristic methods to get the most 
near-optimal solutions. Osman [19] designed both 
tabu search and hybrid simulated annealing/tabu 
search methods for GAP. Moreover, tabu search 
was used by Diaz and Fernandez [7], dynamic tabu 
search was proposed by Higgins [13] and a hybrid 
tabu search/branch-and-bound was implemented 
by Woodcock and Wilson [29]. Differential evolution 
algorithm [27, 14, 26], bees algorithm [20], the neigh-
bourhood search algorithm [32] and ejection chain 
approach [31] are other notable heuristic approaches 
applied to GAP.
The studies which apply GA to GAPs benefit from 
additional processes [5, 16, 28, 9]. As classical GA vi-
olates the capacity constraint (3), it creates infeasi-
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ble solutions in high probability. Chu and Beasley [5] 
used GA involving classical crossover, binary tourna-
ment selection and single point mutation operators. 
Authors presented not only fitness function but also 
unfitness functions to measure infeasibility of a solu-
tion. They also proposed two local search methods, 
which were applied to each created solution at the 
end of the crossover method. The first one aim to turn 
into feasible solutions from infeasible ones. The sec-
ond one aims to reduce the cost of the solution. The 
local searches are applied to the solutions for once 
and they do not fulfil their aims sufficiently.
Wilson [28] used classical crossover and tourna-
ment selection methods. He proposed a 2-phase lo-
cal search method, sharing the similar aims with the 
local searches of Chu and Beasley [5]. The first phase 
improves the feasibility of the selected solution; the 
second phase seeks the lower cost value for the solu-
tion. GA process is interrupted if any feasible solution 
is obtained. This feasible solution is selected for the 
2-phase local search. Otherwise, the best solution 
with the best fitness value is selected at the end of the 
GA process. The local search is only applied to the se-
lected solution if the solution is not feasible. It is un-
likely to get a near-optimal solution in case a feasible 
solution is obtained. 
Feltl and Raidl [9] proposed several improvements for 
the study of Chu and Beasley [5]. They presented two 
alternative heuristic methods to increase proportion 
of feasible individuals in initial population. Selection 
and replacement schemas were suggested to eliminate 
infeasible individuals while creating an initial popula-
tion. In addition, heuristic mutation solution was used 
to decrease the probability of turning feasible individ-
uals into infeasible ones. They also presented a selec-
tion and replacement strategy to eliminate infeasible 
solutions aggressively. In their study, classical cross-
over method was used to generate an offspring where 
this operation causes infeasible solutions. 
Dorterler et al. [8] proposed a new GA for a real problem 
seen as a special case of the GAP. The authors empha-
sised that classical crossover method violated the ca-
pacity constraint. Thus, Nucleotide Exchange operator 
was proposed instead of the classical crossover opera-
tor in the same study. A gene keeps multiple significant 
data, each of which is called nucleotide, as designated 
in the natural sciences. The operator creates offspring 
from a single parent by swapping the nucleotides be-

tween genes at the crossover stage. Even if experiential 
results are successful, the heuristic is not suitable for 
applying to classical GAP without some modifications. 

3. The Proposed Heuristic
GA provides more near-optimal solutions with com-
paratively much lower computational complexity 
than deterministic methods. GA aims to get a number 
of solutions, which provide better results by iteration. 
GA is inspired by natural selection; thus, the same ter-
minology is used. Solutions are named chromosomes 
and the set of solutions is named population. Chro-
mosome is composed of meaningful data string; each 
one is called a gene. New solutions called offspring 
are created by means of crossover method in each it-
eration. Crossover creates offspring from the genes 
of its parent chromosomes selected by any selection 
method in population. Mutation process changes 
one or more genes of the offspring randomly in pre-
defined probability, lest the GA process is trapped in 
local minima. The new generation for next iteration 
is composed by replacing a number of offspring with 
chromosomes selected in population. Fitness func-
tion measures profitability of the chromosomes in 
population. GA process is executed until the termina-
tion condition is occurred. The termination condition 
should be the one which gets either a number of itera-
tions or a desired fitness value [33].

3.1. Representation 
The structure of a solution should be coded accord-
ing to the problem in question at the initial stage of a 
GA design. Chromosomes are depicted as a numer-
ical vector. Bit array structures are used to code the 
solution. Nevertheless, codding the genes as real data 
provides considerable advantages [24]. The studies [5, 
28, 9] depicted the chromosomes as an integer vector; 
S={S1,S2,…, Sn}, if n number of jobs need to be done. Sj in-
dicates the agent to which job j is assigned, for j=1,…,n. 

3.2. Elaboration of the Proposed GA
The main steps of the proposed GA algorithm for GAP 
are as follows:
Step 1: Generate an initial population consisting of 
randomly created solutions,
Step 2: Evaluate the condition of each solution in the 
population.
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Step 3: Improve each solution according to its condi-
tion 

 If it is infeasible: Convert the solution into a feasi-
ble one 

 Else if it is feasible: Improve fitness value of the 
solution 

 Else if it is mature: Create an offspring by agent 
based crossover. Replace the mature solution by 
the created offspring.

Step 4: Repeat Steps 2 and 3 until satisfactory solu-
tion has been reached. 

3.2.1. Initialisation of the Population
In this step, a certain number of solutions are creat-
ed randomly as initial population. While each agent is 
assigned to a job randomly, the agent’s capacities are 
not taken into account at initial phase. Hence, initial 
solutions are more likely to be infeasible due to vio-
lating the capacity constraint within (3). Successive 

steps are processed to improve feasibility, profitabili-
ty of the solutions in guide of Algorithm 1. 

3.2.2. Evaluation of the Solutions
Two indicators are needed to evaluate a GAP solution. 
The first one is cost, which is the aim of the problem. 
The other one is feasibility. In this study, the cost is 
defined as fitness value and feasibility is defined as 
provisional value. Provisional value (Pk) of solution k 
is defined as a boolean value and determined by

 

 
Dorterler et al. [8] proposed a new GA for a real problem seen as a special case of the GAP. The authors 
emphasised that classical crossover method violated the capacity constraint. Thus, Nucleotide Exchange 
operator was proposed instead of the classical crossover operator in the same study. A gene keeps 
multiple significant data, each of which is called nucleotide, as designated in the natural sciences. The 
operator creates offspring from a single parent by swapping the nucleotides between genes at the 
crossover stage. Even if experiential results are successful, the heuristic is not suitable for applying to 
classical GAP without some modifications.  
 

3 The Proposed Heuristic 

GA provides more near-optimal solutions with comparatively much lower computational complexity than 
deterministic methods. GA aims to get a number of solutions, which provide better results by iteration. GA is 
inspired by natural selection; thus, the same terminology is used. Solutions are named chromosomes and the 
set of solutions is named population. Chromosome is composed of meaningful data string; each one is called 
a gene. New solutions called offspring are created by means of crossover method in each iteration. Crossover 
creates offspring from the genes of its parent chromosomes selected by any selection method in population.  
Mutation process changes one or more genes of the offspring randomly in predefined probability, lest the GA 
process is trapped in local minima. The new generation for next iteration is composed by replacing a number 
of offspring with chromosomes selected in population. Fitness function measures profitability of the 
chromosomes in population. GA process is executed until the termination condition is occurred. The 
termination condition should be the one which gets either a number of iterations or a desired fitness value [33]. 

3.1 Representation  

The structure of a solution should be coded according to the problem in question at the initial stage of a GA 
design. Chromosomes are depicted as a numerical vector. Bit array structures are used to code the solution. 
Nevertheless, codding the genes as real data provides considerable advantages [24]. The studies [5, 28, 9] 
depicted the chromosomes as an integer vector; S={S1,S2,…, Sn}, if n number of jobs need to be done. Sj 
indicates the agent to which job j is assigned, for j=1,…,n.  

 
3.2 Elaboration of the Proposed GA 
 
 The main steps of the proposed GA algorithm for GAP are as follows: 
 

Step 1: Generate an initial population consisting of randomly created solutions, 
Step 2: Evaluate the condition of each solution in the population. 
Step 3: Improve each solution according to its condition  

a) If it is infeasible: Convert the solution into a feasible one  
b) Else if it is feasible: Improve fitness value of the solution  
c) Else if it is mature: Create an offspring by agent based crossover. Replace the 

mature solution by the created offspring. 
Step 5: Repeat Steps 2 and 3 until satisfactory solution has been reached.  
 

3.2.1 Initialisation of the Population 

In this step, a certain number of solutions are created randomly as initial population. While each agent is 
assigned to a job randomly, the agent’s capacities are not taken into account at initial phase. Hence, initial 
solutions are more likely to be infeasible due to violating the capacity constraint within (3). Successive steps 
are processed to improve feasibility, profitability of the solutions in guide of Algorithm 1.  
 
3.2.2 Evaluation of the Solutions 
 
Two indicators are needed to evaluate a GAP solution. The first one is cost, which is the aim of the problem. 
The other one is feasibility. In this study, the cost is defined as fitness value and feasibility is defined as 
provisional value. Provisional value (Pk) of solution k is defined as a boolean value and determined by 
Ai=bi -∑ aijxij

n
j=1  | Sj=i     (5) 

Pk= �1,  if ∀ Ai ≥ 0 | i ∈ I 
0,  otherwise.      (6) 

(5)

Pk= �1,  if ∀ Ai ≥ 0 | i ∈ I 
0,  otherwise.   (6)

Only if the solution is feasible is fitness value of the 
solution computed. Thus, the execution time de-
creases. Nevertheless, the worst-case computational 
complexity of this phase is O(mn). The evaluation of a 
solution is implemented by Algorithm 1.

1: for j=1 to n do 
// evolve into feasible if the solution infeasible 

2: if  Pk=0  then 
3: search for an agent i* | ai*j Ai*  
4: if such i* exists, select one of them randomly 
5: else select i* randomly; 
6: if i = i* then continue; 

rand  [0,1]; 
8: if  (ri*j < rij and rand > CSR) or (Ai < 0 and rand > CSR) then 
9: Sj i*;
10: Ai Ai + aij; Ai* Ai*  - ai*j; 
11: end if 

// decrease the cost if the solution is feasible 
12: else  
13: select  j* randomly; 
14: if Sj = Sj*  then continue; | Sj= i; Sj*= i*;

fk
' = fk - cij + cij*;

Ai
' Ai + aij - aij*; 

Ai*
' Ai* + aij*  - aij; 

15: 

if  fk
' < fk and Pk

' = 1 | Ai
' Ai*

' then

16: 

swap Sj; Sj Sj*; Sj* swap; 

17: 

Ai Ai
'; Ai* Ai*

' ;

18: 

fk fk
' ;

19: 

end if; 

20: 

end if; 
24: end for; 

21: 
22: 
23: 

7: 

Algorithm 1 
Evaluation of the solutions
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3.2.3. Improvement of Solutions
Each solution in the population is evaluated accord-
ing to its condition. A solution can be in three dif-
ferent conditions. These are infeasible, feasible, and 
mature. After the conditions of the solutions are de-
tected in evaluation step, each solution is improved in 
terms of its condition. 
Making a solution feasible: It is highly probable that 
most of the solutions in initial population are infeasible. 
Moreover, offspring created by agent-based crossover 
may be infeasible. The proposed local search in this 
study ensures that an infeasible solution is evolved into 
a feasible one. Moreover, it provides the diversity of the 
feasible solutions to ensure a near-optimal solution. 
Shift neighborhood type local search, which is per-
formed by changing the assigned agent of one job, is 
adopted for these aims [31]. In this study, the candidate 
agent for the job should have available capacity at the 
time (Ai) if possible. Moreover, the local search is depen-
dent on two different alternative conditions, for the per-
formance of using single condition is subject to change 
according to resources of the GAP in question. It is ben-
efited from Condition Selection Ratio (CSR) indicating 
which condition is considered over what percentage. 
One of the conditions is fulfilled as the capacity of the 
agent assigned to the job in question is overloaded. The 
other condition is based on relative cost-resource value 
(rij) from [9]. The value is calculated by the formula (7):

 

 
Only if the solution is feasible is fitness value of the solution computed. Thus, the execution time decreases. 
Nevertheless, the worst-case computational complexity of this phase is O(mn). The evaluation of a solution is 
implemented by Algorithm 1. 
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rij= cij* aij

bi
 .    (7) 

 

1: for j=1 to n do  
 // evolve into feasible if the solution infeasible 
2:  if  Pk=0  then 
3:   search for an agent i* | ai*j ≤ Ai* 
4:   if such i* exists, select one of them randomly 
5:   else select i* randomly; 
6:  if i = i* then continue; 
  rand ← [0,1]; 
7:   if  (ri*j < rij and rand > CSR) or (Ai < 0 and rand > CSR) then 
8:    Sj ← i*; 
9:    Ai ← Ai + aij; Ai*  ← Ai*  - ai*j;  
10:   end if 
 // decrease the cost if the solution is feasible 
11: else  
12:   select  j* randomly; 
13:  if Sj = Sj* then continue; | Sj= i; Sj*= i*; 
  fk

' = fk - cij + cij*; 
  Ai

'  ← Ai + aij - aij*;  
  Ai*

'  ← Ai* + aij*  - aij; 
14:   if  fk

'  < fk and Pk
'  = 1 | Ai 

' ≥ 0, Ai*
'  ≥ 0 then 

15:    swap ← Sj; Sj ← Sj*; Sj*  ← swap; 
16:    Ai ← Ai

';  Ai*  ← Ai*
' ; 

17:    fk ← fk
' ; 

18:  end if; 
19: end if; 
20: end for;  

Algorithm 1  
Evaluation of the solutions 

(7)

The second condition is fulfilled if 

 

The second condition is fulfilled if ri*j of the candidate agent is lower than rij of the agent assigned to the job.   
 
Making a solution mature: The maturing a solution means minimising the fitness value of a solution 
as much as possible. In this approach, it is fixed that which agent executes how many jobs for a feasible 
solution. This situation does not change in this step. Hence, each feasible solution has its own ultimate 
cost value. It is judged that the solution reaches to the value when the maturation condition occurs for 
the solution.  

 
Swap neighborhood type local search, which is performed by exchanging the assigned agents of two jobs, is 
adopted for maturation [30]. In this study, a second job is selected randomly together with the next one in 
iteration process. The local search depends on two conditions. Not only should fitness value (fk

' ) be lesser, but 
also feasibility (Pk

' ) should be maintained for the subjected solution at the end of the exchange.  
 
The maturation condition depends on the number of iterations in which a better fitness value is not 
obtained for the solution. The value is called Maturation Value (MV) and it affects not only the 
performance positively but also the execution time adversely. Hence, the MV increases from a predefined 
base value to predefined the top value gradually. The mechanism is defined in Algorithm 3 in Section 4.  
 
3.2.4 Creating and Replacing Offspring 
 
This step covers selection, creation, and replacement processes of GA. The trials showed that there is a 
low possibility in operating classical crossover to get a better feasible solution, for the capacity constraint 
is more likely to make it infeasible. Therefore, agent-based crossover method is designed and performed 
in this study to increase the possibility. When a solution is judged as a mature one, it should be replaced 
with an offspring. Two parent chromosomes are selected by tournament selection method and agent-
based crossover method is applied to the selected parents. The parents are selected as feasible solutions 
in population, if they exist.   
 
Multi point (1+⌊n/100⌋) mutation is applied to created offspring in terms of mutation rate. The mutation 
process is performed by assigning randomly selected agents to randomly selected jobs. Maturation-based 
replacement is proposed for replacement at the end of this step. The offspring solution replaces the 
mature one in the population. Hence, it is aimed that no solutions are thrown out of the population until 
it reaches its best fitness value.  
 
The agent-based crossover method: The agent-based crossover is inspired from the concepts of 
dominant and recessive genes in genotype science. The dominant feature describes which certain 
phenotype to pass from parent to offspring. The agents of the parents are classified as dominant or 
recessive for the jobs due to the restriction based on agent capacity (3). The key point in this operation 
is the question of what jobs performed by which agents are passed on the offspring from which parent.  
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the subjected solution at the end of the exchange. 
The maturation condition depends on the number 
of iterations in which a better fitness value is not ob-
tained for the solution. The value is called Maturation 
Value (MV) and it affects not only the performance 
positively but also the execution time adversely. 
Hence, the MV increases from a predefined base val-
ue to predefined the top value gradually. The mecha-
nism is defined in Algorithm 3 in Section 4. 

3.2.4. Creating and Replacing Offspring
This step covers selection, creation, and replacement 
processes of GA. The trials showed that there is a low 
possibility in operating classical crossover to get a 
better feasible solution, for the capacity constraint 
is more likely to make it infeasible. Therefore, agent-
based crossover method is designed and performed in 
this study to increase the possibility. When a solution 
is judged as a mature one, it should be replaced with 
an offspring. Two parent chromosomes are selected 
by tournament selection method and agent-based 
crossover method is applied to the selected parents. 
The parents are selected as feasible solutions in pop-
ulation, if they exist. 
Multi point (1+⌊n/100⌋) mutation is applied to creat-
ed offspring in terms of mutation rate. The mutation 
process is performed by assigning randomly selected 
agents to randomly selected jobs. Maturation-based 
replacement is proposed for replacement at the end of 
this step. The offspring solution replaces the mature 
one in the population. Hence, it is aimed that no solu-
tions are thrown out of the population until it reaches 
its best fitness value. 
The agent-based crossover method: The agent-
based crossover is inspired from the concepts of dom-
inant and recessive genes in genotype science. The 
dominant feature describes which certain phenotype 
to pass from parent to offspring. The agents of the 
parents are classified as dominant or recessive for the 
jobs due to the restriction based on agent capacity (3). 
The key point in this operation is the question of what 
jobs performed by which agents are passed on the off-
spring from which parent. 
In Figure 1, the agent-based crossover is depicted. SA 
and SB are selected parents, SC is the offspring for n=15 
and m=5. di = 0 indicates the jobs performed by the 
agent i in solution SA, these jobs are passed on to SC

. 
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Else if di = 1 indicates the jobs performed by the agent 
i in solution SB, these jobs are passed on to SC

. The 
agent-based crossover is described in Algorithm 2.

Figure 1
Illustration of Agent-based Crossover
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 The agents of the parents are identified as dominant 

or not; this domination is based on the jobs per-
formed by each agent. It is possible that some of the 
jobs of the offspring are assigned to either no agent 
or two agents after passing dominant features. If a 
collision occurs in assigning two agents to one job, 
the job is assigned to the agent, who has a lower cost 
for the job. On the other hand, the other agent is re-
leased and its current available capacity increases. If 
there is an unassigned job, any agent, having current 
available capacity for the job, is assigned the job. If 
current available capacities of the agents are still 
not enough for the job, a random agent is assigned to 
the job. The computational complexity of the agent-
based crossover is O(n).

4 Computational Results
Chu and Baeasley’s test problem instances from OR 
library [3] were utilized in the present study to test 
and compare the proposed algorithm. These instanc-
es were used for the computational experiments in 
other previous studies. The problem instances are 
divided into two groups as small sized and large 
sized. The large sized instances are generated as 
both agent/job combination m=5, 10, 20 and n=100, 
200 and four different resources types from A to E [5, 
30]. The proposed algorithm is applied only to large 
sized instances; because, the small sized ones are not 

1: for i=0 to m do 
2:    di ← 0 or 1 randomly; 
3:    Ai ← bi; 
3: end for; 
4: for j=1 to n do 
 // if  a collision occured  
5:  if  di=0 ∧ di*=1 | Sj

A=i ,  Sj
B=i* then 

6:   if  cij < ci*j then  Sj
C ← i else Sj

C ← i* 
8:   end if; 
9:  else if di=0 then  Sj

C ← i ; 
10:  else if di*=1 then Sj

C← i*; 
11:  end if 
12:  Ai" ← Ai"  - ai"j | Sj

C = i" ; 
13: end for 

//check unassigned jobs 
14: for j=1 to n do 
15:  if  Sj

C= null then  
16:   search for an agent i ' | ai'j ≤ Ai'  
17:   if such i' exists then select one with minimum ci'j  
18:   else select i' randomly; 
19:    Sj

C ← i'; 
20   Ai'  ← Ai' - ai'j  ; 
21:   end if 
22:  end if 
23: end for 

Algorithm 2 
The Agent-based Crossover
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challenging enough for contemporary computers. 
In this computational study, the conditions are ar-
ranged according to the study by Chu and Beasely [5] 
as possible. The population size is always 100. The 
termination condition depends on Sterility Index 
(SI) indicating the number of offspring were created 
without getting any better fitness values. When SI 
is reached to 500000, GA is terminated. Maturation 
value (MV) varies between 30 and 50 and is updated 
according to Algorithm 3 for iterations. CSR value 
is determined as 0.1, 0.9, 0.1, 0.9 and 0.9 for the in-
stance from A to E, respectively. The mutation prob-
ability is defined as 0.001. 

the averages of the execution times and the average 
number of iterations at the best solution obtained are 
presented. Both values are reasonable.
Table 3 shows the quality of solutions and a com-
parison of the results. The percentage of deviation 
(σ) between best solution value (Si) and their known 
best-cost value (So) (8) is used to measure the quality 
of solutions: 

 

E 5 100 12681 n/a n/a n/a 3.28    0.45     2.38 
200 24930 n/a n/a n/a 5.50     0.79     3.59 

10 100 11577 n/a n/a n/a 4.89     0.30     4.26 
200 23307 n/a n/a n/a 7.13     0.62     6.07 

20 100 8443 n/a n/a n/a  6.32 0.41     5.48 
200 22379 n/a n/a n/a 7.42     0.46     6.27 

* The best values are reported in [30]. 
** The values are figured out from [5]. 
 
Table 3 shows the quality of solutions and a comparison of the results. The percentage of deviation (σ) 
between best solution value (Si) and their known best-cost value (So) (8) is used to measure the quality 
of solutions:  
 
σ = (Si - So) / So * 100% .  (8) 
 
The average percentage of gap of the run’s best solution is shown in Table 3 (σa), the standard deviation 
of the best solutions of trials (stddev) and the percentage gap of the best run’s solution (σb) are presented 
as well. 
 
The results of Type A instances are not included in Table 3, for both GAs find out the optimum cost for 
all six easy instances. Even if the agent-based method provides superiority over classical crossover 
method, as in Table 2, the percentage of the deviation values is partly better than those of Chu and 
Beasley’s GA. One of the reasons for this would be that the trials for Type D were terminated when IS 
had reached 3×106. Nevertheless, the differences between the compared values are easily tolerable. 
Moreover, the standard deviation values of the proposed GA are better for almost all instances.  
 
In terms of computational complexity, the evaluation of solutions and agent-based crossover have 
complexities of O(mn) and O(n), respectively. Thus, the heuristic has a complexity of O(mn). The 
complexity of the Chu and Beasley’s GA is O(m2n) [5]. On the other hand, the computational times are 
not compared because all the studies have different codes in different programming languages, different 
CPU times on different hardware, and different stopping criteria. In addition, larger sized GAP instances 
were used in a few previous heuristic studies. The answers to the objective questions would not change 
with such a large-sized problem. Additionally, testing with this type instances takes larger execution 
times. It is anticipated, in the present study, that this type of larger sized instances are more suitable for 
competition type papers.  

 
5 Conclusions 
 
This study has proposed a GA with new methods for GAP. Classical crossover method is given up and 
agent-based crossover is presented to increase the possibility of creating feasible solutions. The solutions 
are classified as infeasible, feasible, and mature. The fitness value is not computed for infeasible ones to 
shorten the execution time. Moreover, a solution is not thrown up from the population until it is matured. 
Moreover, it is ensured that all the infeasible solutions are turned into feasible ones by the proposed local 
search methods in the feasible solution diversity as much as possible.  
 
The computational results show that the agent-based crossover is more effective in terms of creating 
feasible solutions. Further, the proposed GA is able to create optimal and near-optimal solutions for 
GAP. The proposed GA obtains the best solution in both the execution time and number of iterations.  
Additionally, the lower standard deviation values indicate the consistency of the algorithm. Prospective 
studies could use the agent-based crossover and maturity-based replacement methods with different local 
searches than the ones in the previous studies, and should develop new methods.  
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The average percentage of gap of the run’s best solu-
tion is shown in Table 3 (σa), the standard deviation 
of the best solutions of trials (stddev) and the percent-
age gap of the best run’s solution (σb) are presented as 
well.
The results of Type A instances are not included in 
Table 3, for both GAs find out the optimum cost for 
all six easy instances. Even if the agent-based method 
provides superiority over classical crossover method, 
as in Table 2, the percentage of the deviation values 
is partly better than those of Chu and Beasley’s GA. 
One of the reasons for this would be that the trials for 
Type D were terminated when IS had reached 3×106. 
Nevertheless, the differences between the compared 
values are easily tolerable. Moreover, the standard 
deviation values of the proposed GA are better for al-
most all instances. 
In terms of computational complexity, the evaluation 
of solutions and agent-based crossover have com-
plexities of O(mn) and O(n), respectively. Thus, the 
heuristic has a complexity of O(mn). The complexity 
of the Chu and Beasley’s GA is O(m2n) [5]. On the oth-
er hand, the computational times are not compared 
because all the studies have different codes in differ-
ent programming languages, different CPU times on 
different hardware, and different stopping criteria. 
In addition, larger sized GAP instances were used in 
a few previous heuristic studies. The answers to the 
objective questions would not change with such a 
large-sized problem. Additionally, testing with this 
type instances takes larger execution times. It is an-
ticipated, in the present study, that this type of larg-
er sized instances are more suitable for competition 
type papers. 

Algorithm 3
Computation of Maturation Value

 

In this computational study, the conditions are arranged according to the study by Chu and Beasely [5] 
as possible. The population size is always 100. The termination condition depends on Sterility Index (SI) 
indicating the number of offspring were created without getting any better fitness values. When SI is 
reached to 500000, GA is terminated. Maturation value (MV) varies between 30 and 50 and is updated 
according to Algorithm 3 for iterations. CSR value is determined as 0.1, 0.9, 0.1, 0.9 and 0.9 for the instance 
from A to E, respectively.  The mutation probability is defined as 0.001.  

Table 1  
Percentages of feasible offspring created by Classical and Agent-based Crossover Methods 

Prob. 
Type 

Size  
(m/n) 

Percentage of feasible offspring created 
by 

Total number of 
created offspring 

Classical  Agent-based  

A 
 

5/100 99.977 99.998 500155 
5/200 82.631 99.996 500080 
10/100 61.912 99.994 500210 
10/200 88.683 99.995 500254 
20/100 93.716 99.996 500392 
20/200 95.677 99.994 500843 

B 

5/100 10.161 17.893 1237979 
5/200 5.453 11.875 847653 
10/100 73.034 97.788 506485 
10/200 4.326 17.333 534634 
20/100 74.291 99.985 501314 
20/200 74.929 99.999 502193 

C 

5/100 16.716 20.804 533032 
5/200 7.991 10.153 540689 
10/100 6.784 31.675 896716 
10/200 3.660 14.186 820793 
20/100 9.881 67.208 938666 
20/200 4.418 49.901 1606478 

D 

5/100 3.813 8.003 1579449 
5/200 4.201 8.479 739419 
10/100 3.229 3.073 1248862 
10/200 2.101 1.604 1262487 
20/100 2.920 10.579 955999 
20/200 2.014 1.584 1084807 

E 

5/100 21.927 73.621 135829 
5/200 0.235 0,627 1226390 
10/100 0.474 2.073 584783 
10/200 0,173 0.374 1163414 
20/100 0.217 5.620 1223224 
20/200 0.265 0.373 729617 

 
The proposed algorithm was coded in Java programming language and run on Java JRE v. 1.8.0_25 for 
Windows x64 installed on a machine which has an Intel(R) Core(TM) i5 3.1 GHz CPU and a 6 GB of 

MVbase ← 30; 
MVinterval ← 20; 
MV ← MVbase ; 
//Update in each iteration 
if   M - Mbase< SI / (500000 / MVinterval) then 

MV ← Mbase+ SI / (500000 / MVinterval) 
end if 

 Algorithm 3 
 Computation of Maturation Value 

The proposed algorithm was coded in Java program-
ming language and run on Java JRE v. 1.8.0_25 for 
Windows x64 installed on a machine which has an In-
tel(R) Core(TM) i5 3.1 GHz CPU and a 6 GB of RAM. 
Minimum and maximum memory allocations are 
specified as 256 MB and 4096 MB, respectively, for 
the execution of the code.
Table 1 indicates the comparison of fertility between 
the proposed agent-based crossover and classical sin-
gle point crossover. This comparison was conducted 
by applying the proposed algorithm to the 24 large 
sized GAP instances. After the agent-based crossover 
was performed, the classical crossover was applied to 
the same parent solutions. The percentage of the fea-
sible offspring generated by the proposed crossover 
methods was much higher than the classical cross-
over method in 27 instances out of 30. 
Table 2 indicates the solution values of the proposed 
GA applied to the large-sized GAP instances. The GA 
was performed 10 times for each instance. The ob-
tained best costs are presented separately. Moreover, 
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Table 1
Percentages of feasible offspring created by Classical and Agent-based Crossover Methods

Prob. 
Type

Size  
(m/n)

Percentage of feasible offspring created by Total number of created 
offspringClassical Agent-based 

A

5/100 99.977 99.998 500155

5/200 82.631 99.996 500080

10/100 61.912 99.994 500210

10/200 88.683 99.995 500254

20/100 93.716 99.996 500392

20/200 95.677 99.994 500843

B

5/100 10.161 17.893 1237979

5/200 5.453 11.875 847653

10/100 73.034 97.788 506485

10/200 4.326 17.333 534634

20/100 74.291 99.985 501314

20/200 74.929 99.999 502193

C

5/100 16.716 20.804 533032

5/200 7.991 10.153 540689

10/100 6.784 31.675 896716

10/200 3.660 14.186 820793

20/100 9.881 67.208 938666

20/200 4.418 49.901 1606478

D

5/100 3.813 8.003 1579449

5/200 4.201 8.479 739419

10/100 3.229 3.073 1248862

10/200 2.101 1.604 1262487

20/100 2.920 10.579 955999

20/200 2.014 1.584 1084807

E

5/100 21.927 73.621 135829

5/200 0.235 0,627 1226390

10/100 0.474 2.073 584783

10/200 0,173 0.374 1163414

20/100 0.217 5.620 1223224

20/200 0.265 0.373 729617
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Table 2 
Computational Results for Large Sized GAP Instances. o: integer optimum reached. b: best overall solution value 

Pr
ob

 
Ty

pe

Size
Best solution in each of the 10 trials

Best 
Overall 

solution

Avg.  
Best Sol’n 

time (s)

Avg. 
Best 

Sol’n iter.m n

A

5 100 o o o o o o o o o o 1698 0.06 187

200 o o o o o o o o o o 3235 0.16 280

10 100 o o o o o o o o o o 1360 0.14 501

200 o o o o o o o o o o 2623 0.30 552

20 100 o o o o o o o o o o 1158 0.19 650

200 o o o o o o o o o o 2339 0.48 867

B

5 100 1846 1848 1849 1848 1846 1848 o 1849 1846 o 1843 115 361061

200 3567 3567 b 3564 3564 3566 3564 3567 3565 b 3561 725.7 122042

10 100 o o o o o o o o o o 1407 10.27 33802

200 b 2857 2855 2856 2856 2858 2856 2858 2859 b 2853 753.23 1251610

20 100 1168 1169 1169 o 1169 1168 1168 1169 1169 1169 1166 0.64 2110

200 2344 2347 2345 b 2344 2345 2349 2345 2346 b 2343 2.02 3361

C

5 100 1935 1933 1932 o 1936 1935 1935 o 1933 1937 1931 241.24 256203

200 3472 3472 3471 3469 3473 3473 3473 3474 3475 b 3470 491.14 816716

10 100 1408 1409 1408 1407 b 1409 1407 1407 1408 1408 1404 199.04 627121

200 2841 2834 2840 2836 2838 2838 2840 2839 2835 b 2831 1017.29 1646017

20 100 1258 1257 1257 1255 1258 1257 1258 b 1255 1257 1251 221.19 691173

200 2432 2428 2430 2431 b 2429 2432 b 2431 2430 2427 942.70 1429466

D

5 100 6472 6485 6478 6488 6485 b 6484 6487 6484 6483 6461 355.85 1034714

200 13015 13010 13008 13022 13011 13013 13020 13015 b 13020 12991 2528.52 3453532

10 100 b 6544 6558 6555 6546 6542 6556 6560 6551 6542 6536 293.34 896739

200 b 12833 12836 12765 12756 12754 12788 12774 12788 12747 12740 1100.43 1769034

20 100 6454 6440 b 6445 6441 6446 6439 6436 6441 6447 6419 205.93 641491

200 12776 12765 12770 12764 12753 12747 12749 b 12759 12755 12733 1005.80 1569777

E

5 100 13141       13148       13092       13100       b 13151       13054       13114       13154       13033 12984       187.34 582696

200 26320       26205       26429       26459       26280       26422       26475       26180       26424       b 25825 520.23 828994

10 100 12142       12143       12179       12177       12164       12108       b 12518 12469 12171 12071       242.82 767136

200 25088       25186       24740       24933       24948       25023       25071       25027       24970       b 24724 835.66 1242852

20 100 b 8971        8984        9015        8986        8935        8982        9022        8969        9002 8906 139.24 455248

200 23998 b 24109 25504 24094 24039 24055 24085 24062 24170 23784 1171.04 1969467
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Table 3
Comparison of Chu and Beasley’s GA and proposed GA. o: integer optimum reached

Prob 
Type

Size
Best 

Known*

Chu and Beasley’s GA** Proposed GA

m n  σa stddev σb σa stddev σb

B

5 100 1843 0.35 0.31 o 0.20 0.11 o

200 3552 0.30 0.15 0.03 0.35 0.06 0.25

10 100 1407 0.07 0.07 o o 0.00 o

200 2827 0.34 0.13 0.14 1.03 0.07 0.92

20 100 1166 0.07 0.06 o 0.21 0.08 o

200 2339 0.10 0.05 0.04 0.26 0.08 0.17

C

5 100 1931 0.38 0.21 o 0.15 0.10 o 

200 3456 0.23 0.11 0.06 0.47 0.05 0.38

10 100 1402 0.29 0.26 0.07 0.39 0.10 0.14

200 2806 0.48 0.13 0.29 1.11 0.11 0.89

20 100 1243 0.51 0.26 0.08 1.07 0.17 0.64

200 2391 0.62 0.19 0.25 1.62 0.07 1.51

D

5 100 6353 0.66 0.21 0.31 2.01 0.12 1.70

200 12742 0.66 0.15 0.42 2.12 0.07 1.95

10 100 6348 1.25 0.38 0.49 3.17 0.12 2.96

200 12432 1.57 0.15 1.36 2.78 0.26 2.48

20 100 6190 1.91 0.36 1.28 4.05 0.14 3.70

200 12241 2.35 2.30 1.72 4.22 0.10 4.02

E

5 100 12681 n/a n/a n/a 3.28   0.45    2.38

200 24930 n/a n/a n/a 5.50    0.79    3.59

10 100 11577 n/a n/a n/a 4.89    0.30    4.26

200 23307 n/a n/a n/a 7.13    0.62    6.07

20 100 8443 n/a n/a n/a  6.32 0.41    5.48

200 22379 n/a n/a n/a 7.42    0.46    6.27

* The best values are reported in [30]. 
** The values are figured out from [5].
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5 Conclusions
This study has proposed a GA with new methods for 
GAP. Classical crossover method is given up and agent-
based crossover is presented to increase the possibility 
of creating feasible solutions. The solutions are classi-
fied as infeasible, feasible, and mature. The fitness val-
ue is not computed for infeasible ones to shorten the 
execution time. Moreover, a solution is not thrown up 
from the population until it is matured. Moreover, it is 
ensured that all the infeasible solutions are turned into 
feasible ones by the proposed local search methods in 
the feasible solution diversity as much as possible. 
The computational results show that the agent-based 
crossover is more effective in terms of creating feasible 

solutions. Further, the proposed GA is able to create op-
timal and near-optimal solutions for GAP. The proposed 
GA obtains the best solution in both the execution time 
and number of iterations. Additionally, the lower stan-
dard deviation values indicate the consistency of the al-
gorithm. Prospective studies could use the agent-based 
crossover and maturity-based replacement methods 
with different local searches than the ones in the previ-
ous studies, and should develop new methods. 
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