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In this work, a hybrid algorithm has been proposed to solve bi-objective permutation flow shop scheduling prob-
lem. The primary concern of flow shop scheduling problem considered in this work is to obtain the best sequence, 
which minimizes the makespan and the total flow time of all jobs. Bi-objective issues are comprehended by doling 
out uniform weight to every objective function in view of its preference or determining every competent solu-
tions. In the flow shop scheduling environment, many meta-heuristic algorithms have been used to find optimal 
or near-optimal solutions due to the computational cost of determining exact solutions. This work provides a hy-
bridization of genetic algorithm and simulated annealing algorithm (HGASA) based multi-objective optimization 
algorithm for flow shop scheduling. The proposed HGASA algorithm is used to solve a bi-objective problem that 
minimizes the makespan and the total flow time. The performance of the proposed algorithm is demonstrated by 
applying it to benchmark problems available in the OR-Library. The test results show that the HGASA algorithm 
performed better in terms of searching quality and efficiency than other meta-heuristic algorithms.
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1. Introduction
In permutation flow shop scheduling, ‘n’ jobs must 
be processed on ‘m’ machines in the same Order se-
quence. The operation succession is the same for all 
jobs. The permutation flow shop scheduling (PFSSP) 
has a broad foundation in assembling frameworks 
and has pulled in numerous analysis consideration 
by Johnson [10]. Numerous researches for single ob-
jective FSSPs result in a schedule to minimize the 
makespan. The traditional ways to solve single-objec-
tive FSSP can be predominantly partitioned into two 
classes, to be specific, exact and approximation tech-
niques. For a limited-wait constraints, complex hy-
brid flow-shop scheduling problem was solved with 
discrete time exact arrangement approach by Gicquel 
et al. [6], and a modified teaching–learning-based op-
timization algorithm has been used to solve bi-objec-
tive re-entrant hybrid flow shop scheduling by Shen 
et al. [20]. Later, Jeen Robert and Rajkumar [8] pro-
posed a hybrid algorithm for minimizing makespan 
in the PFSSP. Two-machine and three-machine flow 
shop scheduling problem is solved using branch-and-
bound (B&B) algorithm [7]. Campbell et al. [4] built 
up a heuristic algorithm for n-job m-machine se-
quencing problem with a goal of minimizing total flow 
time. A general schedule for n jobs with m machines is 
(n!)m. In this situation, just n! schedules must be con-
sidered to stay away from job flow. The performance 
measures of flow shop scheduling are makespan, to-
tal flow time and tardiness and so on. In flow shop 
environment, solving a single objective problem is 
very tedious one. Majority of studies for the flow shop 
scheduling problem focuses to minimize makespan. 
However, there are other important objectives than 
makespan for the flow shop scheduling problem. For 
example, the total flow time, the total machine idle 
time are very important performance measures in 
minimizing total scheduling cost. Hence, we consider 
the flow shop scheduling problem with the objectives 
of makespan and total flow time in this study. Weishi 
et al. [23] described a self-guided differential evolu-
tion with a neighborhood search for permutation flow 
shop scheduling. Rajendran [14] has developed a heu-
ristic algorithm with the objective of minimizing the 
makespan and the total flow time for bi-objective flow 
shop scheduling problem. Nagar et al. [11] developed a 
combined hybrid algorithm to solve PFSSP with bet-
ter minimization of makespan and average total flow 

time. Rajkumar and Shahabudeen  [9, 16] described 
an EGA & IGA algorithm to solve the PFSP. Wang et 
al. [22] proposed a hybrid harmony search algorithm 
for solving flow shop benchmark problems. Car-
bon-efficient scheduling of flow shops by multi-objec-
tive optimization was proposed by Ding et al. [5] for 
the permutation flow shop scheduling environment. 
Abdolrazzagh et al. [1] presented a robust intelligent 
technique to produce the initial population close 
to the optimal solution for the job-shop scheduling 
problem. A branch and bound algorithm as in [25] is 
introduced in bi-objective flow shop scheduling field 
to minimize the weighted sum of total flow time and 
makespan. The author tried randomly generated pop-
ulation size problem and reported that the developed 
meta-heuristic algorithm is more fruitful on problem 
instances with 20 jobs. Rajendran and Ziegler [15] 
created max–min ant system (MMAS) and populace 
based ant colony optimization (PACO) algorithms 
to tackle flow shop scheduling problem with the tar-
get of minimizing the total flow time and makespan. 
Ravindran et al. [18] have been created a hybrid al-
gorithm for solving bi-objective PFSP (HAMC1, 
HAMC2, and HAMC3) to minimize the total flow 
time and makespan. The results produced by HAMC’s 
are well contrasted with CR multi-criterion (MC) 
heuristics and CR heuristics. Allouche et al. [2] pro-
posed trade off programming which has fulfillment 
capacities for fathoming multi-objective scheduling 
problem with the goal of minimizing complete late-
ness, makespan and total flow time. Rajendran and 
Ziegler [13] created a multi-objective ant colony op-
timization (ACO) to deliver non-dominated arrange-
ment with the target of minimizing total flow time 
and makespan in PFSSP. Rajkumar and Shahabudeen 
[17] developed a meta-heuristic algorithm to solve 
bi-objective flowshop scheduling problem. Multi-Ob-
jective Ant Colony System Algorithm (MOACSA) to 
minimize the destinations of both total flow time and 
makespan in permutation flow shop scheduling is dis-
cussed in [24]. They concluded that proposed MOAC-
SA performs better than CR (MC) algorithm, HAMC 
algorithms and GA for said multi-objective flow shop 
scheduling problem. Nearest Neighbor (NN) and 
Ant Colony Optimization (ACO) algorithm is used 
to minimize the terminuses of both CPU time and 
makespan in permutation flow shop scheduling [3]. 
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Recently, Sanjeev Kumar et al. [19] developed a mod-
ified gravitational emulation local search (MGELS) 
algorithm to minimize both makespan and total flow 
time. The proposed methodology is carried out with 
the flow shop benchmark problem, and the execu-
tion of MGELS algorithm is contrasted with CR al-
gorithm, HAMC1, HAMC2, HAMC3, CR (MC), Mul-
tiple Objective Adaptive Clonal Selection Algorithm 
(MOACSA), GA, and DT algorithm. In this present 
work, a hybrid algorithm is proposed that hybridizes 
the Genetic Algorithm (GA) and the simulated An-
nealing (SA) algorithm. The Genetic algorithm acts 
as local search scheme and the Simulated Annealing 
algorithm acts as a global search scheme by accepting 
some inferior count values. Moreover, in proposed 
HGASA, the sub chromosomal level crossover and 
mutation is implemented to get better results and 
this seed is given to the SA algorithm to get further 
improvements which avoids the worst solution. So it 
is believed that HGASA can achieve satisfactory im-
provement for PFSSPs. Then the performance of the 
proposed algorithm is tested with flow shop schedul-
ing benchmark problems. The results obtained by the 
proposed HGASA are compared with earlier reported 
results of CR algorithm, HAMC1, HAMC2, HAMC3, 
CR (MC), MOACSA, GA, and DT algorithm. Test re-
sults show that the proposed algorithm is more effi-
cient than other algorithm and best suited for large 
sized problems. 
The rest of this paper is organized as follows: Section 2 
presents the mathematical model of PFSP. Section 3 
presents the flowchart and procedure of proposed HGS-
SA for PFSP. Section 4 shows the experimental results 
and comparisons between HGSSA and other algorithms. 
Section 5 summarizes the conclusions of this work.

2. Mathematical Model of PFSP
In the present paper, bi-objective optimization for 
minimizing the makespan and total flow time for es-
tablished PFSP is considered. The detailed explana-
tion of PFSP is given in sub sequent section.

2.1. Permutation Flow Shop Scheduling 
Problem (PFSP)
The main objective of the permutation flow shop sched-
uling problem is to find a suitable job sequence that 

minimizes makespan and total flow time. The objective 
of this work is to develop a HGASA and hence to find the 
optimal or near optimal solution sequence in flow shop 
scheduling by minimizing makespan and total flow 
time. In PFSP, there are ‘n’ independent jobs (permuta-
tion job set j = 1, 2,. . .n) that should be processed on ‘m’ 
machines (k = 1,2,. . .m) and Bk is an inter-mediate buffer 
between two consecutive machines. All the machines 
(M1, M2,…..,Mm) follow the same job sequence till the 
end of all operations. This means that, the rth task of job 
j is executed by machine Mr with processing time T(r, j), 
where 1 ≤ r ≤ m, and 1 ≤ j ≤ k. Therefore, the completion 
times of jobs on the machines, makespan and the total 
flow time (TFT) of the jobs in the flow shop scheduling 
can be intended as follows:
The following notations are used in PFSP:
T(r, j) Processing time for job r on a given ma-

chine j (r=1, 2,…..n), (j= 1, 2…..m)
n total number of jobs to be scheduled
m total number of machines in the process
Cmax makespan
r the occupation sequenced in the ith posi-

tion of a schedule
C(r, j) the completion time of jobs r on machine j
The multi-objective flow shop scheduling problem 
consists of scheduling n jobs with given processing 
time on m machines. The flow shop problem has a fun-
damental assumption, i.e. n jobs are processed on m 
machines in the same order. The initial machine setup 
time is not considered for determining the makespan 
value calculation. The following equations are used to 
find the completion time of the job schedule:

C(1, 1)= T(1, 1) (1)

C(1, j)= C(1, j-1)+ T(1, j) (2)

C(r, 1)= C(r-1, 1)+ T(r, 1) (3)

C(r, j)= Max(C(r,j-1), C(r-1,j))+T(r, j) (4)

TFT=
1

( , )
n

i
C i m

=
∑ . (5) 

In Eq. (4), T(r, j) represents the finishing time of rth job 
of the jth work on machine Mr, C(r, j) represents the 
most extreme execution time of the jth work on ma-
chine Mr, 1 ≤ r ≤ m   and 1 ≤ j ≤ k,  where k is the total 
number of jobs, and m is the total number of machines, 
then C(m, k) represents “Makespan”, where C(i, m)  is 
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the finishing time of the ith job in the last machine ‘m’, 
i.e. Total flow time (TFT) is the total completion time 
of all jobs spent on the production system.

3. The Proposed Hybrid Algorithm 
(HGASA)
We proposed a hybrid (HGASA) meta-heuristic al-
gorithm, which can be used for the minimization of 
makespan and total flow time in the PFSP. Hybridiza-
tion indicates combining of two or more algorithms 
to solve a given complex problem. Our algorithm hy-
bridizes the Genetic Algorithm and the simulated an-
nealing algorithm to reach global best (gbest) or near 
to global solution. In HGASA, Genetic Algorithm acts 
as local search scheme, and the Simulated Annealing 
algorithm acts as global search scheme by accepting 
some inferior count values. Moreover, in the proposed 
HGASA, the sub chromosomal level crossover and 
mutation are implemented to get better results, and 
this seed is given to SA algorithm to get further im-
provements by avoiding worst solution. As a result, it 
is believed that HGASA can achieve satisfactory im-
provement in PFSPs. The framework for the HGASA 
algorithm to the Permutation Flow Shop Scheduling 
Problem is clearly illustrated in Fig. 1. for the bi-ob-
jective optimization of makespan and total flow time 
minimization. The steps involved in the proposed 
HGASA algorithm are stated below.
Step 1: Generate an initial population using Nawaz et 
al. [12] (NEH) algorithm.
Step 2: Initialization; Define the size of population = 
1500; number of generations =200; crossover proba-
bility=0.05; mutation probability=0.05. 
Step 3: Evaluate the Fitness function value of each 
chromosome by 

max

1( )
1 (0.5 0.5 )

f x
C TFT

=
+ +

, where 

Cmax= makespan and TFT= C(i, m). 
Step 4: Perform the following crossover opera-
tion: list the best f(x) sequence that minimizes both 
makespan and total flow time.

Similar Job Order Crossover (SJOX)
SJOX crossover is based on the idea of identifying 
and maintaining building blocks in the offspring. 
In this way similar blocks or occurrences of jobs in 

Figure 1 
The structure of the HGASA for PFSP
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Table 1
Similar Job Order Crossover (SJOX)

Parent1 3 5 6 4 2 7 8 9 1

Offspring1 3 5 6 4 2 9 8 7 1

Offspring2 3 9 8 4 2 5 6 7 1

Parent2 3 9 8 4 2 5 7 6 1

cut point

Step 2. Produce a proto-offspring by copying the sub-
section sequence into the corresponding positions of it. 
Step 3. Delete the operations which are already in the 
subsequence from the second parent. The resulted se-
quence of operations contains the operations that the 
proto-offspring needs. 
Step 4. Place the operations into the unfixed positions 
of the proto-offspring from left to right according to 
the order of the sequence to produce an offspring.
Step 5: Mutation produces an offspring arrangement 
by arbitrarily altering the parent’s qualities. In this 
present algorithm, two different types of mutation op-
erators are introduced, namely inverse mutation and 
single point mutation.

Inverse Mutation
In a sequence, two positions i and j are randomly se-
lected. The portion of the sequence between these 
two positions is inverted to get a new mutated se-
quence. The new sequence represents the sequence 
of operations after mutation. If the makespan of the 
mutated sequence is less than the makespan of the 
original sequence, the old sequence is replaced by 
the new sequence. (Example. Mutation positions be-
tween 2 and 8).
Original Sequence
8 9 7 6 4 5 3 
2 1
Mutated Sequence
8 4 3 2 7 9 6 
5 1

Single Point Mutation
A random operation is selected in the sequence and 
moved to another random position in the sequence. 
If the makespan of the resulting sequence is less than 
that of the previous one, it replaces the previous se-
quence.
Before single point mutation
8 9 7 6 4 5 3 
2 1
After single point mutation
8 9 7 4 5 3 2 
1 6
Step 6: Simulated annealing begins with a neighbor-
hood search by defining initial parameters.

both parents are passed over to child unaltered. If 
there are no similar blocks in the parents the cross-
over operator will behave like the single-point order 
crossover. The SJOX crossover operator can be ex-
plained as follows:
Step 1: Both parents are examined on a posi-
tion-by-position basis. Identical jobs at the same po-
sitions are copied over to both offspring.
Step 2: The offspring directly inherits all jobs from 
the corresponding parents up to a randomly chosen 
cut point. That is, Child1 inherits directly from Par-
ent1 and Child2 from Parent2. 
Step 3: Missing elements at each offspring are cop-
ied in the relative order of the other parent and it is 
shown in Table 1.

Linear Order Crossover (LOX)
Linear Order Crossover (LOX) tries to preserve both 
the relative positions between genes as much as pos-
sible and the absolute positions relative to the ex-
tremities of parents and it is shown in Fig. 2.

Figure  2 
Linear order crossover

 
 

 

 

  

 

Step 1. Select a subsequence of operations from one 
parent at random. 
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Step 7: Random move to evaluate at the new point. 
The obtained fitness function values are compared 
with existing fitness function values. If the obtained 
value is the superior one, then repeat the same pro-
cess to get further better results. The advantage of the 
simulated annealing process is that the inferior solu-
tions are also accepted to get the global best value. 
The probability of inferior value acceptance is mea-

sured by 
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Step 5: Mutation produces an offspring 
arrangement by arbitrarily altering the parent’s 
qualities. In this present algorithm, two different 
types of mutation operators are introduced, 
namely inverse mutation and single point 
mutation. 

Inverse Mutation 

In a sequence, two positions i and j are randomly 
selected. The portion of the sequence between 
these two positions is inverted to get a new 
mutated sequence. The new sequence represents 
the sequence of operations after mutation. If the 
makespan of the mutated sequence is less than the 
makespan of the original sequence, the old 
sequence is replaced by the new sequence. 
(Example. Mutation positions between 2 and 8). 

Original Sequence 

 8 9 7 6 4 5
 3 2 1 

Mutated Sequence 

 8 4 3 2 7 9
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Single Point Mutation 

A random operation is selected in the sequence 
and moved to another random position in the 

sequence. If the makespan of the resulting 
sequence is less than that of the previous one, 
it replaces the previous sequence. 

Before single point mutation 

 8 9 7 6 4
 5 3 2 1 

After single point mutation 

 8 9 7 4 5
 3 2 1 6 

Step 6: Simulated annealing begins with a 
neighborhood search by defining initial 
parameters. 

Step 7: Random move to evaluate at the new 
point. The obtained fitness function values 
are compared with existing fitness function 
values. If the obtained value is the superior 
one, then repeat the same process to get 
further better results. The advantage of the 
simulated annealing process is that the 
inferior solutions are also accepted to get the 
global best value. The probability of inferior 

value acceptance is measured by 
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where ∆ is objective difference = (f(x’)-f(x)), 
where 𝑥𝑥𝑥𝑥 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐, 𝑥𝑥𝑥𝑥′ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒 
𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜 𝑥𝑥𝑥𝑥 and T is the temperature. 
In the proposed HGASA algorithm, the 
random number is generated in the range of 
0.9 to 1. 

Step 8: Check for freezer count by reducing 
the system temperature according to the 
cooling schedule. 

Step 9: List the best fitness function value and 
corresponding sequence by indicating 
makespan and total flow time.  

Step 10: The procedure is stopped when the 
temperature reaches the final set temperature 
or it reach the maximum number of 
iterations. 

4. Experimental Results and 
Comparisons 

In this article, the proposed HGASA 
algorithm is coded in Matlab 2009 
programming tool and tried on an Intel Core 
i-3, 1.6 GHz with 4 GB RAM PC equipment. 
It has been tried with 28 flow shop 
benchmark problems, jobs sizes from 20, 50, 
and 100 and machines sizes from 5, 10, and 
20. These benchmark problems are taken 
from Taillard [21]. Each instance can be 
characterized by the following parameters: 

where ∆ is objective difference 
= (f(x’)-f(x)), where 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝑥′ 𝑖𝑠 
𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑥 and T is the temperature. In 
the proposed HGASA algorithm, the random number 
is generated in the range of 0.9 to 1.
Step 8: Check for freezer count by reducing the sys-
tem temperature according to the cooling schedule.
Step 9: List the best fitness function value and corre-
sponding sequence by indicating makespan and total 
flow time. 
Step 10: The procedure is stopped when the tempera-
ture reaches the final set temperature or it reach the 
maximum number of iterations.

4. Experimental Results and 
Comparisons
In this article, the proposed HGASA algorithm is cod-
ed in Matlab 2009 programming tool and tried on an 
Intel Core i-3, 1.6 GHz with 4 GB RAM PC equipment. 
It has been tried with 28 flow shop benchmark prob-
lems, jobs sizes from 20, 50, and 100 and machines 
sizes from 5, 10, and 20. These benchmark problems 
are taken from Taillard [21]. Each instance can be 
characterized by the following parameters: number of 
jobs (n) and number of machines (m). Each instance 
has been subjected for 200 iterations to find the best 
fitness function value. The performance analysis of 
the proposed HGASA algorithm is described in Ta-
ble 2. Equal weights are considered for each objective 
(0.5, 0.5) as the MS and TFT objectives are conflict-
ing in nature. The equal weights are considered in 
Yagmahan and Yenisey [22] and Balasundaram et al. 
[3]. Considering makespan as an objective, 28 bench-
mark problems have been solved. Out of these prob-
lems, HGASA algorithm produced 16 best makespan 
solutions, whereas MGELS algorithm produced 8 

best solutions. Decision Tree algorithm produced one 
best solution, and CR (MC) produced three best solu-
tions. Table 3 gives the percentage improvement in 
makespan value using HGASA over earlier literature 
results. Moreover, the Average Relative Error Per-
centage (AREP) of the proposed HGASA algorithm 
is (1.97) less than that of all different methodologies 
such as MGELS, DT algorithm, HAMC3, HAMC2, 
HAMC1, CR (MC), and CR in view of makespan ob-
jective and it is shown in Fig. 3. The performance of 
the algorithms is given using Average Relative Error 
Percentage (AREP) equation

  

max

1( )
1 (0.5 0.5 )

f x
C TFT

=
+ +

, (6)

where C* is the Best makespan.

Figure 3 
A comparison of AREP of HGASA algorithm with other 
methods for makespan

  

 

 

 

 

In view of flow time calculation, the proposed HGA-
SA algorithm has produced 10 best flow time solu-
tions, whereas MGELS algorithm also produced 10 
best solutions. Decision Tree algorithm has produced 
six best solutions, whereas HAMC 2 algorithm has 
produced one best flow time value and CR algorithm 
has produced one best solution. Table 4 gives the per-
centage improvement in total flow time value using 
HGASA over earlier literature results. Besides, the av-
erage REP (AREP) of the proposed HGASA algorithm 
is (0.69) less than that of all different methodologies 
such as MGELS, DT calculation, HAMC3, HAMC2, 
HAMC1, CR (MC), and CRs and it is shown in Fig. 4. 
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Table 2 
Performance analysis of the proposed HGASA algorithm method with the existing methods

Prob-
lem 
No

CR’s [14] CR (MC) [14] HAMC1 [13] HAMC2 [13] HAMC3 [13] Decision Tree 
[22] MGELS [21] HGASA

MS TFT MS TFT MS TFT MS TFT MS TFT MS TFT MS TFT MS TFT

ta001 1377 14,361 1359 15,196 1297 14,274 1324 14,150 1307 14,193 1297 14105 1160 14220 1305 14199

ta002 1468 15,947 1378 18,204 1373 16,483 1409 15,386 1409 15,386 1386 15403 1364 15354 1397 15405

ta003 1379 14,261 1230 15,697 1206 13,858 1210 13,798 1210 13,798 1190 13759 1196 13464 1135 13973

ta004 1548 16,268 1393 17,037 1402 16,086 1423 15,770 1418 15,773 1413 15652 1373 15569 1313 16106

ta005 1387 19,884 1307 15,429 1334 14,897 1387 13,771 1387 13,779 1387 13726 1387 13660 1338 13619

ta006 1411 14,251 1282 15,030 1238 13,853 1281 13,389 1281 13,413 1312 13732 1228 13582 1260 13179

ta007 1381 13,972 1387 15,925 1322 14,215 1359 13,955 1332 13,959 1299 13872 1306 13838 1276 13867

ta008 1404 14,278 1344 15,716 1287 14,405 1404 14,269 1404 14,278 1242 14133 1254 14469 1254 14185

ta009 1425 14,907 1335 15,556 1307 15,823 1382 14,835 1382 14,835 1308 14863 1300 14660 1295 14600

ta010 1284 13,374 1191 14,622 1195 13,676 1298 13,204 1221 13,232 1198 13185 1193 13382 1170 13320

ta011 1887 22,526 1711 23,125 1774 22,427 1812 22,202 1787 22,234 1740 22078 1680 21298 1740 21327

ta012 2121 24,139 1916 26,526 1791 23,461 1817 23,003 1832 23,046 1870 22927 1747 23025 1743 23113

ta013 1786 20,654 1617 21,572 1643 21,818 1784 20,577 1783 20,608 1658 20600 1506 20156 1593 20148

ta014 1628 19,440 1533 20,761 1531 19,599 1595 19,276 1584 19,332 1587 19058 1548 18952 1468 19190

ta015 2693 34,484 1588 20,875 1722 19,740 1557 20,510 1586 19,463 1532 19373 1483 18975 1507 18875

ta016 1835 20,861 1565 21,109 1612 20,064 1674 19,751 1667 19,846 1647 19758 1621 19952 1616 19552

ta017 1659 19,422 1622 20,306 1594 19,268 1624 18,718 1628 18,992 1622 18967 1616 19007 1544 18850

ta018 1878 21,336 1800 23,991 1631 21,596 1659 20,958 1659 21,049 1669 20815 1671 21163 1605 20928

ta019 1851 20,859 1717 22,572 1769 21,595 1842 20,823 1823 20,851 1717 20903 1625 20767 1611 20972

ta020 1878 21,901 1831 25,034 1744 21,819 1831 21,541 1793 21,573 1795 21817 1738 20793 1725 21000

ta021 2700 35,405 2610 38,650 2491 36,027 2539 34,907 2546 35,159 2531 34830 2510 34638 2435 34404

ta022 2600 34,326 2301 35,426 2491 33,304 2491 33,304 2586 34,319 2363 32749 2285 32804 2283 32266

ta023 2550 33,519 2411 35,152 2422 33,556 2433 32,900 2506 33,411 2649 34328 2396 32857 2588 34411

ta024 2815 36,130 2471 37,081 2567 37,870 2693 35,475 2722 35,810 2453 32689 2438 32635 2282 31987

ta025 2518 33,729 2427 35,285 2420 35,029 2453 33,198 2493 33,682 2462 35735 2376 33137 2584 33320

ta026 2730 35,135 2466 37,142 2557 36,712 2641 34,742 2663 35,089 2434 34035 2416 34017 2359 33267

ta027 2582 33,025 2174 36,126 2448 34,389 2528 33,402 2515 33,484 2473 33615 2013 33362 2434 33569

ta028 2472 33,526 2418 34,076 2464 33,565 2473 33,479 2472 33,500 2554 33321 2513 33583 2499 33534

CR: cognitive radio; MC: multi-criterion; HAMC: hybrid algorithm for multi-criterion; MGELS: modified gravitational emula-
tion local search; AREP: average relative error percentage; HGASA: Hybrid genetic algorithm simulated annealing algorithm.
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Table 3 
Percentage improvement in makespan value using HGASA over earlier literature results

Problem
No n x m CR’s [14] CR (MC) 

[14]
HAMC1 

[13]
HAMC2 

[13]
HAMC3 

[13] D Tree [22] MGELS 
[21] HGASA

ta001 20 x 5 18.71 17.16 11.81 14.14 12.67 11.81 0.00 12.50

ta002 20 x 5 7.62 1.03 0.66 3.30 3.30 1.61 0.00 2.42

ta003 20 x 5 21.50 8.37 6.26 6.61 6.61 4.85 5.37 0.00

ta004 20 x 5 17.90 6.09 6.78 8.38 8.00 7.62 4.57 0.00

ta005 20 x 5 6.12 0.00 2.07 6.12 6.12 6.12 6.12 2.37

ta006 20 x 5 14.90 4.40 0.81 4.32 4.32 6.84 0.00 2.61

ta007 20 x 5 8.23 8.70 3.61 6.50 4.39 1.80 2.35 0.00

ta008 20 x 5 13.04 8.21 3.62 13.04 13.04 0.00 0.97 0.97

ta009 20 x 5 10.04 3.09 0.93 6.72 6.72 1.00 0.39 0.00

ta010 20 x 5 9.74 1.79 2.14 10.94 4.36 2.39 1.97 0.00

ta011 20 x 10 12.32 1.85 5.60 7.86 6.37 3.57 0.00 3.57

ta012 20 x 10 21.69 9.93 2.75 4.25 7.97 7.29 0.23 0.00

ta013 20 x 10 18.59 7.37 9.10 18.46 18.39 10.09 0.00 5.78

ta014 20 x 10 10.90 4.43 4.29 8.65 7.90 8.11 5.45 0.00

ta015 20 x 10 81.59 7.08 16.12 4.99 6.95 3.30 0.00 1.62

ta016 20 x 10 17.25 0.00 3.00 6.96 6.52 5.24 3.58 3.26

ta017 20 x 10 7.45 5.05 3.24 5.18 5.44 5.05 4.66 0.00

ta018 20 x 10 17.01 12.15 1.62 3.36 3.36 3.99 4.11 0.00

ta019 20 x 10 14.90 6.58 9.81 14.34 13.16 6.58 0.87 0.00

ta020 20 x 10 8.87 6.14 1.10 6.14 3.94 4.06 0.75 0.00

ta021 20 x 20 10.88 7.19 2.30 4.27 4.56 3.94 3.08 0.00

ta022 20 x 20 13.89 0.79 9.11 9.11 13.27 3.50 0.09 0.00

ta023 20 x 20 6.43 0.63 1.09 1.54 4.59 10.56 0.00 8.01

ta024 20 x 20 23.36 8.28 12.49 18.01 19.28 7.49 6.84 0.00

ta025 20 x 20 5.98 2.15 1.85 3.24 4.92 3.62 0.00 8.75

ta026 20 x 20 15.73 4.54 8.39 11.95 12.89 3.18 2.42 0.00

ta027 20 x 20 7.00 2.53 1.45 4.77 4.23 2.49 4.14 0.00

ta028 20 x 20 2.23 0.00 1.90 2.27 2.23 5.62 3.93 3.35

AREP 15.14 5.20 4.78 7.69 7.70 5.06 2.21 1.97

CR: cognitive radio; MC: multi-criterion; HAMC: hybrid algorithm for multi-criterion; MGELS: modified gravitational emulation local search; 
AREP: average relative error percentage; HGASA: Hybrid genetic algorithm simulated annealing algorithm.
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Table 4 
Percentage improvement in total flow time value using HGASA over earlier literature results

Problem
No n x m CR’s [14] CR (MC) 

[14]
HAMC1 

[13]
HAMC2 

[13]
HAMC3 

[13] D Tree [22] MGELS 
[21] HGASA

ta001 20 x 5 1.81 7.73 1.20 0.32 0.62 0.00 0.82 0.67

ta002 20 x 5 3.86 18.56 7.35 0.21 0.21 0.32 0.00 0.33

ta003 20 x 5 5.92 16.58 2.93 2.48 2.48 2.19 0.00 3.78

ta004 20 x 5 4.49 9.43 3.32 1.29 1.31 0.53 0.00 3.45

ta005 20 x 5 46.00 13.29 9.38 1.12 1.17 0.79 0.30 0.00

ta006 20 x 5 8.13 14.05 5.11 1.59 1.78 4.20 3.06 0.00

ta007 20 x 5 0.97 15.08 2.72 0.85 0.87 0.25 0.00 0.21

ta008 20 x 5 1.03 11.20 1.92 0.96 1.03 0.00 2.38 0.37

ta009 20 x 5 2.10 6.55 8.38 1.61 1.61 1.80 0.41 0.00

ta010 20 x 5 1.43 10.90 3.72 0.14 0.36 0.00 1.49 1.02

ta011 20 x 10 5.77 8.58 5.30 4.24 4.39 3.66 0.00 0.14

ta012 20 x 10 5.29 15.70 2.33 0.33 0.52 0.00 0.43 0.81

ta013 20 x 10 2.51 7.07 8.29 2.13 2.28 2.24 0.04 0.00

ta014 20 x 10 2.57 9.55 3.41 1.71 2.01 0.56 0.00 1.26

ta015 20 x 10 82.70 10.60 4.58 8.66 3.12 2.64 0.53 0.00

ta016 20 x 10 6.69 7.96 2.62 1.02 1.50 1.05 2.05 0.00

ta017 20 x 10 3.03 7.72 2.22 0.00 0.75 0.62 0.83 0.27

ta018 20 x 10 2.50 15.26 3.75 0.69 1.12 0.00 1.67 0.54

ta019 20 x 10 0.44 8.69 3.99 0.27 0.40 0.65 0.00 0.99

ta020 20 x 10 5.33 20.40 4.93 3.60 3.75 4.92 0.00 1.00

ta021 20 x 20 2.91 12.34 4.72 1.46 2.19 1.24 0.68 0.00

ta022 20 x 20 6.38 9.79 3.22 3.22 6.36 1.50 1.67 0.00

ta023 20 x 20 2.01 6.98 2.13 0.13 1.69 4.48 0.00 1.69

ta024 20 x 20 12.95 15.93 18.39 10.90 11.95 2.19 2.03 0.00

ta025 20 x 20 1.79 6.48 5.71 0.18 1.64 7.84 0.00 0.55

ta026 20 x 20 6.04 12.09 10.36 4.43 5.48 2.31 2.25 0.00

ta027 20 x 20 0.00 9.39 4.13 1.14 1.39 1.79 1.02 1.65

ta028 20 x 20 0.62 2.27 0.73 0.47 0.54 0.00 0.79 0.64

AREP 8.05 11.08 4.89 1.97 2.23 1.71 0.80 0.69

CR: cognitive radio; MC: multi-criterion; HAMC: hybrid algorithm for multi-criterion; MGELS: modified gravitational emulation local 
search; AREP: average relative error percentage; HGASA: Hybrid geneti c algorithm simulated annealing algorithm.
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The performance of the algorithms is given using Av-
erage Relative Error Percentage (AREP) equation

  

min( ) *( ) 100%
*

solutions CAREP x
C

−
=  ,              (6) 

 min( ) *( ) 100%
*

solutions DAREP x
D

−
=  ,      (7) 

 

 

(7)

where D* is the Best flow time value.

Figure 4 
A comparison of AREP of HGASA algorithm with other 
methods for Total flow time

  

 

 

 

 

5. Conclusion
In this work, HGASA based meta-heuristic approach 
is presented for bi-criteria optimization of minimiz-
ing makespan and total flow time simultaneously. It 
is a well-known combinatorial for permutation flow 
shop problem. The proposed algorithm is tested with 

28 benchmark problems available in the literature 
and the results are compared. As a bi-criteria model, 
the proposed approach gives the best solution com-
pared to the existing methods. Unlike the existing 
algorithms available for PFSP, to reach the global 
best solution, initially GA background is used to get 
a local best solution in the proposed algorithm. Lat-
er, the solution obtained through GA is given as input 
for SA algorithm, subjecting to neighborhood search 
by accepting some inferior count values to reach the 
global best solution. Measurable results of numerous 
problems of different sizes have demonstrated that 
the proposed technique meets or beats the other algo-
rithms available in the literature. Progressive applica-
tions, more information and characteristics are gath-
ered in shop floor control system and Hybrid Genetic 
Algorithm and Simulated Annealing algorithm will 
lead to better dispatching rules, while, it is difficult 
to evoke every single important part of the planning 
to alternate methodologies. The results of our perfor-
mance measurement also revealed that the proposed 
HGASA algorithm outperformed the meta-heuristics 
in minimizing the makespan and total flow time.
In future, it could be added with more objectives such 
as machine idle time, total tardiness, total work load, 
and so on. Moreover, to solve permutation flow shop 
scheduling problems with other hybrid approaches 
is also more interesting. In addition, the HGASA al-
gorithm could be applied to solve other combinatorial 
problems such as layout problems, job shop schedul-
ing, flexible job shop scheduling and flexible manu-
facturing system scheduling problems.
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