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This paper proposes a simple manner to determine the support region of the quasilogarithmic robust quan-
tizer. We assume Laplacian probability density function which is widely accepted as a typical model for audio 
and speech signals in many applications in science and engineering. Theoretically, the adaptability and robust-
ness are seemingly conflicting properties, while the numerical results point out at the fact that the proposed 
approach to the observed support region threshold determination provides good results in a wide dynamic 
range from the standpoint of the signal to quantization noise ratio (SQNR). Additionally, we propose an itera-
tive method for support region determination, which stops when further improvement in mean-squared error 
(MSE) becomes negligible. The suggested model is useful for compression schemes that involve trade-offs be-
tween quantizer design and implementation complexity.
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1. Introduction
PSTN (Public Switched Telephone Network) has 
been initially developed for circuit-switched traf-
fic, providing a guaranteed connection between the 
source and the destination. Moreover, acceptable de-
lay threshold is controlled through strict bandwidth 
allocation with each voice stream. The IP network, 
as originally designed data network, is additionally 

adapted to carry real-time voice traffic that requires 
a certain QoS (quality of service). In packet-switched 
communication systems, packets may be delayed or 
even lost during transmission. Configuring voice in a 
data network environment implies that voice packets 
are treated in such a way to withstand an acceptable 
amount of delay, jitter and packet loss. This is not crit-
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ical in most applications since the receiving end can 
request retransmission of the packet in question. 
It is well known that in a real-time constrained and 
latency sensitive application, such as VoIP, highly 
stringent delay requirements are imposed. Accord-
ingly, the retransmission is not feasible since this 
would introduce a considerable delay prohibiting a 
proper two-way conversation. Thus, lost and delayed 
packets must be compensated for at the receiving 
end. Although a great number of quantizers have been 
developed to provide an additional QoE (quality of 
experience) management, especially for the VoIP ap-
plications, where packet loss concealment algorithm 
is used [9], there is still the need to continue with re-
search in this field. 
Nowadays we are facing with the smart city [19] as a 
technology for a population, vehicles and other urban 
factors all of which are fused into a whole. It is obvi-
ous that the data traffic generated by various services 
and application grows rapidly, which is becoming 
a major challenge in network architecture. 5G will 
bring new interactive and immersive experiences to 
customers, who will continue to expect new services 
such as augmented reality-based applications, built 
on high-speed and low-latency communication, with 
imperceptible resulting delay, jitter or interruptions 
[6, 4]. With more facilities being constantly added for 
an increased QoE (quality of experience), modern ap-
plications rely heavily on the cloud for a support [3]. 
Beyond that, the increasing demands of user appli-
cations have surged drastically and pulled up the 
explosive data traffic, at the same time requiring an 
efficient network structure to handle the data traffic 
all along. As the solution, offloading requires the help 
of some alternative networks to complement [15, 14]. 
Thus, transmission networks are becoming increas-
ingly heterogeneous [12]. Such systems often require 
each node to sustain a certain throughput demand. It 
is essential to determine a proper transmission rate 
in order to guarantee the system performance that 
can meet the application requirement and compen-
sate for the network imperfections. Such a tuning in 
a heterogeneous network is difficult due to the lack of 
modeling techniques, which can handle with the net-
work traffic changes. Numerous models of quantizers 
have been proposed aiming at the highest possible 
quality of the quantized speech signals along with the 
highest possible compression.

In the latest years, the Internet of Things (IoT) [22] 
is a model including ordinary entities with the abili-
ty to communicate with the corresponding devices 
using the Internet. There are a lot of research papers 
focusing on the complexities around the IoT [2] and 
Fog Computing, which extends the cloud closer to 
the things while processing the data generated by the 
devices. In general case, a Fog node can be any device 
with network connectivity, computing and storage 
capability, which can communicate with a variety of 
devices, offering a more efficient and quicker access. 
In addition, a further insight in the importance of the 
sociological aspect emphasizes the need to collect, 
analyze, as well as to understand the relevant back-
ground of sociological processes. Non-verbal sounds 
such as laughing, crying, whispering, screaming, 
sneaking and sighing, which do not have to be accom-
panied by words, can provide additional information 
about the individual’s attitude to a certain sociolog-
ical interaction. There are many research papers 
which consider different communication challenges 
focusing on perceptual and bodily aspects of life in the 
modern world [13].
It is hard to predict what direction coding will take in 
the future. Instead of making coding obsolete, the in-
terest in coding remains high nowadays. 
Especially considering modern Man-Machine com-
munication, we are trying to find easy and comfort-
able quantization method for interaction based on 
speech communication. Although effective integra-
tion of speech into man-machine communication 
depends on the nature of the user interaction and 
application, it is preferable to minimize the influence 
of non-verbal behavior and the difficulties appearing 
in emotional or sociological background during voice 
communication. 
Promising discretization of any kind of input signal 
vindicate undeniably extremely important role of the 
quantization process in overall digital signal process-
ing. While never without diminishing importance dif-
ferent quantizer models promise innovative solutions 
to the global challenges of discretization task. In this 
paper, we propose an efficient and low-complexity 
quantizer design. The high level of adaptability to the 
signal variance helps ensure that suggested robust 
quantizer can facilitate further performance estima-
tion and optimization.
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The paper is structured as follows. Section 2 provides 
a descriptive and detailed simple solution to the prob-
lem of determining the support region of the quasi-
logarithmic quantizer, designed for the Laplacian 
source and an arbitrary variance. Section 3 is devoted 
at providing the numerical results and the topic. Fi-
nally, related conclusions, which are summarizing the 
contribution achieved in the paper, are presented in 
Section 4. 

2. Support Region of the 
Quasilogarithmic Quantizer 
Designed for the Laplacian PDF and 
an Arbitrary Variance
The term quasi-static signal refers to a signal that chang-
es so slowly over a long time so that it acquires charac-
teristics more like static signals than dynamic signals 
[11]. The network environment requires very flexible 
coders that are able to adjust in real time to continu-
ously changing network conditions, and particularly to 
varying transmission rate. In a multirate system where 
narrowband and wideband speech are supported, G.711 
and G.722 codecs are used simultaneously. 
The selection of the compression of signals and quan-
tization method is a compromise between the high-
est possible perceived quality of signals for the given 
number of  bits or, conversely, minimizing the number 
of bits required to encode a signal at a given quality. 
The various compression techniques offer different 
levels of complexity, compressed signal quality and 
the amount of compressed data. It is well known that 
G.711 [8, 10] is a coding standard for narrowband 
speech and that it works on the principle of compand-
ing. The codec uses A/µ-law companding technique 
to encode and decode speech. 
Quasilogarithmic quantizer represents a logarithmic 
quantizer defined with the µ compression law. It is well 
known that, according to the G.711 coding standard, 
compression factor is equal to 255 [11]. Additionally, in 
this paper we assume various compression factors for 
which we analyze the performance of the proposed en-
coding/decoding algorithm, coupled with G.711. 
In what follows, we assume that the signal at the input 
of the quantizer originates from a Laplacian source. 

For a quasilogarithmic quantizer Qμ
N

 designed for a 
variance σp

2, where μ is the compression factor and N 
is the number of quantization levels, compression is 
performed using the µ-law compressor function cμ(x): 
[− pxσmax , pxσmax ] → [− pxσmax , pxσmax ][11, 7]:
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where C = ln2(μ+1)/(3N2) is a constant. 
An analysis given in [11] uncovers several insights 
on the relationship between granular, overload and 
total distortion. Additionaly, in [1], a general 
framework is provided for interpreting the impact 
of both granular and overload distortion to the 
number of quantization levels and the support 
region width. 
Indeed, an N-level quantizer will be said to be 
globally optimal if it minimizes the expected 
distortion. An approach that includes estimation and 
optimization for a quantizer’s support region and 
the number of quantization levels, has proved as 
quite useful for designing scalar quantizers with 
known distributions, that were sufficiently well 
behaved to ensure the existence of minimal 
distortion [17,16]. In fact, one heuristic solution for 
the support region of the optimal and asymptotically 
optimal fixed-rate scalar quantizers has already 
been shown in [17]. In addition, paper [16] deals 
with the upper bound of this support region. 
A lot of quasilogarithmic quantizers were shown to 
be applicable to solve for the minimum distortion. 
In [18, 20] some solutions to the two-stage 
quantization model based on  quasi-logarithmic 
quantizers are given. The prior work [21] that 
included backward adaptation technique, has 
offered a complex but improved solution to the 
quasilogarithmic quantizer model, preferable for 
the smaller compression factor values. The source 
coding in [5] adopts frame-by-frame processing 

using the combination of two three-level restricted 
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unequal support regions, selected according to the 
lower distortion criteria. 
An intention of this paper is to generalize support 
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maximal signal amplitude and its numerical 
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extend the analysis of support region pxmax  
determination to the cases where the compression 
factor μ has an arbitrary value. If we assume that the 
value of the parameter μ is large enough (for 
instance μ = 255 as defined by G.711 standard), we 
obtain the following approximate formula for total 
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where C = ln2(μ+1)/(3N2) is a constant.
An analysis given in [11] uncovers several insights on 
the relationship between granular, overload and total 
distortion. Additionaly, in [1], a general framework is 
provided for interpreting the impact of both granular 
and overload distortion to the number of quantization 
levels and the support region width.
Indeed, an N-level quantizer will be said to be glob-
ally optimal if it minimizes the expected distortion. 
An approach that includes estimation and optimiza-
tion for a quantizer’s support region and the number 
of quantization levels, has proved as quite useful for 
designing scalar quantizers with known distribu-
tions, that were sufficiently well behaved to ensure 
the existence of minimal distortion [17,16]. In fact, 
one heuristic solution for the support region of the 
optimal and asymptotically optimal fixed-rate scalar 
quantizers has already been shown in [17]. In addi-
tion, paper [16] deals with the upper bound of this 
support region.
A lot of quasilogarithmic quantizers were shown to 
be applicable to solve for the minimum distortion. In 
[18, 20] some solutions to the two-stage quantization 
model based on  quasi-logarithmic quantizers are giv-
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en. The prior work [21] that included backward adap-
tation technique, has offered a complex but improved 
solution to the quasilogarithmic quantizer model, 
preferable for the smaller compression factor val-
ues. The source coding in [5] adopts frame-by-frame 
processing using the combination of two three-level 
restricted quantizers, while taking into consideration 
the unequal support regions, selected according to 
the lower distortion criteria.
An intention of this paper is to generalize support re-
gion estimation by giving an expression for the maxi-
mal signal amplitude and its numerical computation. 
Furthermore, our objective is to extend the analysis of 
support region pxσmax  determination to the cases where 
the compression factor μ has an arbitrary value. If 
we assume that the value of the parameter μ is large 
enough (for instance μ = 255 as defined by G.711 stan-
dard), we obtain the following approximate formula 
for total distortion ( )NL QD µ :
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To accelerate the estimation of pxσmax , we initialize the 
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is less than 5·10-3.  

3. The Numerical Results 

In this section, our objective is to ascertain and 
summarize the performances for quasilogarithmic 
quantizer for an arbitrary variance in a wide 
variance range.  
Here, by identifying pkx p  max , according to (5) 
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 For a given quasilogarithmic quantizer's model, the 
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where /ka  . 

 
Figures 1-3 show the SQNR characteristics of the 
suggested quantizer for various compression 
factors. 
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3. The Numerical Results
In this section, our objective is to ascertain and sum-
marize the performances for quasilogarithmic quan-
tizer for an arbitrary variance in a wide variance range. 
Here, by identifying pkx p σσ =max , according to (5) and 
(8), one can come to the conclusion that pxσmax  can be 
presented by using multiplying coefficient k:

 

 

To accelerate the estimation of pxmax , we initialize 
the iterative method using the support region 
threshold obtained in (5): 

 

Step1. The initialization of the algorithm: 
  Lpp xx ,

max
0

max
    






























C

Cx p

xx Lpp

p











ln11
ln

2,
max

)0(
max

)1(
max

,

(8)

  
where C = ln2(μ+1)/(3N2) is a constant. 

Step2. The computation of new threshold value 
 2

max
px  using (7) and the interruption of the 

iterative method if the estimated relative error 
defined as: 

  
   

  100% 2
max

1
max

2
max 




p

pp

x

xx






 

(9)

 
is less than 5·10-3.  

3. The Numerical Results 

In this section, our objective is to ascertain and 
summarize the performances for quasilogarithmic 
quantizer for an arbitrary variance in a wide 
variance range.  
Here, by identifying pkx p  max , according to (5) 

and (8), one can come to the conclusion that pxmax  
can be presented by using multiplying coefficient k: 

,max pkx p  
 

(10)

 
 

 

 

 

2
,

max2

2

2
1

max2

2

1 3ln , for  
ln 12

3 .
ln 11 ln , for  

2 1 31 ln
ln 1

p

p

LN x

Nk

x
N












 

  
     


    
  

            

(11) 

 
In order to account for the deployment of 
quasilogarithmic quantizer and arbitrary variance 
σp

2 in a wide dynamic range of input variance σq
2, 

we assume that the design for the quasilogarithmic 
quantizer for an arbitrary variance σq

2 is based on 
the design of the same quantizer for the σp

2 along 
with the scaling with the coefficient ρ: 

pq  /
 

(12)

  

   










 12

3
1ln

22

2

2

2
2




kk
N

QD q
N

2 2exp .q
k


    
    

(13)

 For a given quasilogarithmic quantizer's model, the 
minimum distortion criterion is employed to assure 
the maximum of SQNR: 

  














N
q

QD 

 2

10log10SQNR  

 
























 aaaC 2exp12log10 2

2

10 
,(14) 

where /ka  . 

 
Figures 1-3 show the SQNR characteristics of the 
suggested quantizer for various compression 
factors. 

 
Figure 1 

SQNR dependence on the scaling coefficient ρ for μ=255 
and R=3-8 [bit/sample] 

3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45


 

 

 
 
 
 
 
 
 
 
 
 

SQ
N

R 
[d

B]

R[bit/sample]

 
 
Figure 2 
SQNR dependence on the scaling coefficient ρ for μ=10 
and R=3-8 [bit/sample] 

3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45


 

 

 
 
 
 
 
 
 
 
 
 

SQ
N

R
 [d

B
]

R[bit/sample]

 
 
 
Figure 3 

(10)



619Information Technology and Control 2018/4/47

 

 

To accelerate the estimation of pxmax , we initialize 
the iterative method using the support region 
threshold obtained in (5): 

 

Step1. The initialization of the algorithm: 
  Lpp xx ,

max
0

max
    






























C

Cx p

xx Lpp

p











ln11
ln

2,
max

)0(
max

)1(
max

,

(8)

  
where C = ln2(μ+1)/(3N2) is a constant. 

Step2. The computation of new threshold value 
 2

max
px  using (7) and the interruption of the 

iterative method if the estimated relative error 
defined as: 

  
   

  100% 2
max

1
max

2
max 




p

pp

x

xx






 

(9)

 
is less than 5·10-3.  

3. The Numerical Results 

In this section, our objective is to ascertain and 
summarize the performances for quasilogarithmic 
quantizer for an arbitrary variance in a wide 
variance range.  
Here, by identifying pkx p  max , according to (5) 

and (8), one can come to the conclusion that pxmax  
can be presented by using multiplying coefficient k: 

,max pkx p  
 

(10)

 
 

 

 

 

2
,

max2

2

2
1

max2

2

1 3ln , for  
ln 12

3 .
ln 11 ln , for  

2 1 31 ln
ln 1

p

p

LN x

Nk

x
N












 

  
     


    
  

            

(11) 

 
In order to account for the deployment of 
quasilogarithmic quantizer and arbitrary variance 
σp

2 in a wide dynamic range of input variance σq
2, 

we assume that the design for the quasilogarithmic 
quantizer for an arbitrary variance σq

2 is based on 
the design of the same quantizer for the σp

2 along 
with the scaling with the coefficient ρ: 

pq  /
 

(12)

  

   










 12

3
1ln

22

2

2

2
2




kk
N

QD q
N

2 2exp .q
k


    
    

(13)

 For a given quasilogarithmic quantizer's model, the 
minimum distortion criterion is employed to assure 
the maximum of SQNR: 

  














N
q

QD 

 2

10log10SQNR  

 
























 aaaC 2exp12log10 2

2

10 
,(14) 

where /ka  . 

 
Figures 1-3 show the SQNR characteristics of the 
suggested quantizer for various compression 
factors. 

 
Figure 1 

SQNR dependence on the scaling coefficient ρ for μ=255 
and R=3-8 [bit/sample] 

3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45


 

 

 
 
 
 
 
 
 
 
 
 

SQ
N

R 
[d

B]

R[bit/sample]

 
 
Figure 2 
SQNR dependence on the scaling coefficient ρ for μ=10 
and R=3-8 [bit/sample] 

3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45


 

 

 
 
 
 
 
 
 
 
 
 

SQ
N

R
 [d

B
]

R[bit/sample]

 
 
 
Figure 3 

(11)

In order to account for the deployment of quasiloga-
rithmic quantizer and arbitrary variance σp
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where ρ/ka = .
Figures 1-3 show the SQNR characteristics of the 
suggested quantizer for various compression factors.
It should be noted that for μ=10 and R =5 or 6, SQNR 
can range more than 15dB for the range ρ=0.2 to ρ=2, 
while for μ=100 and R=3 or 4, SQNR can range more 
than 10dB for ρ=0.2 to ρ=2. At higher bit rates, for ex-
ample for R=8 and higher, for the range ρ=0.2 to ρ=2, 
SQNR higher than 20 or 30 dB can be obtained for 
μ=10 or μ=100, respectively. In this way, by selecting 
the parameter μ and R, and in accordance with the 

Figure 1
SQNR dependence on the scaling coefficient ρ for μ=255 
and R=3-8 [bit/sample]

Figure 2
SQNR dependence on the scaling coefficient ρ for μ=10 and 
R=3-8 [bit/sample]

Figure 3
SQNR dependence on the scaling coefficient ρ for μ=100 
and R=3-8 [bit/sample]
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Figure 2 
SQNR dependence on the scaling coefficient ρ for μ=10 
and R=3-8 [bit/sample] 
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SQNR dependence on the scaling coefficient ρ for 
μ=100 and R=3-8 [bit/sample] 
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It should be noted that for μ=10 and R =5 or 6, 
SQNR can range more than 15dB for the range 
ρ=0.2 to ρ=2, while for μ=100 and R=3 or 4, SQNR 
can range more than 10dB for ρ=0.2 to ρ=2. At 
higher bit rates, for example for R=8 and higher, for 
the range ρ=0.2 to ρ=2, SQNR higher than 20 or 30 
dB can be obtained for μ=10 or μ=100, respectively. 
In this way, by selecting the parameter μ and R, and 
in accordance with the required minimum values of 
SQNR and the variance range, the choice of the 
performances of the quasilogarithmic quantizer can 
be balanced, at the same time achieving additional 
optimization in the amount and volume of the 
transferred data in bits. 
The proposed support region estimation method 
makes possible simple initialization of the 
suggested algorithm. Namely, the initial value 

 0
max

px  for the suggested iterative method is equal to 
aL xx p
max

,
max  , which is obtained from an 

approximate closed-form formula for the support 
region threshold of the quasilogarithmic quantizer 
designed for the Laplacian source of an arbitrary 
variance given in [10].  
Moreover, one can notice that the suggested 
iterative method converges very fast. For the 
simplicity purpose, we can assume that determining 

pxmax  is accomplished after only one itteration. In 
order to account for the assumption validation, the 
relative error of estimating the support region 
threshold is calculated for µ=255, µ=100, µ=10 and 
a different number of quantization levels N (N =16, 
N = 64 and N =256), listed in Table 1. according to 
(9).  
Notably, the potential for the support region 
threshold determination with the reduced number of 
used bits can be highlighted. We address the 
problem of suitable support region threshold 
determination by limiting a relative error 
approximately to a value less than 0.5%, in the 
worst case. 
Here, we have shown that the SQNR of the 
considered quasilogarithmic quantizer is 
additionally tuned using fast and accurate 
estimation of the support region threshold that 
provides minimal total distortion for the signal with 
an accommodated amplitude dynamic. 

 

Table 1 Parametres for the analysis of the accuracy of the formula for the support region threshold of the quasilogarithmic 
quantizer 

Compression factor µ R 
           [bit/sample] 

 2
max
px  

 1
max

px  
 0

max
px  δ 

[%] 
 4 6.1699 6.1698 6.1937 0.0015 

μ =255 6 8.1230 8.1229 8.1542 0.0014 
 8 10.0763 10.0761 10.1147 0.0014 
 4 5.7363 5.7357 5.7914 0.0089 

μ =100 6 7.6790 7.6783 7.7519 0.0086 
 8 9.6222 9.6214 9.7124 0.0083 
 4 4.7285 4.7058 5.0892 0.4790 

μ =10 
 

6 
8 

6.5856 
8.4552 

6.5606 
8.4292 

7.0497 
9.0102 

0.3785 
0.3077 

4. Conclusion 
Our aim is to outline the main conclusion when the 
robust quantizer presents the underlying desirable 
solution out of the whole set of different quantizer's 
solutions.  
To that end, we have evaluated the performance of 
robust quantizer without obligatory insisting on the 
highest SQNR values.  

 

 
 

For the sake of clarity in the paper, we can admit that 
the obtained SQNR values for the suggested 
quasilogarithmic quantizer are noticeably lower 
compared to sub-band solutions presented in [21].  
In fact, the performance appraisal requires that one 
quantizer solution is preferred over other solutions 
according to some relevant qualifiers. 
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required minimum values of SQNR and the variance 
range, the choice of the performances of the quasilog-
arithmic quantizer can be balanced, at the same time 
achieving additional optimization in the amount and 
volume of the transferred data in bits.
The proposed support region estimation method 
makes possible simple initialization of the suggested 
algorithm. Namely, the initial value 

( )0
max

pxσ  for the sug-
gested iterative method is equal to aL xx p

max
,

max =σ , which 
is obtained from an approximate closed-form formula 
for the support region threshold of the quasilogarith-
mic quantizer designed for the Laplacian source of an 
arbitrary variance given in [10]. 
Moreover, one can notice that the suggested iterative 
method converges very fast. For the simplicity pur-
pose, we can assume that determining pxσmax  is accom-
plished after only one itteration. In order to account 
for the assumption validation, the relative error of 
estimating the support region threshold is calculat-
ed for µ=255, µ=100, µ=10 and a different number of 
quantization levels N (N =16, N = 64 and N =256), list-
ed in Table 1. according to (9). 
Notably, the potential for the support region thresh-
old determination with the reduced number of used 
bits can be highlighted. We address the problem of 
suitable support region threshold determination by 
limiting a relative error approximately to a value less 
than 0.5%, in the worst case.
Here, we have shown that the SQNR of the considered 
quasilogarithmic quantizer is additionally tuned us-

Table 1 
Parametres for the analysis of the accuracy of the formula for the support region threshold of the quasilogarithmic quantizer

Compression factor µ R  [bit/sample]
( )2

max
pxσ

( )1
max

pxσ
( )0

max
pxσ

δ
[%]

μ =255

4 6.1699 6.1698 6.1937 0.0015

6 8.1230 8.1229 8.1542 0.0014

8 10.0763 10.0761 10.1147 0.0014

μ =100

4 5.7363 5.7357 5.7914 0.0089

6 7.6790 7.6783 7.7519 0.0086

8 9.6222 9.6214 9.7124 0.0083

μ =10
4 4.7285 4.7058 5.0892 0.4790

6 6.5856 6.5606 7.0497 0.3785

8 8.4552 8.4292 9.0102 0.3077

ing fast and accurate estimation of the support region 
threshold that provides minimal total distortion for the 
signal with an accommodated amplitude dynamic.

4. Conclusion
Our aim is to outline the main conclusion when the 
robust quantizer presents the underlying desirable 
solution out of the whole set of different quantizer’s 
solutions. 
To that end, we have evaluated the performance of 
robust quantizer without obligatory insisting on the 
highest SQNR values. 
For the sake of clarity in the paper, we can admit that 
the obtained SQNR values for the suggested quasilog-
arithmic quantizer are noticeably lower compared to 
sub-band solutions presented in [21]. 
In fact, the performance appraisal requires that one 
quantizer solution is preferred over other solutions 
according to some relevant qualifiers.
It is well known that a lot of quantization models are 
suggested with the goal to minimize the number of 
used bits for signal storage and transmission while 
keeping, at the same time, an adequate signal quality 
level. Many applications specify different tradeoffs 
depending on the required signal quality levels. We 
want to outline an appropriate robust quantizer mod-
el as our proposal for the optimal speech and audio 
signal. 



621Information Technology and Control 2018/4/47

Initially assuming that the speech signal can have un-
predictable statistical characteristics, we accept that it 
is most appropriate to use quasilogarithmic quantizer, 
which provides robustness in a wide range of input sig-
nal variances. Although the A/µ-law companding has 
become widely used as a design guideline for nonuni-
form quantization of speech signals, the fundamental 
question of how to provide a simple manner to opti-
mize parameters of quantizer for signals with Lapla-
cian probability density function has remained open.
Before it becomes a problem, a lot of congestion 
avoidance techniques monitor network traffic loads, 

especially for a prioritized traffic class, such as voice. 
It is worth emphasizing that the suggested quasilog-
arithmic quantizer model allows for a different bit 
allocation with respect to the requirements of the 
minimal desired SQNR conditions. It can facilitate 
the accurate anticipation of the traffic from the stand-
point of the traffic optimization. 
Additionally, the suggested quantization model and 
analysis can be directed both toward existing speech 
communication systems with logarithmic compan-
dors, as well as toward forecasting of solutions, which 
will be available in the near future. 

References
1. Aleksić, D., Perić, Z., Nikolić, J. Support Region Deter-

mination of the Quasilogarithmic Quantizer for Lapla-
cian Source. Przeglad Elektrotechniczny, 2012, 88(7A), 
130-132.

2. Atzori, L, Iera, A., Morabito, G., Nitti, M. The Social In-
ternet of Things (SIoT) when Social Networks Meet the 
Internet of Things: Concept, Architecture and Network 
Characterization, Computers Networks, 2012, 56(16), 
3594–3608. https://doi.org/10.1016/j.comnet.2012.07.010

3. Blažauskas, T., Muliuolis, A., Bikulčienė, L., Butkev-
ičiūtė, E. Service-Oriented Architecture Solution for 
ECG Signal Processing. Information Technology and 
Control, 2017, 46(4), 445-458. https://doi.org/10.5755/
j01.itc.46.4.18470

4. Chen, S., Zhao, J. The Requirements, Challenges, 
and Technologies for 5G of Terrestrial Mobile Tele-
communication. IEEE Communications Magazine, 
May 2014, 52(5), 36-43. https://doi.org/10.1109/
MCOM.2014.6815891

5. Denić, B., Perić, Z., Despotović, V., Vučić, N. Forward 
Adaptive Laplacian Source Coding Based on Restrict-
ed Quantization. Information Technology and Con-
trol, 2018, 47(2), 209-219. https://doi.org/10.5755/j01.
itc.47.2.16670 

6. GSMA Intelligence Understanding 5G: Perspectives on 
Future Technological Advancements in Mobile. White 
Paper, 2014, 6-13.

7. Hanzo, L., Somerville, C. A., Woodard, J. Voice and Au-
dio Compression for Wireless Communications. John 
Wiley & Sons - IEEE Press, 11-28, 2007. https://doi.
org/10.1002/9780470516034

8. Hiwasaki, Y., Sasaki, S., Ohmuro, H., Mori, T., Seong, J., 
Lee, M. S., Kövesi, B., Ragot, S., Garcia, J.-L., Marro, C., 

Miao, L., Xu, J., Malenovsky, V., Lapierre, J., Lefebvre, R. 
5G.711.1: A Wideband Extension to ITU-T G.711. Pro-
ceedings of EUSIPCO’08, Lausanne, Switzerland, 2008.

9. ITU-T Recommendation G.711. Appendix I, A High 
Quality Low-Complexity Algorithm for Packet Loss 
Concealment with G.711, Sep. 1999.

10. ITU-T. Recommendation G.711.1, Wideband Embedded 
Extension for G.711 Pulse Code Modulation, 2008.

11. Jayant, N. S., Noll, P. Digital Coding of Waveforms. New 
Jersey, Prentice Hall, Chapter 5, 221-251, 1984.

12. Jo, H.-S., Sang, Y. J., Xia, P., Andrews, J. G. Heteroge-
neous Cellular Networks with Flexible Cell Associ-
ation: A Comprehensive Downlink SINR Analysis. 
IEEE Transactions on Wireless Communications 
11(10), 2012, 3484-3495. https://doi.org/10.1109/
TWC.2012.081612.111361

13. Kramer, A. D., Guillory, J. E., Hancock, J. T. Experimen-
tal Evidence of Massive-Scale Emotional Contagion 
Through Social Networks. PNAS, 2014, 111(24), 8788-
8790. https://doi.org/10.1073/pnas.1320040111 

14. Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B. A Survey of 
Computation Offloading for Mobile Systems. Mo-
bile Networks and Applications, 2013, 18(1),129-140. 
https://doi.org/10.1007/s11036-012-0368-0

15. Lee, K., Lee, J., Yi, Y., Rhee, I., Chong, S. Mobile Data 
Offloading: How Much Can WiFi Deliver?, IEEE/ACM 
Transactions on Networking, 2013, 21(2), 536-550. 
https://doi.org/10.1109/TNET.2012.2218122

16. Na, S. On the Support of Fixed-Rate Minimum Mean- 
Squared Error Scalar Quantizers for a Laplacian Source. 
IEEE Transactions on Information Theory, 2004, 50(5), 
937-944. https://doi.org/10.1109/TIT.2004.826686



Information Technology and Control 2018/4/47622

17. Na, S. Neuhoff, D. L. On the Support of MSE-Optimal, 
Fixed-Rate, Scalar Quantizers. IEEE Transactions on 
Information Theory, 2001, 47(7), 2972-2982. https://
doi.org/10.1109/18.959274

18. Perić, Z., Nikolić, J., Mosić, A., Panić, S. A Switched 
-Adaptive Quantization Technique Using μ-Law Quan-
tizers. Information Technology and Control, 2010, 
39(4), 317-320.

19. Skouby K. E., Lynggaard, P. Smart Home and Smart 
City Solutions Enabled by 5G, IoT, AAI and CoT Ser-
vices. International Conference on Contemporary 
Computing and Informatics, 2014, 874-878. https://doi.
org/10.1109/IC3I.2014.7019822

20. Tančić M., Perić, Z., Simić, N., Tomić, S. Performance of 
Quasi-Logarithmic Quantizer for Discrete Input Signal. 
Information Technology and Control, 2017, 46(3), 395-
402. https://doi.org/10.5755/j01.itc.46.3.16197

21. Tomić, S., Perić, Z., Tančić, M., Nikolić, J. Backward Adap-
tive and Quasi-Logarithmic Quantizer for Sub- Band Cod-
ing of Audio. Information Technology and Control, 2018, 
47(1), 131-139. https://doi.org/10.5755/j01.itc.47.1.16190

22. Wolff, C., Knirr, M., Priebe, K., Schulz, P., Strumberg, 
J. A Layered Software Architecture for a Flexible and 
Smart Organic Rankine Cycle (ORC) Turbine – Solu-
tions and Case Study. Information Technology and 
Control, 2018, 47(2), 349-362. https://doi.org/10.5755/
j01.itc.47.2.19681


