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This paper investigates the problems of fault detection and diagnosis in a class of discrete-time switched sys-
tems with unknown state delay against component faults. The component fault, also called the multiplicative 
fault or loss of actuator effectiveness, is a common type of operation fault for switched systems, which has been 
paid more attention. In this paper, the learning observers (LOs) technology are proposed to reconstruct both 
the system state and component faults. The proposed LOs technique is also extended to the system with un-
known time delay and external disturbance. The sufficient conditions for the convergence of the output of LOs 
and the uniformly ultimately boundedness of the reconstructed errors are proved by the switched Lyapunov 
function and H∞ technique. The proposed fault reconstruction strategy has certain tolerance for fault types, 
which is effective for both slow and fast time-varying faults by adjusting the iteration step size. In the simula-
tion parts, three kinds of fault signals are taken into consideration to verify the effectiveness and robustness of 
the proposed method.  
KEYWORDS: Fault Diagnosis, Switched System, Unknown State Delay, Lyapunov Function.

1. Introduction
With the increasing complexity of modern industrial 
systems and higher pursuit of system performance, 
fault diagnosis is an important and challenging prob-
lem in many practical systems, such as chemical en-

gineering, nuclear engineering and aerospace engi-
neering [9, 12]. Faults may occur at any time, and then 
destroy the system stability or even make the system 
tend to collapse. Nowadays, fruitful model-based fault 
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diagnosis works have been published in several excel-
lent papers and books [3, 5, 14, 15, 17, 23, 26]. Among 
these approaches, the most commonly used one is first 
to design the observers or filters to reconstruct the fault 
signal or residual signal, and then generate an alarm 
when the residual function is larger than the threshold 
or the fault reconstruction signal is not zero [18].
Recently, several physical systems present hybrid be-
haviors [6, 19]. Wherein, the switched systems play an 
important role in industrial process and have drawn 
more and more attention for the stability and control-
lability research [5]. A generalized switched system is 
composed of subsystems with their own parameters 
subject to a specific rule orchestrating the switching 
law among the various subsystems. The motivation of 
studying switched systems drives from the facts that 
many physical scenes exhibit the switching features 
among multi-models.
Because of the increasing demand for the operational 
safety refer to switched systems, the research about 
fault diagnosis of switched systems has been a hot top-
ic [7]. Hwang et al. [12] introduced three types of fault 
in the field of model-based systems, including actua-
tor fault, sensor fault and component fault or loss of 
effectiveness fault. The actuator fault and sensor fault 
are also called the additive fault, because they have an 
additional relationship with the original system state. 
There are many excellent fault diagnosis methods for 
additive faults in switched systems. In [4], a multiple 
Lyapunov function approach was employed for fault 
detection and diagnosis in switched systems. Then 
the switched Lyapunov function approach was first 
applied in stability analysis of switched systems [7]. 
Wang et al. [20] designed a fault filter for the actuator 
fault and sensor fault based on H∞ performance index. 
Hespanha et al. [11] applied the average dwell time 
technology to conduct stability analysis for switched 
systems, while Zhang et al. [23] converted the fault 
detection problems into an H∞ filtering problem by 
using the average dwell time technology. Du et al. 
[8] adopted the asynchronous switched approach in 
switched systems to reconstruct the additive faults.
Compared with the actuator and sensor faults, the 
component faults or loss of effectiveness faults can 
also be called the multiplicative faults, which can 
weaken system input performance, and destroy the 
stability. It is necessary to design fault diagnosis strat-
egy for component faults in switched systems. There 

are relatively fewer research results for the switched 
systems with component faults. He et al. [10] designed 
a fault detection filter for a more general sensor fault, 
including the loss of effectiveness, the outage and the 
drifted fault in switched systems. The effectiveness 
of sensor was decayed in a certain proportion, and 
the attenuation rate was assumed to be a constant. 
Rodrigues et al. [16] proposed a fault tolerant control 
model for switched systems with component faults. 
However, the fault signal was set to be constant or slow 
time-varying. The component faults are multiplied 
with the actuator and sensor, which is the main reason 
why it is difficult to design the fault diagnosis method. 
In this paper, the learning observer technology is ap-
plied to make reconstruction for the component faults 
in switched systems, which is a new attempt.
As is well-known, time-delay phenomenon is very 
common in many real physical systems, such as air 
pollution system and chemical process etc. [23]. It 
would often cause the instability and poor perfor-
mance of the switched systems. There are some works 
about fault diagnosis taking time-delay phenomenon 
into consideration [20, 22]. Wang et al. [20] proposed a 
robust fault detection method for switched linear sys-
tems with state delay. Yu et al. [22] presented a fault 
detection frame for discrete-time switched systems 
with distributed delays. However, the existing mod-
els were only for additive faults. In addition, the delay 
time was known in advance. It should be mentioned 
that in our previous work [25], we designed an adap-
tive fault diagnosis model for continuous time-delay 
repetitive systems subject to sensor fault, where the 
delay time was known in advance. In this paper, the 
unknown time-delay element is taken into consider-
ation. A relatively slack restriction for delay time with 
known upper and lower bounds improves the gener-
alization performance of fault reconstruction model. 
In this work, a fault diagnosis method based on LOs 
against the component faults for switched systems 
is proposed. It can handle the task of fault diagnosis 
for more complex systems, even with unknown de-
lay time and external disturbance. Compared with 
the existing works for the constant faults or slowly 
time-varying faults, the proposed method is effec-
tive for relatively fast time-varying faults. By using 
the switched Lyapunov function and H∞ technique, 
the sufficient conditions for the convergence of the 
output of LOs are presented in term of linear matrix 
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inequalities (LMIs). Finally, the simulation results 
for three forms of loss of actuator effectiveness faults 
demonstrate the feasibility of this scheme. To simpli-
fy, the contributions of this paper can be summarized 
as follows:
1 The LOs are employed in switched systems against 

component faults, which is a new attempt.
2 The time-delay element and external disturbance 

are taken into consideration in the fault diagnosis 
model. A more relaxed bounded constraint for de-
lay time is assumed, which leads to the proposed 
LOs having better generalization performance.

3 The proposed fault reconstruction strategy has 
certain tolerance for fault types. It is still valid for 
fast time-varying faults.

The rest of the paper is organized as follows. In Sec-
tion 2, the description for a generalized switched sys-
tem is presented and the problems are formulated. 
Section 3 is the main part of this paper, which pres-
ents the robust design of LOs. Simulation results are 
carried out in Section 4 and conclusions are drawn in 
Section 5. Section 6 is the appendix, where the proofs 
of the theorems are presented. 
Notations: The notations used throughout the paper 
are normative. TA , 1A− , ( )Aλ  and A  are the symbols 
to denote, respectively, the transpose, the inverse, the 
eigenvalues and the Euclidean norm of any square 
matrix A. Particularly, max ( )Aλ  and min ( )Aλ  present 
the maximum and minimum eigenvalues of A. We 
use ( )0 0A A> <  to denote that A  is positive (nega-
tive) defined and I  to denote the identity matrix with 
an appropriate dimension. 

∞
 represents the infini-

ty norm of any vector. The symbol *  means the sym-
metric terms in some matrices.

2. System Description and Problem 
Formulation
We consider the following discrete-time switched 
system

( ) ( )

( )

( 1) ( ) ( ) ( )
( ) ( )

k k

k

x k A x k B f k u k
y k C x k

σ σ

σ

+ = +
=





, (1)

where ( ) mx k R∈ , ( ) nu k R∈  and ( ) py k R∈  are the 

state, control input and output, respectively. Diago-
nal matrix ( ) ( ) ( ){ }1 , , nf k diag f k f k= ⋅⋅⋅  represents 
the component faults with ( ) ( ]0,1if k ∈ . Specifical-
ly, when ( ) 1if k = , the i th actuator runs fault-freely; 
if ( )0 1if k< < , partial effectiveness of the actuator 
is lost; and ( ) 0if k =  means that the actuator has no 
effectiveness in the system totally. σ  is the switching 
rule which takes the values in the finite set { }: 1, , Nℵ ⋅⋅⋅ , 
where N  is the number of subsystems. It is assumed 
that ( )kσ  is dependent on k  or kx , or other switch-
ing rules at an arbitrary discrete time k. Aσ , Bσ , and 
Cσ  are of appropriate size constant known matrices. 
Since ( )f k  is a diagonal matrix, the switched system 
can be rewritten as follows

( ) ( ) ( ) ( )

( ) ( ) ( )
+1 k kk k

k

x k A x k B U F

y k C x k
σ σ

σ

= +

=
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, (2)

where { }1, ,k nU diag u u= ⋅⋅⋅  and 1, , .T
k nF f f= ⋅⋅⋅   . The 

fault signals are presented by a column vector, which 
is suitable for the following analysis and the proofs of 
the convergence theorems. 
Assumption 1: The switching rule ( )kσ  is available 
at each sampling time k. Additionally, only one sub-
system is active each time.
In most case, the switching signal is not known be-
forehand, and that means one can not know in ad-
vance the distribution of conversion signals. How-
ever, the instantaneous value of switching signals is 
available. Thus, the design of observer modes will be 
modified with the change of switching signals. Some 
similar operations are shown in [2, 20].
Here we introduce the switching signal function as 

( ) ( ) ( )1 , ,
T

nk k kξ ξ ξ = ⋅⋅ ⋅  , where ( ) { }: 0,1i k Zξ + →  

and ( )
1

1
N

i
i

kξ
=

=∑ , k Z +∈ . ( ) 1i kξ =  means that the i

th subsystem is active at k th sampling step, while it 
is out of operation when ( ) 0i kξ = . Then one can re-
write the switched system as 

( ) ( ) ( )( )
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. (3)
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Assumption 2: The system control input ( )u k  is 
norm-bounded, ( ) maxu k u≤ .
Assumption 2 says that the control input is bound-
ed, which is reasonable for a system running in the 
normal operating environment. Additionally, the ob-
servability is another reasonable hypothesis for the 
design of LOs in the following sections.
This paper aims to establish a fault diagnosis model 
to reconstruct the component faults kF . The model 
should not only guarantee the convergence speed, but 
also be applied in many kinds of fault types. In addi-
tion, it should be suscesful to deal with time-dalay 
phenomenon and externel disturbance. 

3. Fault Reconstruction based on LOs

3.1. Design of Learning Observers
In this subsection, a novel fault reconstruction meth-
od for the above switched system is presented. The 
corresponding LOs are established as 

( ) ( ) ( )( )
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where ( )x̂ k  and ( )ŷ k  are the estimations of sys-
tem state and output, respectively. k̂F  represents 
the reconstructed fault of loss of actuator effective-
ness updated by both its previous information at the 
sampling step k τ−  and current output error.τ  is 
the updating interval. 1K  is a diagonal matrix, that is, 

{ }1 1, , nK diag k k= ⋅⋅⋅  with ( ]0,1 ,ik ∈ { }1, , ,i n∈ ⋅⋅⋅  and 

( )
1

,
N

i i
i

L k Lξ
=

= ∑  ( )2 2
1

.
N

i i
i

K k Kξ
=

= ∑  1,K  iL  and 2iK  

would be selected later. 
Define the system state-estimation error, out-
put-estimation error and fault-estimation error 
as ( ) ( ) ( )ˆ ,xe k x k x k= − ( ) ( ) ( )ˆye k y k y k= −  and 

( ) ˆ .F k ke k F F= −  In order to drive the fault recon-
struction error less restrictively and reasonably, the 
following assumption is necessary. 
Assumption 3: Denote 1k k kF F K F τ−= −  and assume 

kF  is norm-bounded, such that k fF κ≤ .
Assumption 3 shows a relatively loose restriction 
compared with other works for fault diagnosis, where 
norm-bound condition of fault signal or its derivative 
is necessary. The restriction of norm-bound of the de-
rivative of faults means that the corresponding faults 
are time-varying slowly, which is removed in this pa-
per. The proposed LOs can deal with broader fault 
signals, including slowly and fast time-varying ones. 
Since  0 1if< ≤ , 1, 2, ,i n= ⋅⋅⋅ , the upper bound of 

( )F k  can be calculated easily, such as 11f Kκ = + .
Remark 1: The choice of 1K  and τ  is generally based 
on human experience. 1K  approximates the identity 
matrix with proper dimension. It presents the influ-
ence level of the historical reconstructed signal on the 
current one. A relatively larger value of 1K  means more 
information in the historical reconstructed signal is 
preserved, while less information is retained with rel-
atively smaller value of 1K . In general, the value of τ  
is determined according to the fault signal. When deal-
ing with the fast time-varying signal, τ  should be suf-
ficiently small. On the contrary, τ  can be chosen as a 
larger interval if the fault signal is slow time-varying. 
Define the state error ( )xe k , output error ( )ye k  and 
fault error ( )Fe k  as 

( ) ( ) ( )
( ) ( ) ( )
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ˆ= .
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y
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Then one can get the following dynamic equations
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3.2. Parameter Configuration of LOs
Here the analysis of LOs is presented. In order to fa-
cilitate and simplify the proof, the matrix iB  is omit-
ted. The convergence condition is presented in the 
following theorem, whose proof is shown in Part A in 
the appendix. 
Theorem 1: Considering the switched system in (3) 
with Assumptions 1-3, if there exist positive definite 
symmetric matrices m m

iP R ×∈  and n n
iQ R ×∈ , and 

matrices 1K , iL , 2iK , such that the following LMIs 
hold:

( ) 1
1

2 2

1 0

* 0
* *

j i i i

i i

i

P A L C

I K C
P

γ

αρ

− − + −
 

− < 
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(7)

and

1 1 1 0T
lK K Qαρ − < , (8)

then state estimation error ( )xe k  and fault recon-
struction error ( )Fe k  are uniformly bounded, where 

( ) ( ) ( )2
max max max

1
11 1j lP u Qα λ δ λγ

 = + + + 
 

 with 

1 0γ >  and 0δ ≥ .

3.3. Robust Learning Observers Design with 
Delay Time
In the previous subsection, the LOs subject to the 
component faults are designed. Here, based on the 
Lyapunov stability theory and H∞  technique, the ro-
bust LOs are presented taking time-delay and exter-
nal disturbance into consideration. The correspond-
ing system model is
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where kd  represents the unknown state delay and kη  
is the external disturbance signal with norm bound-
ary, kη η≤ . Additionally, diA  and iE  are known 
constant matrices with appropriate dimensions.
Assumption 4: We suppose that kd  is unknown time 

delay variable with known lower and upper bounds: 
kd d d≤ ≤ .

The robust LOs are designed as follows:
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where the symbols are defined above.

Then the state estimation error, output estimation 
error and fault reconstruction error are rewritten as
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The convergence condition for the robust LO

(11)

The convergence condition for the robust LOs is pre-
sented in the following theorem. Its proof is shown in 
Part B in the appendix.
Theorem 2: Consider the switched system in (9) 
with Assumptions 1-4. For a given positive scalar γ , 
if there exist positive definite symmetric matrices 

m m
iP R ×∈ , m m

iQ R ×∈  and n n
iR R ×∈ , and matrices 1K , 

iL , 2iK , [ ]1,2, ,i N∀ ∈ ⋅⋅⋅ , such that the following LMIs 
hold

1
1

2

2
1

0 0 0

* 0
0* * 0

* * * 0

* * * *

j i i i

i i i

i

i

P A L C

P K C I
I C

I

Q

ζ

αρ

σ

−

−

 − −
 

− 
  <− 
 −
 

−  

(12)

1
2

1
3

2

min

0 0

* 0 0
* *
* * * ( )

j di

T
j di j

T
i

P A

P A P E

I E
Q I

ζ

ζ

γ
λ

−

−

 −
 
 −

< 
 −
 

−  

(13)



151Information Technology and Control 2019/1/48

and

1 1 1 0T
lK K Rαρ − < , (14)

the proposed LOs can make the state estimation error, 
output estimation error and fault reconstruction error 
uniformly ultimately bounded. Additionally, the out-
put estimation error satisfies 3( )y fe k γη αρ κ≤ + , 
where α , σ  and iζ , 1,2,3i = , would be defined in the 
proof. 
Theorem 3: Consider the switched system in (9) 
with Assumptions 1-4. For a given positive scalar ,γ  
(12) and (13) are feasible if there exist the positive iP  
and iQ , and matrix iG , i ∈ℵ , such that the following 
LMIs hold:
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where ( )ˆ T
j j i iP P G G= − + + , ( )ˆ T

j j i iP P G G= − + + , 
T

i i iY G L=  and 2
T

i i iM G K= .
Remark 2: In Part C of the appendix, the strict proof 
of Theorem 3 is shown. It is also the necessary con-
dition proven in [1, 15]. The introduction of the auxil-
iary slack matrix iG  can couple the product term be-
tween jP  and ( )i i iA L C− , which is less conservative 
for constrained problems.

4. An Illustrative Example
In this section, some simulation studies are presented 
to verify the effectiveness of the proposed LOs meth-
od. Consider the following discrete-time switched 

system consisting of two subsystems with parame-
ters as

6  
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j j i iP P G G= − + + ,    ( )ˆ T

j j i iP P G G= − + + , 
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i i iY G L=  and 2
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i i iM G K= . 

Remark 2: In Part C of the appendix, the strict proof 
of Theorem 3 is shown. It is also the necessary 
condition proven in [1, 15]. The introduction of the 
auxiliary slack matrix iG  can couple the product 
term between jP  and ( )i i iA L C− , which is less 
conservative for constrained problems. 
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0.5 1 0.5 0.2 0.6

dA A

B E C

− −   
= =   − −   

     
= = =     −     

 

2 2
0.3 0.1 0.1

0.2 0.6 0.1dA A
− −   

= =   − −   
 

2 2 2
1 0.2 0.5 1 0.5

0.3 0.5 0.5 0 0.5
B E C     

= = =     
     

. 

Other parameters are chosen as 0.5iγ = , 0.5iζ =  
with 1,2, ,5,i = ⋅⋅⋅  0.06δ =  and 1.2γ = . The delay 

time  kd  is variable, which changes with the 
switching signal. The upper and lower bounds 
of kd  are known as 6d =  and 2d = . The 
system input ( )u k  is set as  

( )
( )

( )
0.3*sin 10

0.2*sin 0.28

k
u k

k

 
 =  +  

. 

The component fault is assumed as 

( ) ( ) ( ) ,
T

F k f k f k =  
  where ( ) 1f k =  

represents the normal actuator without fault 
and ( )f k  stands for the loss of effectiveness 
fault in the second actuator component. For 
verifying the generalization performance of 
the proposed LOs, three kinds of fault modes 
are considered. 

( )
1

f k  represents the constant fault, which is 
the most common type of component faults. In 
general, the actuator loses the effectiveness 
with a fixed degree. ( )

1
f k  is defined as 

follows: 

( )1
0.5 60 120
1

k
f k

others
≤ ≤

= 


 . 

( )
2

f k  is a slowly time-varying signal, which 
means that the actuator gradually loses its 
effectiveness. It will seriously affect system 
performance if no action exists in a timely 
manner.  ( )

2
f k  is defined as follows: 

( )2
1 0.0005 80 140
1

k k
f k

others
− ≤ ≤

= 


 . 

( )
3

f k  represents an irregular and fast time-
varying fault signal, which is defined as 
follows: 

( ) ( ) 3000

3
0.15sin 1.1 0.1 8040

1

kk e kf k
others

− + − ≥= 


 .  

 For the design of LOs, the parameter 1K  can 
be chosen as 20.9500I  and the other 
parameters will be calculated using Matlab 
LMI toolbox as follows: 

1

21

0.0254 0.1026
0.0356 0.0698
0.0052 0.0065
0.2589 0.3025

L
K

 
   − =   −    
− − 

  

Other parameters are chosen as 0.5iγ = , 0.5iζ =  
with 1,2, ,5,i = ⋅⋅⋅  0.06δ =  and 1.2γ = . The delay time  

kd  is variable, which changes with the switching sig-
nal. The upper and lower bounds of kd  are known as 

6d =  and 2d = . The system input ( )u k  is set as 

( )
( )

( )
0.3*sin 10

0.2*sin 0.28

k
u k

k

 
 =  +  

.

The component fault is assumed as 
( ) ( ) ( ) ,

T
F k f k f k =  

 , where ( ) 1f k =  represents the 
normal actuator without fault and ( )f k  stands for the 
loss of effectiveness fault in the second actuator com-
ponent. For verifying the generalization performance 
of the proposed LOs, three kinds of fault modes are 
considered.

( )
1

f k  represents the constant fault, which is the most 
common type of component faults. In general, the 
actuator loses the effectiveness with a fixed degree. 

( )
1

f k  is defined as follows:

( )1
0.5 60 120
1

k
f k

others
≤ ≤

= 


 .

( )
2

f k  is a slowly time-varying signal, which means 
that the actuator gradually loses its effectiveness. It 
will seriously affect system performance if no action 
exists in a timely manner.  ( )

2
f k  is defined as follows:

( )2
1 0.0005 80 140
1

k k
f k

others
− ≤ ≤

= 


 .
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( )
3

f k  represents an irregular and fast time-varying 
fault signal, which is defined as follows:

( ) ( ) 3000

3
0.15sin 1.1 0.1 8040

1

kk e kf k
others

− + − ≥= 


 .

For the design of LOs, the parameter 1K  can be cho-
sen as 20.9500I  and the other parameters will be cal-
culated using Matlab LMI toolbox as follows:

1

21

0.0254 0.1026
0.0356 0.0698
0.0052 0.0065
0.2589 0.3025

L
K

 
   − =   −    
− − 

2

22

0.1283 0.1563
0.0895 0.0956
0.0084 0.0105

0.1986 0.2344

L
K

− 
   − − =   −    

− 

.

The switching signal is generated randomly and 
shown in Figure 1. The value 0 of switching signal 

Figure 1
The switching signal

Figure 2 
The signals of loss control effectiveness ( 6τ = ): ( )1f k  and its 
estimation: ( )1̂f k

Figure 3 
The signals of loss control effectiveness ( 5τ = ): ( )2f k  and its 
estimation: 2̂ ( )f k
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represents the first subsystem is active, while the oth-
er subsystem is on running when the switching signal 
is 1. Simulation results of LOs, which refer to above 
three component faults, are listed in Figures 2-4. One 
can see that the proposed LOs can reconstruct the 
fault signals effectively.
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Before the occurrence of any fault, the LOs can iden-
tify the effectiveness of actuators very accurately, 
which means it can also be applied for fault detection 
applications. When the loss of actuator effective-
ness happens, the LOs can reconstruct any form of 
faults including the constant fault in Figure 2, slowly 
time-varying fault in Figure 3 and fast time-varying 
fault in Figure 4. 
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Figure 5 shows the fault reconstruction errors. The 
error tends to converge after small fluctuations with-
in a limited time, which proves once again the effec-

Figure 4
The signals of loss control effectiveness ( )3( 2) : f kτ =   and its 
estimation: ( )3̂f k

 

 
0 50 100 150 200

0.2

0.4

0.6

0.8

1

1.2

Actual fault

Estimated fault

Table 1 
Simulation errors for three component faults

Error maxE aveE Std

1e 0.4902 0.0031 0.0641

2e 0.3944 0.0042 0.0706

3e 0.2248 0.0119 0.0361

Figure 5 
The fault reconstruction errors

Figure 6 
The effect on normal actuator
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tiveness of the proposed scheme. Table 1 presents 
the simulation errors for the reconstruction of three 
component faults from a quantitative perspective, 
while max ,E aveE  and Std  represent the max value, 
average value and standard deviation of the errors. 
The average error is within the allowable range, while 
the standard deviation meets the real requirements.

The first actuator is on normal running with ( ) 1f k =  
for all the time. Figure 6 represents the influence of 
LOs on the normal actuator, where one can see that 
the fault reconstruction for a faulty actuator will af-
fect another normal one. However, the influence is 
within the system permissibility.
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1K  plays an important role of “Memory” for the re-
constructed fault signal. In general, 1K  is a diagonal 
matrix with elements close to one. One can deter-
mine the value of 1K  based on the degree of fluctua-
tion of fault signals. A relatively smaller value of 1K
can help the LOs easily ignore the historical signal 
and keep track of the fault changes. A simulation 
experiment to verify the influence of 1K  is estab-
lished subject to ( )1f k . Three values are assigned 
to 1K : 1 0.92k I= , 2 0.95k I= ,   3 0.98k I= .   Figure 7 
presents the simulation results. ( )1f k  has relative-
ly large changes at the sampling point 60k =  and 

120k = .  Based on the selection criteria of the value 
of 1,K  one should choose a relatively smaller value 
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of 1,K  which can easily ignore the histrorical signal 
and keep track of the fault changes. Figure 7 shows 
that three simulation results all converge to the true 
fault signal, and the first 1k  value is the best choice 
with relatively small fluctuations.

Figure 7 
Simulation results for ( )1f k  based on different K1
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In addition, in order to verify the robustness of the 
proposed component fault diagnosis scheme, an ex-
ternal disturbance kη  is added in system (9). There 
are two actuators in the simulation system. We con-
sider two diffenret external noises are as follows:

Figure 8 
Simulation results for ( )3f k  with external noise

 

 

                            

                                                                                  

                                                                                  

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

Actual fault

Estimated fault

( )
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k

k

k k
η

 
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  

.

Figure 8 presents the simulation result for ( )3f k  
with the external noise. Comparied with the simula-
tion result for ( )3f k  without external noise in Figure 
4 , there exist some fluctuations for the output of the 
LOs during the first 100 steps.  Then it tends to vary 
gently. It can also well reconstruct the component 
faults under the disturbance of external noise. 

5. Conclusion
There are relatively few research works for the com-
ponent fault diagnosis of switched system. In this pa-
per, an active fault detection and estimation scheme 
based on LOs is investigated against component 
faults in a class of switched systems. The proposed 
LOs can guarantee the uniformly ultimately bound-
edness of fault reconstruction error with external dis-
turbance using switched Lyapunov function and H∞  
technique. The design of the LOs is simple and easy 
to implement, which can deal with different types of 
fault. In the simulation parts, three kinds of fault re-
construction examples have demonstrated the effec-
tiveness of the proposed method.
The research of this paper is a supplement to the field of 
fault diagnosis of switched systems. It can also be extend-
ed to other control systems.  Future works are as follows:
1 The system involved in this paper is a linear 

switched system. However, most switched systems 
exhibit nonlinear characteristics. It is necessary to 
consider the effects of nonlinearity.

2 The choice of K1 and τ  in the LOs are generally based 
on human experience. It should be designed an adap-
tive change rule for the parameters in the LOs.

Appendix
There are three parts in the appendix for the proofs of 
the theorems presented above.
Part A: Proof for Theorem 1: First two lemmas are 
listed which are useful in the following proof.
Lemma 1 [24]: For a positive defined symmetric ma-
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trix P , and two arbitrary matrices M  and N  with 
appropriate dimensions, the following inequality 
holds: ,

 2 T TMPN MPM N PNγ γ≤ + , (17)

where 0γ > .
Lemma 2 [13, 21]: For the fault updating observer es-
tablished in (4), the following inequality for fault re-
construction error is satisfied

( ) ( ) ( ) ( )
( )( ) ( ) ( )

1 1 1

2 2 2 3

T T T
F F F F

TT T
x i i i i x k k

e k e k e k K K e k

e k K C K C e k F F

ρ τ τ

ρ ρ

≤ − −

+ +  
, (18)

where 1 1 21ρ ϑ ϑ= + + , 2 1 31 + 1ρ ϑ ϑ= +  and 
23 31 1 1ρ ϑ ϑ= + +  with 0iϑ > , 1,2,3i = .

Consider the following Lyapunov function 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1

N
T
x i i x

i

k N
T
F i i F

j k i

V k e k k P e k

e j j Q e j
τ

ξ

ξ

=

−

= − =

 
=   

 
 

+   
 

∑

∑ ∑
, (19)

where iP  and iQ  are the positive defined symmetric 
matrices. Then the difference of Lyapunov function is 
expressed as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

1

1

1 1 1
N

T
x i i x

i

N
T
x i i x

i

n
T
F i i F

i

N
T
F i i F

i

V k V k V k

e k k P e k

e k k P e k

e k k Q e k

e k k Q e k

ξ

ξ

ξ

τ ξ τ τ

=

=

=

=

∆ = + −

 
= + + +  

 
 

−   
 
 

+   
 

 
− − − −  

 

∑

∑

∑

∑

. (20)

The difference equation (20) above corresponds to 
any mode of switching rules. As declared in Assump-
tion 1, only one subsystem is active each time. So 
we assume ( ) 1i kξ = ,     ( ) 0i kϕξ ≠ = ,     ( )1 1j kξ + = , 

( )1 0j kϕξ ≠ + = ,  ( ) 1l kξ τ− = ,   ( ) 0l kϕξ τ≠ − = . Then 
formula (20) can be simplified into 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )
( ) ( )
( ) ( )

1 1

2

T T
x j x x i x

T T
F i F F l F

TT
x i i i j i i i i x

TT
x i i i j k F

T
F l F

T T
F k j k i F

V k e k P e k e k Pe k

e k Q e k e k Q e k

e k A L C P A L C P e k

e k A L C P U e k

e k Q e k

e k U P U Q e k

τ τ

τ τ

∆ = + + −

+ − − −

 = − − − 

+ −

− − −

 + + 

. (21)

According to Lemma 1, one can get

( )( ) ( )

( )( ) ( ) ( )
( ) ( )

1

1

2

1

TT
x i i i j k F

TT
x i i i j i i i x

T T
F k j k F

e k A L C P U e k

e k A L C P A L C e k

e k U P U e k

γ

γ

− ≤

− −

+

, (22)

where ( )( )TT
x i i ie k A LM C−= , ( )T

i i iA LP C−=  and 
( )k FN U e k= .

Based on Assumption 2, the formula (21) satisfies the 
following inequality

( ) ( ) ( )( )
( )

( )

( ) ( ) ( ) ( )
( ) ( )

11 T
i i i jT

x x
i i i i

T T
F i F F F

T
F l F

A L C P
V k e k e k

A L C P

e k Q e k e k e k

e k Q e k

γ

δ α

τ τ

 
 
 ⋅

+ −
∆ ≤

− −

− +

− − −

 , (23)

where ( ) ( ) ( ) ( )2
1 max max max1 1 1j lP u Qα γ λ δ λ= + + +

with 0δ ≥ .
Applying Lemma 2, the above inequality can be fur-
ther expressed as

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

( )( ) ( )

1

2 2 2

1 1 1 3

[ 1

]

TT
x i i i j i i i

T T
i i i i i x F i F
T T T
F l F k k

V k e k A L C P A L C

P K C K C e k e k Q e k

e k K K Q e k F F

γ

αρ δ

τ αρ τ αρ

∆ ≤ + − −

− + −

+ − − − +  

. (24)

From inequality (7) with Schur complement lemma, 
one can get

( ) ( )
( ) ( )2 2 2 0

T
i i i j i i i i

T
i i i i

A L C P A L C P

K C K Cαρ

− − −

+ <
. (25)
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Let Λ  represent the left-hand side of the above 
inequality, and define ( )1 min 0λ λ= −Λ >  and 

( )2 min 0iQλ δλ= − > . Together with Assumption 3, 
one can get

( ) ( ) ( )2 2 2
1 2 3x F fV k e k e kλ λ αρ κ∆ ≤ − − + . (26)

Thus

( ) ( ) 3

1 2
max ,x F fe k e k

αρ
κ

λ λ
  ≤  +

. (27)

Hence, the uniform ultimate boundedness of ( )xe k  
and ( )Fe k  can be guaranteed.
Part B: Proof for Theorem 2: Consider the following 
Lyapunov function:

( ) ( ) ( ) ( ) ( )1 2 3 4V k V k V k V k V k= + + + , (28)

where

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1

1

2
1

1

3
1

1

4
1

k

N
T
x i i x

i

k N
T
x i i x

j k d i

k d k N
T
x i i x

s j ij k d

k N
T
F i i F

j k i

V k e k k P e k

V k e j j Q e j

V k e s s Q e s

V k e j j R e j
τ

ξ

ξ

ξ

ξ

=

−

= − =

− −

= == −

−

= − =

 
=   

 
 

=   
 

 
=   

 

 
=   

 

∑

∑ ∑

∑ ∑ ∑

∑ ∑

.
(29)

Then

( ) ( ) ( )
( ) ( )

1 1 1T
x j x

T
x i x

V k e k P e k

e k Pe k

∆ = + +

−
, (30)

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 3
T
x i x

T
x k d x

T
x k d x

T
x xk d

V k V k e k Q e k

e k d Q e k d

e k d Q e k d

e k d Q e k d

σ

−

−

−

∆ + ∆ ≤

− − −

− − −

− − −

, (31)

( ) ( ) ( )
( ) ( )

4
T
F i F

T
F l F

V k e k R e k

e k R e kτ τ

∆ =

− − −
, (32)

where ( )2d dσ = − + . Then setting
( ) ( ){ }min minmin , , 1, ,jQ Q j k d k d k dλ λ= = − − − ⋅⋅ ⋅ − , or 

( ) ( ){ }min minmin ,iQ Q iλ λ= ∈ℵ , one can get

( ) ( ) ( ) ( )
( ) ( ) ( )

2 3

min

T
x i x

T
x k x k

V k V k e k Q e k

Q e k d e k d

σ

λ

∆ + ∆ ≤

− − −
. (33)

Combining the state estimation error in (11), one can get

( ) ( )

( )( ) ( ) ( )
( ) ( )
( ) ( )

( )( ) ( )

( )( ) ( )

( )( )
( ) ( )
( )

1 1

2

2

+2

2

2 2

T
x j x

TT
x i i i j i i i x

T T
x k di j di x k

T T T T
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x i i i j di x k

TT
x i i i j k F
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η η

η

η
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+ − −

+ +

+ − −

+ −

−
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+ − + ( )

.

T T
k j i kk U P E η

(34)

We employ Lemma 1 to simplify the above equation. 
For the term ( )( ) ( )2 TT

x i i i j di x ke k A L C P A e k d− − , one 
can define ( )( )TT

x i i ie k A LM C−= , ( )di x kA eN k d−= , 
jP P= , then

( )( ) ( )

( )( ) ( ) ( )
( ) ( )

1
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2

1

TT
x i i i j di x k

TT
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T T
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γ

γ
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+ − −

, (35)

where 1 0γ > .
Similarly, one can get 

( )( ) ( )
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( ) ( )

2

2

2

1

TT
x i i i j k F

TT
x i i i j i i i x

T T
F k j Fk

e k A L C P U e k
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e k U P e kU

γ

γ
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− −

+

(36)



157Information Technology and Control 2019/1/48

( )( )

( )( ) ( ) ( )3

3

2

1

TT
x i i i j i k

TT
x i i i j i i i x

T T
k i j i k

e k A L C P E
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E P E

η

γ

η ηγ
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≤−
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(37)

( ) ( )
( ) ( )

( ) ( )
4

4

2

1

T T
x k di j k F
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T T
F k j k F

e k d A P U e k
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e k U P e kU

γ
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(38)

( )
( ) ( )

5

5
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1

T T T T
F k j i k k i j i k

T T
F k j Fk

e k U P E E P E

e k U P U e k

η γ η η

γ

≤

+
, (39)

where 1 2 3 4 5, ,, , 0γ γ γ γ γ > .
Based on Assumption 2, we can get

( )( )( )
( ) ( )

( ) ( )

( ) ( )

( )

1 2 3

4
1

2
ma

4
x

2

3

5

5

1

11

1 1 11

11

2

TT
x i i i

j i i i x

T T
x k di j di x k

T
F j F

T T
k i j i k

T T
x k di j i k

e k A L C
S

P A L C e k

e k d A P A e k d

e k u P e k

E P E

e k d A P E

γ γ γ

γγ

γ γ γ

η γ ηγ

η

⋅

+

 + 
 

 + + + −
 ≤
 − 

 + − + − 
 

+ + +

+ + +

+ −

  
 

. (40)

Thus

( ) ( ) ( )( )
( )

( )

( )
( )

( )

( ) ( )

( ) ( ) ( ) ( )
( )

1 2 3

4
1

3

min

5

1
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2

T
i i iT

x x
j i i i i i

T
di j diT

x k x k

T T T
k i j i k F i F

T T
F F F l F

T T
x k di j i k

A L C
V k e k e k

P A L C Q P

A P A
e k d e k d

Q

E P E e k R e k

e k e k e k R e k

e k d A P E

γ γ γ

σ

γγ

λ

η γ η δγ

α τ τ

η

 + + + −
 ∆ ≤
 ⋅ − + − 

  + + ⋅   + − − 
−  

 + + + − 
 

+ − − −

+ −

, (41)

where ( ) ( ) ( )
4

2
max max max

2 5
1 1 11 1j iu P Rα λ δ λγ γ γ= + + + + +  

 
.

Using Lemma 2, we obtain

( ) ( )
( ) ( )

( ) ( )
( )

( )( ) ( )

( ) ( )
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( )

1

2 2 2

1 1 1

3

2 min

32

T
i i i j i i i

T
x i i x

T
i i i i

T T
F l F

T T T
F i F k i j i k

T T
x k di j di x k

T T T
x k di j i k k k

A L C P A L C

V k e k Q P e k

K C K C

e k K K R e k

e k R e k E P E

e k d A P A Q e k d

e k d A P E F F

ζ

σ

αρ

τ αρ τ

δ ζ η η

ζ λ

η αρ

 − ⋅ −
 
 ∆ ≤ + −
 
 + 

+ − − −

− +

 + − − − 

+ − +  

, (42)

where 1 1 2 31ζ γ γ γ= + + + , 2 4
1

11ζ γγ= + +  and 
3

3 5
1 11ζ γ γ= + + .

In order to make the proposed LOs robust to external 
disturbance, consider the following H∞  performance 
index

( ) ( ) 2

0

K
T T
y y k k

k

J e k e k γ η η
=

 = − ∑ , (43)

where K  is an arbitrary positive integer.
Under zero-initial conditions, one has

( ) ( ) ( ) ( )

( ) ( ) ( )

2

0

2

0

K
T T
y y k k

k
K

T T
y y k k

k

J e k e k V k V K

e k e k V k

γ η η

γ η η

=

=

 = − + ∆ − 

 ≤ − + ∆ 

∑

∑
. (44)

It is noted that

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

2
1

3 3

2

T T T
y y k k x x

T T
F F k k

T T x k
x k k
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e k e k V k e k e k

e k e k F F

e k d
e k d

γ η η

τ τ αρ

η
η

− + ∆ ≤ Ξ

+ − Ξ − +

 − + − Ξ     

 
. (45)

Based on Theorem 2 together with Schur complement 
lemma, one can get 1 0Ξ < , 2 0Ξ < , 3 0Ξ < . Thus

( ) ( ) 2
3

0 0

K K
T T T
y y k k k k

k k

e k e k F Fγ η η αρ
= =

 − ≤ ∑ ∑   . (46)

Thus, the uniform ultimate boundedness of system 
state estimation error and fault reconstruction error 
are guaranteed and output estimation error satisfies 

3( )y fe k γη αρ κ≤ + . 
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Part C: Proof for Theorem 3: Here we give the proof 
that LMI (12) is equivalent to the formula (15). Simi-
larly, LMI (13) can be transformed into the inequality 
(16).
Assume that (15) is feasible. Then 0T

i i jG G P+ − >  
which means that iG  is nonsingular. For strictly pos-
itive matrix jP , one can get

( ) ( )1 0
T

j i j j iP G P P G−− − ≥ . (47)

Thus

T T T
i j i i i jG P G G G P≥ + − . (48)

Then (15) can be transformed into

1
1

2
1

0 0

* 0
0* * 0

* * * 0

* * * *

T T
i j i i i i i

T
i i i i i i

T
i i i

G P G G A Y C I

G PG M C G
I C

I

G Q G

ζ

αρ

σ

−

−

 − −
 
 − 

< −
 

− 
 

− 

. (49)

Then, pre multiplying inequality (47) by 
{ }, , , ,T T

i idiag G I I I G− −  and post multiplying by 
{ }1 1, , , ,i idiag G I I I G− − , one can obtain (12). So the 

proof is finished and the parameters of LOs are calcu-
lated by T

i i iL G Y−=  and 2
T

i i iK G M−= .
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