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This paper introduces a method which is developed to solve two-stage stochastic programming problems in 
which first-stage region is unbounded and cannot be solved using traditional decomposition. We are using our 
proposed L-shaped decomposition method modification to solve such problems. In order to achieve a more ac-
curate result, the number of scenarios generated in the optimization process must be large enough. If there is 
a large number of target variables, optimization takes a long time and uses a lot of resources. Thus, in order to 
reduce the number of iterations of the optimization process, the amount of resources used, and the calculating 
time needed to get the optimal solution, the aggregation approach is applied. This paper also presents results of 
our research on optimal parameters setting of the proposed method.
KEYWORDS: Stochastic programming, scenario analysis, aggregation, optimization under uncertainty, de-
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1. Introduction
Most systems that need to be controlled or analyzed 
involve some level of uncertainty [11] that can be in-
cluded in the model of the task in many ways. One of 

them is to model uncertain quantities of the model 
as random variables. When we solve decision-mak-
ing problems, we can use stochastic optimization 
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models. In recent years, interest in stochastic opti-
mization models has increased. For example, Schul-
zea et al. [13] proposed such a model and new refor-
mulation of classical algorithms for hydro-thermal 
unit commitment. A solution of such two-stage or 
multi-stage stochastic mixed-integer optimization 
problems is directly computationally intractable for 
large instances, therefore, alternative approaches are 
required [13]. Schulzea et al. [13] use Dantzig-Wolfe 
reformulation to decompose the stochastic problem 
by scenarios. Another often used algorithm is Bend-
ers decomposition, also known as L-shaped. This al-
gorithm has been successfully applied to a wide range 
of difficult optimization problems [9]. Rahmaniani 
et al. [9] discussed in their papers about the classical 
algorithm, the impact of problem formulation on its 
convergence, and the relationship to other decompo-
sition methods [9]. Adequate model creation is a very 
important part of the simulation process. Wang et al. 
[18] focus on the modelling methodology of two-stage 
stochastic programming, and present some applica-
tions of two-stage stochastic programming in chapter 
five of their book [18].
In this paper, we consider a two-stage stochastic lin-
ear programming (SLP) [20] task, where the variables 
of the second stage depend on a random parameter. 
By random process simulation, random scenarios 
are generated in accordance with the multi-nor-
mal distribution. In solving this problem, a modified 
L-shaped algorithm is usually applied. To achieve a 
more precise result, the number of scenarios gener-
ated during the optimization process must be large 
enough. When the number of task variables is high, 
optimization takes a lot of time and consumes a lot 
of resources, therefore, it is necessary to look for new 
ways of solving similar problems. For example, Foun-
toulakis and Gondzio [4], in their paper, presented a 
rigorously defined generator that allows the control of 
dimensions, conditioning, and sparsity of the problem 
when the conditioning of the problem changes and its 
dimensions increase up to one trillion [4]. The pro-
posed generator has very low memory requirements 
and scales well with the dimensions of the problem 
[4]. Ogbe and Li [8] proposed a new cross decomposi-
tion method combining two classical decomposition 
methods [8]. Their method outperforms Benders de-
composition when the number of scenarios is large 
[8]. In order to minimize the number of iterations in 
the optimization process, the amount of resources 

used, and the time to calculate the optimal solution, 
we, in our research, analysed the scenario aggregation 
method applied to solving the two-stage SLP problem.
For simulation and optimization, specialized soft-
ware packages are often used, and the integration of 
these packages is very important. Vamanana et al. [17] 
demonstrated the mechanics of integrating two com-
monly used Operations Research software packages, 
IBM ILOG CPLEX (often informally referred to, sim-
ply, as CPLEX) and ARENA [17]. It is also important 
to properly select the model solution parameters. For 
example, Sun et al. [14] use CPLEX a branch-and-cut 
method in their work for optimization of firing tran-
sition sequences, based on the Mixed-timed Petri net 
[15]. In our realizations, we used the CPLEX optimi-
zation package (see Section 6).
The initial solution must be selected using the 
L-shaped decomposition algorithm. In order to ob-
tain this solution in the classical algorithm, the first-
stage task is solved. However, if the first-stage region 
is unbounded, then this task has no solution. Thus, 
if the solution of the first-stage or second-stage task 
does not exist, but the solution of the stochastic task 
exists, the classic L-shaped algorithm is not suitable, 
as there may not exist a feasible cut. However, the 
problem can be solved by the proposed modification 
of the classical algorithm [16].
This often occurs in business when dealing with in-
vestment objectives if the return of the first stage is 
negative. In this paper, we deal specifically with such 
tasks.

2. A Two-Stage SLP Problem
It is mostly impossible to exactly evaluate individual 
realization factors of solutions in planning tasks. In 
these cases, the solutions should be corrected during 
their realization. A two-stage stochastic program-
ming model allows us to evaluate the uncertainty and 
get solutions that require minimal correction costs [1, 
7, 12].
In formulating a two-stage SLP task, the vector for the 
first-stage variables is denoted by x. The first-stage 
variable vector is found before a concrete random pa-
rameter value is known. Later on, in view of the real-
ization of a random vector, the second-stage solution 
y is adjusted [1].
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A two-stage SLP problem can be formulated as fol-
lows:

( ) ( )( )
1

min ,
n

T

x D R
F x c x E f x ξ

+∈ ⊂
 = +  (1)

The values of a feasible set are:

{ }1
1 | , nD x Ax b x R+= = ∈ (2)

The second-stage objective function is defined as fol-
lows:

( ) { }2, min | , ,T n
y

f x q y Wy Tx h y Rξ += + = ∈ (3)

where  1n  is the number of variables in the first-stage,  
1m  is the number of constraints in the first-stage,  2n  

is the number of variables in the second-stage, 2m  is 
the number of constraints in the second-stage, [ ]1c n  
is the vector of the objective function coefficients of 
the first-stage variables, [ ]1b m  is the vector of the 
right-hand side of the first-stage constraints, [ ]2q n  
is the vector of the objective function coefficients 
of the second-stage variables, [ ]2h m  is the vec-
tor of the right-hand side of the second-stage con-
straints, [ ]1 1A m n×  is the matrix of the first-stage 
constraint coefficients, [ ]2 2T m n×  is the matrix of 
the second-stage constraint coefficients of the first-
stage variables, [ ]2 2W m n×  is the matrix of the sec-
ond-stage constraint coefficients of the second-stage 
variables.
Assume that the feasible set 1D  is not empty. The vec-
tor h  is random. Suppose that the solution of the sec-
ond-stage problem (see Equation (3)) and the mean-
ing of the function f  almost certainly exist and are 
finite.
When a random parameter ξ  is defined by a discrete 
distribution, where the probabilities of each scenar-
io are denoted ,, 1,jp j K=  where K  is the number of 
scenarios, and the deterministic equivalence of the 
model can be written as follows:

1
min ,

K
T T j

jx j
c x p q y

=

 
 +
  

∑ (4)

where

,Ax b=

,j jTx Wy h+ =

0,   0,   1, ,jx y j K≥ ≥ =  

(5)

x  is the vector of the first-stage variables, y  is the 
vector of the second-stage variables, which can be 
written as the linear programming block task:
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(6)

In the solution of the two-stage SLP problem de-
scribed above, a modified L-shaped algorithm was 
used. The scenarios were generated according to the 
normal law ( ), ,k kNorm µ σ  where  kµ  is the arithme-
tic mean, and kσ  is mean square deviation (standard 
deviation).
The values of random variables are often observed for 
a long time consisting of several stages. During long-
term planning, decisions are made at the end of each 
stage. Decisions made in one stage can have a signifi-
cant impact on subsequent decisions. 
In most of the methods used for solving SLP tasks, a 
decomposition idea is applied. The initial task hav-
ing large measurements (variables, constraints) is 
decomposed into separate smaller tasks solutions 
which are later integrated into the general solution of 
the task. The methods of Dantzig-Wolfe, Benders, the 
stochastic decomposition, and other methods are ap-
plied most widely. In order to apply multi-stage task 
decomposition algorithms to solve two-stage tasks, it 
is necessary to perform a certain adaptation of algo-
rithms.
A modified decomposition algorithm of a two-stage 
SLP problem is described below, applied in the case 
where solution of the first-stage task does not exist.
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3. A Modified Decomposition 
Algorithm of a Two-Stage SLP 
Problem 
The algorithm is iterative and consists of several 
steps. Its iterations are repeated until the required 
accuracy is obtained. The algorithm is based on the 
Sample Average Approximation [14] and decomposi-
tion method described by Bierge et al. [1]. 
Before the first iteration the initial values are defined: 

0,r s ν= = =  where r  is the number of constraints 
for feasible cut, s  is the number of constraints for 
optimality cut, ν  is the iteration number. All the algo-
rithm steps are described below.

The start of the algorithm.
Step 1.  
Before the first iteration, the initial point task is 
solved:

{ }min | , 0T
x

c x Ax b x= ≥ (7)

The initial task is solved to get the initial first-stage 
solution. The initial point can also be selected in an-
other way. Our program allows to select from the sev-
eral initial point alternatives. If the initial task is un-
limited and the final solution *x  of this problem does 
not exist, then, we use our modification:

,
min  ,T T
x y

c x q yu +  (8)

where

0

,
,

 0,  0, 1.

Ax b
Tx Wy h
x y u

=
+ =
≥ ≥ �

(9)

In this case, we include the second-stage objective 
function vector and constraints. The second-stage 
objective function vector is multiplied by a very small 
value .u
In other cases the main linear task (master) is solved:

,
min ,T
x

c x
θ

θ +  (10)

where

,   0,   ,Ax b x Rθ= ≥ ∈ (11)

,   1 ,,l lD x d l r≥ = (12)

,   .1,l lE x e l sθ+ ≥ = (13)

If the final solution *x  of this problem does not exist, 
then a modified task is solved (see Equations (8) and 
(9)), where u  is a very small value.
Step 2.
For all scenarios , ,1k K=  the linear task (see Equa-
tions (14), (15) and (16)) is solved:

, ,
min ,T T

y
e e

υ υ
φ υ υ

+ −

+ − = + ′ (14)

where

,k kWy I I h T xνυ υ+ −+ − = − (15)

( )0,   0,   0,   1, ,1 .Ty eυ υ+ −≥ ≥ ≥ = … (16)

For all ,k  where 0,φ′ >  we define the feasible cut vari-
ables:

( ) ( )1 1 ,   , 
T T

r k r kD T d hν νσ σ+ += = (17)

where νσ  is a simplex multiplier. 
Afterwards, we add a feasible cut constraint (see 
Equation (12)) and go to Step 1. 
In other cases, if for all ,k  0,φ′ =  we go to Step 3.
Step 3.
The second-stage tasks (subproblems) are solved for 
all scenarios 1,k K= :

{ }min | , 0T
k k ky

q y Wy h T x yνω = = − ≥ (18)

Next, variables for the optimality cut are defined:

( )1
1

,
K T

s k k k
k

E p Tνπ+
=

= ∑ (19)

( )1
1

,
K T

s k k k
k

e p hνπ+
=

= ∑ (20)

, u << 1.
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1 1.s se Eνω + += − (21)

If ,ν νθ ω≥  stop, xν  is the optimal solution vector.
Otherwise, add optimality cut constraint (see Equa-
tion (13)) and go to Step 1.
End of the algorithm.

Thus, in the first iteration, the initial solution *x  
of task (see Equation (7)) is obtained. If the finite 
solution *x  does not exist, then, the modified task 
(see Equations (8) and (9)) is solved, where the sec-
ond-stage variables are included in the objective 
function by multiplying a very small coefficient .u
The second-stage task is solved for all scenarios 

1,k K=  until all the objective function values are zero.
The algorithm scheme is shown in Fig. 1.
The algorithm is based on the decomposition method 
described by Bierge et al. [1]. However, several chang-
es have been made.
Before the first iteration, the initial values are defined. 
Next, the main linear task (master) is solved. If the 
final solution of this problem does not exist, then, a 
modified task is solved. Next, the second-stage tasks 
(subproblem) are solved for all scenarios and vari-
ables for the optimal cut are defined. Afterwards, the 
stop condition is checked, and if it is not satisfied, it-
erations are repeated. The iterations are repeated un-
til the required accuracy is obtained.

4. Scenario Aggregation Method
The scenario aggregation method was proposed by 
Rockafeller and Wets [10]. Later, Wets described the 
main aggregation principles in the scenario analysis 
and stochastic optimization [19]. Further, this meth-
od has been applied in solving various specific prob-
lems. In Jönsson et al. [6], the aggregation technique 
is applied to the two-stage production task when it is 
necessary to distribute the given budget for the pur-
chase of product components. In many stages of un-
certainty, optimization problems have been analysed 
for scenarios [11].
Subsequently, the scenario aggregation method was 
analysed in Cambou et al. [3], and the main criteria 
for applying this method were formulated, based on 

Figure 1
A modified L-shaped algorithm

examples. The essence of the scenario aggregation 
method is described below.
The idea is that, when dealing with various subprob-
lems and their optimal solutions, one can discover 
similarities and trends, and ultimately get a well-in-
sured solution to the underlying problem [19]. The 
general approach in practice is based on the scenario 
analysis [6, 19].
If we have a stochastic optimization task described in 

Figure 1 
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a probability space ( )Ø, ,P  where Ø  is a set of possi-
ble realizations, and P  is the associated probability 
distribution, the problem is:

( ){ } ( ) ( )min ,  , ,
x

E g x g x dPξ ξ ξ= ∫ (22)

where ,nx D R∈ ⊂  D  is a set of feasible solutions de-
termined by constraints, and g  is the criterion function.
Since the model depends on the random vector ξ  and 
its probabilistic distribution ,P  it cannot be used as 
an appropriate simulation tool when we have only 
limited information on the distribution of random pa-
rameters. In such cases, the scenario analysis is used 
most commonly [19]. 
In case the uncertainty is modelled by a few scenarios

, 1, ,ks k K=  and for each scenario ,ks  one finds the 
solution of subproblem kP : 

( ){ }min , | n
kx

g x s x D R∈ ⊂ . (23)

Suppose we know how to get the solution to each in-
dividual scenario taken. The problem is how to deal 
with different s-dependent vectors in solving the 
problem of combining them and obtaining a common 
solution [11].
Assuming that the optimal solution exists for all sce-
narios , 1, ,ks k K=  the optimal solution is:

( ){ } min , |k
kx

x arg g x s x D∈ ∈ . (24)

When the solution to each scenario is computed, they 
are analysed in order to find common trends or solu-
tion clusters and determine how the solution would 
be calculated, if the scenario s′  really appears. The 
average solution is calculated multiplying all solu-
tions kx  by the probability of scenarios, and the aver-
age solutions are analysed further. The ultimate goal 
of the analysis is to get one solution that can be used 
to make a decision.
Constructing an estimate indicating the average 
solution:

1
ˆ

K
k

k
k

x p x
=

= ∑ , (25)

where kx  is the solution of the scenario ,  1, ,ks k K=  
and kp  are probabilities (weights) of the scenario. 
These probabilities are necessarily nonnegative, and 
up to 1 [19]. The solution x̂  does not depend on the 
scenario, i.e., in general, it will respond more to all the 
most likely events possible than specific solutions of 
the individual scenario solution .kx  However, x̂  is 
not necessarily possible. The solution x  is accept-
able, if it is possible for each particular scenario, i.e., 

kx D∈  for all , 1, .ks k K=
A stochastic optimization problem is defined below in 
which each scenario ks  relates to the probability of 
the scenario kp :

( )( )
1

min , ,
K

k
kx k

p g x s
=
∑ (26)

where .k ks
x D∈

The optimal solution of the problem is *.x

5. Stochastic Simulation
Simulation is mainly used in the following cases: 
where it is impossible or very expensive to get data 
from a certain real process; where the system investi-
gated is very complicated and cannot be described by 
mathematical equations having analytical solutions; 
where the system is described in a mathematical 
model, but it is impossible to get a solution by using 
analytical techniques; where it is impossible or very 
expensive to perform experiments of the mathemat-
ical system model. 
Simulation optimization coupling [2], illustrated in 
Fig. 2, is an active area in the field of stochastic pro-
gramming. In this connection, the simulation is gen-
erally used to generate scenarios in accordance with 
the probability distributions data [2].
Statistical modelling uses a selection of stochastic 
random variables, and is defined as experimentation 
with the model in time. Random values were sim-
ulated by generating Gaussian values. The Normal 
or Gaussian law describes the distribution of such a 
random size obtained, by summing up a large number 
of other independent random variables that are not 
dominant among them.

Ψ Ψ
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Figure 2
Simulation optimization coupling [2]

The normal law is very often applied in practice. It is an 
idealized mathematical model for analysing data that 
are roughly normal. Therefore, in this work, random 
scenarios were generated according to the Gaussian law.

6. Optimization Using IBM ILOG 
CPLEX
For solving optimization problems we used the IBM 
ILOG CPLEX Optimization Studio that was integrat-
ed with Microsoft Visual Studio. 
The IBM ILOG CPLEX Optimization Studio is an op-
timization software package [5]. It enables a rapid de-
velopment and deployment of decision optimization 
models using mathematical and constraint program-
ming [5]. The efficiency of solution of a task depends 
on the CPLEX integration. Therefore, it is very im-
portant to properly select and match all the parame-
ters of the task.
IBM ILOG CPLEX offers C, C++, Java, .NET, and Py-
thon libraries that solve linear programming and re-
lated problems [5]. Specifically, it solves linearly or 
quadratically constrained optimization problems, 
where the objective to be optimized can be expressed 
as a linear function or a convex quadratic function [5]. 
The variables in the model may be declared as contin-
uous or further constrained to take only integer [5].
The program using the CPLEX Concert Technology 
to solve optimization problems is shown in Fig. 3. 
The optimization part of the user’s application pro-
gram is captured in a set of interacting C++ modelling 
and solving objects that the application creates and 
controls [5]. Modelling objects are used to define the 
optimization problem. Solving objects in the instance 

of IloCplex are used to solve models created by the 
modelling objects.
An IloCplex object reads a model, extracts its data, 
solves the problem, and answers queries on solution.
The Concert Technology model consists of a set of 
C++ objects. Each variable, each constraint, each spe-
cial ordered set (SOS), and the objective function in 
the model are all represented by objects of the appro-
priate Concert Technology class.
The environment is the first object created in an appli-
cation. The environment object needs to be available 
to the constructor of all other Concert Technology 
classes. After creating the environment, a Concert ap-
plication is ready to create one or more optimization 
models. After an IloModel object has been construct-
ed, it can be populated with modelling variables, con-
straints, and objective function. The class IloCplex 
solves a model. Query methods access information 
about the solution. CPLEX supports reading models 
from files and writing models to files in several lan-
guages (e.g., LP format, MPS format).
We describe above the CPLEX model creation and the 
solving process used in our research.
First, we define the vector of solution variables as Ilo-
NumVarArray. 
Next, we define the first-stage and the second-stage 
objective function vectors as IloExpr, and add them to 
the model using model.add() method.
Now, we define the matrixes describing the left-
hand of the first- and the second-stage constraints as  
IloExprArray.
Next we define the first- and the second-stage con-
straints as IloRangeArray, and add them to the model 

Figure 3
A view of Concert Technology for C++ users [5]Figure 2 
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using model.add() method.
Finally, we define created model as IloCplex model 
and solve it using the CPLEX solver method  solve().
Next, we can apply the information of the solution to 
our further calculations. The main information of the 
solution are as follows:
 _ cplex.getStatus() gets the status of the solution;
 _ cplex.getObjValue() gets the value of the objective 

function;
 _ cplex.getValues(vals, vars) gets the values of the 

solution.

7. Investigation of the Proposed 
Method
The scenario aggregation method was applied for 
solving a two-stage SLP task. The calculations were 
performed by a computer, which parameters are: In-
tel(R) Core(TM) i7-4500U CPU @ 1,80 GHz 2.4 GHz, 
8.00GB, x64-based processor. The program was im-
plemented in the Microsoft Visual Studio 2012 C++ 
language, using the IBM ILOG CPLEX optimization 
package. The first two-stage task has 20 variables and 
10 constraints in the first-stage, and 30 variables and 
20 constraints in the second (20x30 task). The second 
two-stage task has 60 variables and 30 constraints in 
the first-stage, and 90 variables and 60 constraints in 
the second (60x90 task). 
In the first case, the 2000 normally distributed scenar-
ios were divided into 1, 2, 5, 10, 20, 50, 100, 200, 500, 
1000 and 2000 groups. The calculations (2000 scenar-
ios) were repeated 100 times for each case of division. 
The averaged results for all cases of division are pre-
sented in Table 1 (average result = result of 2000 sce-
narios repeated 100 times divided by 100).
The average value of the main (master) task objective 
function is 182.12.TF =

In the second case the 1800 normally distributed sce-
narios were divided into 1, 2, 5, 10, 20, 50, 100, 200, 600, 
900 and 1800 groups. The calculations (1800 scenari-
os) were repeated 100 times for each case of division. 
The averaged results for all cases of division are pre-
sented in Table 2 (average result = result of 1800 sce-
narios repeated 100 times divided by 100).

The average value of the main (master) task objective 
function is 299.07.TF =

The results indicate that by increasing the number 
of groups, the computation time and the number of 
iterations required to achieve the optimal value, de-

Table 1
Averaged results of calculation (20x30 task)

Number of 
groups Time (min) Number of iterations

1 22.2 34.3

2 20.0 30.2

5 17.1 26.3

10 15.3 23.1

20 13.0 20.2

50 11.0 17.1

100 9.3 14.2

200 7.8 12.1

500 5.7 8.7

1000 4.7 7.1

2000 4.1 6.1

Table 2
Averaged results of calculation (60x90 task)

Number of 
groups Time (min) Number of iterations

1 78.6 96.1

2 71.7 87.3

5 56.4 68.2

10 44.9 54.3

20 33.2 40.7

50 23.3 28.3

100 19.3 23.7

200 14.9 18.2

600 10.0 12.1

900 9.4 11.1

1800 8.1 9.2
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crease. Dependence of time on the number of groups 
is shown in Fig. 4.

Figure 4
Dependence of time (y axis) on the number of groups (x axis)

Figure 5
Dependence of the number of iterations (y axis) on the number 
of groups (x axis)

Figure 6
Dependence of the average time of one iteration calculation 
(y axis) on the number of groups (x axis) (20x30 task)

Figure 7
Dependence of the average time of one iteration calculation 
(y axis) on the number of groups (x axis) (60x90 task)
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Dependence of the number of iterations on the num-
ber of groups is shown in Fig. 5.

Dependence of the average time of one iteration cal-
culation on the number of groups is shown in Fig. 6 
(20x30 task) and Fig. 7 (60x90 task).
As we can see, the optimal time of one iteration cal-
culation was obtained when the number of groups 
is between 100 and 200, i.e. one group have contain 
about 10–20 scenarios. When the number of groups 
increase, the calculation time of the one iteration in-
creases too, because the number of constraints of the 
main (master) task increases respectively.
When we use our proposed two-stage SLP problem 
decomposition algorithm modification, we must en-
sure the solution existence for every scenario. For 

that purpose, the values of parameter u  related to 
solution existence were investigated. 
At the beginning, the parameter value u was set to  
u = 1. Then it was reduced to 0.0001, and the problem 
was solved. The process was carried out as long as the 
solution existed.
The calculation results showed, that the minimal u 
value which can ensure solution existence solving 
such tasks, is 0.001.u =

8. Conclusion
A stochastic optimization method has been proposed 
to solve two-stage SLP problems, where first-stage 
task is unbounded. The method consists of decompo-
sition, aggregation and solving technologies coupling.
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The decomposition method, based on Sample Aver-
age Approximation for solving SLP problems, is pre-
sented, where the stochastic variables are described 
by an absolutely continuous probability law.
The investigation result obtained on choice of parame-
ter u of our proposed two-stage SLP problem decompo-
sition method modification algorithm shows that mini-
mal value, which ensure solution existence, is 0.001.u =

The efficient CPLEX integration has been proposed 
for solving SLP problems by the L-shaped algorithm 
which enables us to adapt integration parameters to 
specific problems.
The obtained results show that the number of itera-
tions decreases by increasing the number of scenario 
groups (see Fig. 5), concurrently the overall calcula-
tion time decreases for the same accuracy (see Fig. 4).

The aggregation of the scenarios into 100-200 groups 
gives the best average execution time per iteration 
solving the SLP by modified Lshaped algorithm, 
if the following conditions are met: the number of 
variables reaches up to 100; random scenarios are 
generated according to the Gaussian law; number of 
the scenarios is about 2000. Increasing the number 
of groups, the average calculation time of one itera-
tion increases as well (see Figs. 6 and 7). This is due 
to the fact that if the number of groups increases, the 
number of constraints of the main (master) task in-
creases, respectively.
The disadvantage of the method is that the different 
classes of problems can correspond to different num-
bers of optimal groups. If we do not know the number 
of optimal groups, our choice may be irrational.
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