
Information Technology and Control 2018/4/47728

Modified L-Shaped Decomposition
Method with Scenario Aggregation
for a Two-Stage Stochastic
Programming Problem

ITC 4/47
Journal of Information Technology
and Control
Vol. 47 / No. 4 / 2018
pp.728-738
DOI 10.5755/j01.itc.47.4.20103

Modified L-Shaped Decomposition Method with Scenario
Aggregation for a Two-Stage Stochastic Programming Problem

Received 2018/02/05 Accepted after revision 2018/10/31

 http://dx.doi.org/10.5755/j01.itc.47.4.20103

Corresponding author: a.uspuriene@gmail.com

Ana Ušpurienė
Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania,
e-mail: a.uspuriene@gmail.com

Leonidas Sakalauskas, Gediminas Gricius
Klaipeda University, H. Manto str. 84, LT- 92294 Klaipeda, Lithuania, e-mails: leonidas.sakalauskas@mii.vu.lt,
gediminas.gricius@ku.lt

This paper introduces a method which is developed to solve two-stage stochastic programming problems in
which first-stage region is unbounded and cannot be solved using traditional decomposition. We are using our
proposed L-shaped decomposition method modification to solve such problems. In order to achieve a more ac-
curate result, the number of scenarios generated in the optimization process must be large enough. If there is
a large number of target variables, optimization takes a long time and uses a lot of resources. Thus, in order to
reduce the number of iterations of the optimization process, the amount of resources used, and the calculating
time needed to get the optimal solution, the aggregation approach is applied. This paper also presents results of
our research on optimal parameters setting of the proposed method.
KEYWORDS: Stochastic programming, scenario analysis, aggregation, optimization under uncertainty, de-
composition method, IBM ILOG CPLEX solver.

1. Introduction
Most systems that need to be controlled or analyzed
involve some level of uncertainty [11] that can be in-
cluded in the model of the task in many ways. One of

them is to model uncertain quantities of the model
as random variables. When we solve decision-mak-
ing problems, we can use stochastic optimization

729Information Technology and Control 2018/4/47

models. In recent years, interest in stochastic opti-
mization models has increased. For example, Schul-
zea et al. [13] proposed such a model and new refor-
mulation of classical algorithms for hydro-thermal
unit commitment. A solution of such two-stage or
multi-stage stochastic mixed-integer optimization
problems is directly computationally intractable for
large instances, therefore, alternative approaches are
required [13]. Schulzea et al. [13] use Dantzig-Wolfe
reformulation to decompose the stochastic problem
by scenarios. Another often used algorithm is Bend-
ers decomposition, also known as L-shaped. This al-
gorithm has been successfully applied to a wide range
of difficult optimization problems [9]. Rahmaniani
et al. [9] discussed in their papers about the classical
algorithm, the impact of problem formulation on its
convergence, and the relationship to other decompo-
sition methods [9]. Adequate model creation is a very
important part of the simulation process. Wang et al.
[18] focus on the modelling methodology of two-stage
stochastic programming, and present some applica-
tions of two-stage stochastic programming in chapter
five of their book [18].
In this paper, we consider a two-stage stochastic lin-
ear programming (SLP) [20] task, where the variables
of the second stage depend on a random parameter.
By random process simulation, random scenarios
are generated in accordance with the multi-nor-
mal distribution. In solving this problem, a modified
L-shaped algorithm is usually applied. To achieve a
more precise result, the number of scenarios gener-
ated during the optimization process must be large
enough. When the number of task variables is high,
optimization takes a lot of time and consumes a lot
of resources, therefore, it is necessary to look for new
ways of solving similar problems. For example, Foun-
toulakis and Gondzio [4], in their paper, presented a
rigorously defined generator that allows the control of
dimensions, conditioning, and sparsity of the problem
when the conditioning of the problem changes and its
dimensions increase up to one trillion [4]. The pro-
posed generator has very low memory requirements
and scales well with the dimensions of the problem
[4]. Ogbe and Li [8] proposed a new cross decomposi-
tion method combining two classical decomposition
methods [8]. Their method outperforms Benders de-
composition when the number of scenarios is large
[8]. In order to minimize the number of iterations in
the optimization process, the amount of resources

used, and the time to calculate the optimal solution,
we, in our research, analysed the scenario aggregation
method applied to solving the two-stage SLP problem.
For simulation and optimization, specialized soft-
ware packages are often used, and the integration of
these packages is very important. Vamanana et al. [17]
demonstrated the mechanics of integrating two com-
monly used Operations Research software packages,
IBM ILOG CPLEX (often informally referred to, sim-
ply, as CPLEX) and ARENA [17]. It is also important
to properly select the model solution parameters. For
example, Sun et al. [14] use CPLEX a branch-and-cut
method in their work for optimization of firing tran-
sition sequences, based on the Mixed-timed Petri net
[15]. In our realizations, we used the CPLEX optimi-
zation package (see Section 6).
The initial solution must be selected using the
L-shaped decomposition algorithm. In order to ob-
tain this solution in the classical algorithm, the first-
stage task is solved. However, if the first-stage region
is unbounded, then this task has no solution. Thus,
if the solution of the first-stage or second-stage task
does not exist, but the solution of the stochastic task
exists, the classic L-shaped algorithm is not suitable,
as there may not exist a feasible cut. However, the
problem can be solved by the proposed modification
of the classical algorithm [16].
This often occurs in business when dealing with in-
vestment objectives if the return of the first stage is
negative. In this paper, we deal specifically with such
tasks.

2. A Two-Stage SLP Problem
It is mostly impossible to exactly evaluate individual
realization factors of solutions in planning tasks. In
these cases, the solutions should be corrected during
their realization. A two-stage stochastic program-
ming model allows us to evaluate the uncertainty and
get solutions that require minimal correction costs [1,
7, 12].
In formulating a two-stage SLP task, the vector for the
first-stage variables is denoted by x. The first-stage
variable vector is found before a concrete random pa-
rameter value is known. Later on, in view of the real-
ization of a random vector, the second-stage solution
y is adjusted [1].

Information Technology and Control 2018/4/47730

A two-stage SLP problem can be formulated as fol-
lows:

() ()()
1

min ,
n

T

x D R
F x c x E f x ξ

+∈ ⊂
 = + (1)

The values of a feasible set are:

{ }1
1 | , nD x Ax b x R+= = ∈ (2)

The second-stage objective function is defined as fol-
lows:

() { }2, min | , ,T n
y

f x q y Wy Tx h y Rξ += + = ∈ (3)

where 1n is the number of variables in the first-stage,
1m is the number of constraints in the first-stage, 2n

is the number of variables in the second-stage, 2m is
the number of constraints in the second-stage, []1c n
is the vector of the objective function coefficients of
the first-stage variables, []1b m is the vector of the
right-hand side of the first-stage constraints, []2q n
is the vector of the objective function coefficients
of the second-stage variables, []2h m is the vec-
tor of the right-hand side of the second-stage con-
straints, []1 1A m n× is the matrix of the first-stage
constraint coefficients, []2 2T m n× is the matrix of
the second-stage constraint coefficients of the first-
stage variables, []2 2W m n× is the matrix of the sec-
ond-stage constraint coefficients of the second-stage
variables.
Assume that the feasible set 1D is not empty. The vec-
tor h is random. Suppose that the solution of the sec-
ond-stage problem (see Equation (3)) and the mean-
ing of the function f almost certainly exist and are
finite.
When a random parameter ξ is defined by a discrete
distribution, where the probabilities of each scenar-
io are denoted ,, 1,jp j K= where K is the number of
scenarios, and the deterministic equivalence of the
model can be written as follows:

1
min ,

K
T T j

jx j
c x p q y

=

 +

∑ (4)

where

,Ax b=

,j jTx Wy h+ =

0, 0, 1, ,jx y j K≥ ≥ =

(5)

x is the vector of the first-stage variables, y is the
vector of the second-stage variables, which can be
written as the linear programming block task:

1 1

2 2

1 2

,

0, 0, 0, ,

,

,

,

 0.

K K

K

A

Wy h

Wy h

x b

Tx

Wy h

x

T

y y

T

y

x

x

+

+ =

+

≥ ≥

=

=

 =

≥ ≥

(6)

In the solution of the two-stage SLP problem de-
scribed above, a modified L-shaped algorithm was
used. The scenarios were generated according to the
normal law (), ,k kNorm µ σ where kµ is the arithme-
tic mean, and kσ is mean square deviation (standard
deviation).
The values of random variables are often observed for
a long time consisting of several stages. During long-
term planning, decisions are made at the end of each
stage. Decisions made in one stage can have a signifi-
cant impact on subsequent decisions.
In most of the methods used for solving SLP tasks, a
decomposition idea is applied. The initial task hav-
ing large measurements (variables, constraints) is
decomposed into separate smaller tasks solutions
which are later integrated into the general solution of
the task. The methods of Dantzig-Wolfe, Benders, the
stochastic decomposition, and other methods are ap-
plied most widely. In order to apply multi-stage task
decomposition algorithms to solve two-stage tasks, it
is necessary to perform a certain adaptation of algo-
rithms.
A modified decomposition algorithm of a two-stage
SLP problem is described below, applied in the case
where solution of the first-stage task does not exist.

731Information Technology and Control 2018/4/47

3. A Modified Decomposition
Algorithm of a Two-Stage SLP
Problem
The algorithm is iterative and consists of several
steps. Its iterations are repeated until the required
accuracy is obtained. The algorithm is based on the
Sample Average Approximation [14] and decomposi-
tion method described by Bierge et al. [1].
Before the first iteration the initial values are defined:

0,r s ν= = = where r is the number of constraints
for feasible cut, s is the number of constraints for
optimality cut, ν is the iteration number. All the algo-
rithm steps are described below.

The start of the algorithm.
Step 1.
Before the first iteration, the initial point task is
solved:

{ }min | , 0T
x

c x Ax b x= ≥ (7)

The initial task is solved to get the initial first-stage
solution. The initial point can also be selected in an-
other way. Our program allows to select from the sev-
eral initial point alternatives. If the initial task is un-
limited and the final solution *x of this problem does
not exist, then, we use our modification:

,
min ,T T
x y

c x q yu + (8)

where

0

,
,

 0, 0, 1.

Ax b
Tx Wy h
x y u

=
+ =
≥ ≥ �

(9)

In this case, we include the second-stage objective
function vector and constraints. The second-stage
objective function vector is multiplied by a very small
value .u
In other cases the main linear task (master) is solved:

,
min ,T
x

c x
θ

θ + (10)

where

, 0, ,Ax b x Rθ= ≥ ∈ (11)

, 1 ,,l lD x d l r≥ = (12)

, .1,l lE x e l sθ+ ≥ = (13)

If the final solution *x of this problem does not exist,
then a modified task is solved (see Equations (8) and
(9)), where u is a very small value.
Step 2.
For all scenarios , ,1k K= the linear task (see Equa-
tions (14), (15) and (16)) is solved:

, ,
min ,T T

y
e e

υ υ
φ υ υ

+ −

+ − = + ′ (14)

where

,k kWy I I h T xνυ υ+ −+ − = − (15)

()0, 0, 0, 1, ,1 .Ty eυ υ+ −≥ ≥ ≥ = … (16)

For all ,k where 0,φ′ > we define the feasible cut vari-
ables:

() ()1 1 , ,
T T

r k r kD T d hν νσ σ+ += = (17)

where νσ is a simplex multiplier.
Afterwards, we add a feasible cut constraint (see
Equation (12)) and go to Step 1.
In other cases, if for all ,k 0,φ′ = we go to Step 3.
Step 3.
The second-stage tasks (subproblems) are solved for
all scenarios 1,k K= :

{ }min | , 0T
k k ky

q y Wy h T x yνω = = − ≥ (18)

Next, variables for the optimality cut are defined:

()1
1

,
K T

s k k k
k

E p Tνπ+
=

= ∑ (19)

()1
1

,
K T

s k k k
k

e p hνπ+
=

= ∑ (20)

, u << 1.

Information Technology and Control 2018/4/47732

1 1.s se Eνω + += − (21)

If ,ν νθ ω≥ stop, xν is the optimal solution vector.
Otherwise, add optimality cut constraint (see Equa-
tion (13)) and go to Step 1.
End of the algorithm.

Thus, in the first iteration, the initial solution *x
of task (see Equation (7)) is obtained. If the finite
solution *x does not exist, then, the modified task
(see Equations (8) and (9)) is solved, where the sec-
ond-stage variables are included in the objective
function by multiplying a very small coefficient .u
The second-stage task is solved for all scenarios

1,k K= until all the objective function values are zero.
The algorithm scheme is shown in Fig. 1.
The algorithm is based on the decomposition method
described by Bierge et al. [1]. However, several chang-
es have been made.
Before the first iteration, the initial values are defined.
Next, the main linear task (master) is solved. If the
final solution of this problem does not exist, then, a
modified task is solved. Next, the second-stage tasks
(subproblem) are solved for all scenarios and vari-
ables for the optimal cut are defined. Afterwards, the
stop condition is checked, and if it is not satisfied, it-
erations are repeated. The iterations are repeated un-
til the required accuracy is obtained.

4. Scenario Aggregation Method
The scenario aggregation method was proposed by
Rockafeller and Wets [10]. Later, Wets described the
main aggregation principles in the scenario analysis
and stochastic optimization [19]. Further, this meth-
od has been applied in solving various specific prob-
lems. In Jönsson et al. [6], the aggregation technique
is applied to the two-stage production task when it is
necessary to distribute the given budget for the pur-
chase of product components. In many stages of un-
certainty, optimization problems have been analysed
for scenarios [11].
Subsequently, the scenario aggregation method was
analysed in Cambou et al. [3], and the main criteria
for applying this method were formulated, based on

Figure 1
A modified L-shaped algorithm

examples. The essence of the scenario aggregation
method is described below.
The idea is that, when dealing with various subprob-
lems and their optimal solutions, one can discover
similarities and trends, and ultimately get a well-in-
sured solution to the underlying problem [19]. The
general approach in practice is based on the scenario
analysis [6, 19].
If we have a stochastic optimization task described in

Figure 1

Set initial values
0 sr

Solve the initial
master problem

,..

min
,

bAxts

xcT
x

,,,1, rldxD ll
,,,1, slexE ll

Rx ,0

If the solution does not exist, then modified task is solved
0,0,,cmin 0

T yxhWyTxbAxuyqx T

Solve second-stage tasks of all scenarios
KkyxThWyyq v

kk
T
k ,...1,0,min

Define optimality cut

,)(

,)(

1
1

1
1

k
Tv

k

K

k
kr

k
Tv

k

K

k
kr

hp

TpE

xEe rr
v

11

vv

Stop
vx is optimal solution

e

733Information Technology and Control 2018/4/47

a probability space ()Ø, ,P where Ø is a set of possi-
ble realizations, and P is the associated probability
distribution, the problem is:

(){ } () ()min , , ,
x

E g x g x dPξ ξ ξ= ∫ (22)

where ,nx D R∈ ⊂ D is a set of feasible solutions de-
termined by constraints, and g is the criterion function.
Since the model depends on the random vector ξ and
its probabilistic distribution ,P it cannot be used as
an appropriate simulation tool when we have only
limited information on the distribution of random pa-
rameters. In such cases, the scenario analysis is used
most commonly [19].
In case the uncertainty is modelled by a few scenarios

, 1, ,ks k K= and for each scenario ,ks one finds the
solution of subproblem kP :

(){ }min , | n
kx

g x s x D R∈ ⊂ . (23)

Suppose we know how to get the solution to each in-
dividual scenario taken. The problem is how to deal
with different s-dependent vectors in solving the
problem of combining them and obtaining a common
solution [11].
Assuming that the optimal solution exists for all sce-
narios , 1, ,ks k K= the optimal solution is:

(){ } min , |k
kx

x arg g x s x D∈ ∈ . (24)

When the solution to each scenario is computed, they
are analysed in order to find common trends or solu-
tion clusters and determine how the solution would
be calculated, if the scenario s′ really appears. The
average solution is calculated multiplying all solu-
tions kx by the probability of scenarios, and the aver-
age solutions are analysed further. The ultimate goal
of the analysis is to get one solution that can be used
to make a decision.
Constructing an estimate indicating the average
solution:

1
ˆ

K
k

k
k

x p x
=

= ∑ , (25)

where kx is the solution of the scenario , 1, ,ks k K=
and kp are probabilities (weights) of the scenario.
These probabilities are necessarily nonnegative, and
up to 1 [19]. The solution x̂ does not depend on the
scenario, i.e., in general, it will respond more to all the
most likely events possible than specific solutions of
the individual scenario solution .kx However, x̂ is
not necessarily possible. The solution x is accept-
able, if it is possible for each particular scenario, i.e.,

kx D∈ for all , 1, .ks k K=
A stochastic optimization problem is defined below in
which each scenario ks relates to the probability of
the scenario kp :

()()
1

min , ,
K

k
kx k

p g x s
=
∑ (26)

where .k ks
x D∈

The optimal solution of the problem is *.x

5. Stochastic Simulation
Simulation is mainly used in the following cases:
where it is impossible or very expensive to get data
from a certain real process; where the system investi-
gated is very complicated and cannot be described by
mathematical equations having analytical solutions;
where the system is described in a mathematical
model, but it is impossible to get a solution by using
analytical techniques; where it is impossible or very
expensive to perform experiments of the mathemat-
ical system model.
Simulation optimization coupling [2], illustrated in
Fig. 2, is an active area in the field of stochastic pro-
gramming. In this connection, the simulation is gen-
erally used to generate scenarios in accordance with
the probability distributions data [2].
Statistical modelling uses a selection of stochastic
random variables, and is defined as experimentation
with the model in time. Random values were sim-
ulated by generating Gaussian values. The Normal
or Gaussian law describes the distribution of such a
random size obtained, by summing up a large number
of other independent random variables that are not
dominant among them.

Ψ Ψ

Information Technology and Control 2018/4/47734

Figure 2
Simulation optimization coupling [2]

The normal law is very often applied in practice. It is an
idealized mathematical model for analysing data that
are roughly normal. Therefore, in this work, random
scenarios were generated according to the Gaussian law.

6. Optimization Using IBM ILOG
CPLEX
For solving optimization problems we used the IBM
ILOG CPLEX Optimization Studio that was integrat-
ed with Microsoft Visual Studio.
The IBM ILOG CPLEX Optimization Studio is an op-
timization software package [5]. It enables a rapid de-
velopment and deployment of decision optimization
models using mathematical and constraint program-
ming [5]. The efficiency of solution of a task depends
on the CPLEX integration. Therefore, it is very im-
portant to properly select and match all the parame-
ters of the task.
IBM ILOG CPLEX offers C, C++, Java, .NET, and Py-
thon libraries that solve linear programming and re-
lated problems [5]. Specifically, it solves linearly or
quadratically constrained optimization problems,
where the objective to be optimized can be expressed
as a linear function or a convex quadratic function [5].
The variables in the model may be declared as contin-
uous or further constrained to take only integer [5].
The program using the CPLEX Concert Technology
to solve optimization problems is shown in Fig. 3.
The optimization part of the user’s application pro-
gram is captured in a set of interacting C++ modelling
and solving objects that the application creates and
controls [5]. Modelling objects are used to define the
optimization problem. Solving objects in the instance

of IloCplex are used to solve models created by the
modelling objects.
An IloCplex object reads a model, extracts its data,
solves the problem, and answers queries on solution.
The Concert Technology model consists of a set of
C++ objects. Each variable, each constraint, each spe-
cial ordered set (SOS), and the objective function in
the model are all represented by objects of the appro-
priate Concert Technology class.
The environment is the first object created in an appli-
cation. The environment object needs to be available
to the constructor of all other Concert Technology
classes. After creating the environment, a Concert ap-
plication is ready to create one or more optimization
models. After an IloModel object has been construct-
ed, it can be populated with modelling variables, con-
straints, and objective function. The class IloCplex
solves a model. Query methods access information
about the solution. CPLEX supports reading models
from files and writing models to files in several lan-
guages (e.g., LP format, MPS format).
We describe above the CPLEX model creation and the
solving process used in our research.
First, we define the vector of solution variables as Ilo-
NumVarArray.
Next, we define the first-stage and the second-stage
objective function vectors as IloExpr, and add them to
the model using model.add() method.
Now, we define the matrixes describing the left-
hand of the first- and the second-stage constraints as
IloExprArray.
Next we define the first- and the second-stage con-
straints as IloRangeArray, and add them to the model

Figure 3
A view of Concert Technology for C++ users [5]Figure 2

Figure 3

User-Written Application

Concert Technology
modelling objects

IloCplex objects

CPLEX internals

Figure 2

Figure 3

User-Written Application

Concert Technology
modelling objects

IloCplex objects

CPLEX internals

735Information Technology and Control 2018/4/47

using model.add() method.
Finally, we define created model as IloCplex model
and solve it using the CPLEX solver method solve().
Next, we can apply the information of the solution to
our further calculations. The main information of the
solution are as follows:
 _ cplex.getStatus() gets the status of the solution;
 _ cplex.getObjValue() gets the value of the objective

function;
 _ cplex.getValues(vals, vars) gets the values of the

solution.

7. Investigation of the Proposed
Method
The scenario aggregation method was applied for
solving a two-stage SLP task. The calculations were
performed by a computer, which parameters are: In-
tel(R) Core(TM) i7-4500U CPU @ 1,80 GHz 2.4 GHz,
8.00GB, x64-based processor. The program was im-
plemented in the Microsoft Visual Studio 2012 C++
language, using the IBM ILOG CPLEX optimization
package. The first two-stage task has 20 variables and
10 constraints in the first-stage, and 30 variables and
20 constraints in the second (20x30 task). The second
two-stage task has 60 variables and 30 constraints in
the first-stage, and 90 variables and 60 constraints in
the second (60x90 task).
In the first case, the 2000 normally distributed scenar-
ios were divided into 1, 2, 5, 10, 20, 50, 100, 200, 500,
1000 and 2000 groups. The calculations (2000 scenar-
ios) were repeated 100 times for each case of division.
The averaged results for all cases of division are pre-
sented in Table 1 (average result = result of 2000 sce-
narios repeated 100 times divided by 100).
The average value of the main (master) task objective
function is 182.12.TF =

In the second case the 1800 normally distributed sce-
narios were divided into 1, 2, 5, 10, 20, 50, 100, 200, 600,
900 and 1800 groups. The calculations (1800 scenari-
os) were repeated 100 times for each case of division.
The averaged results for all cases of division are pre-
sented in Table 2 (average result = result of 1800 sce-
narios repeated 100 times divided by 100).

The average value of the main (master) task objective
function is 299.07.TF =

The results indicate that by increasing the number
of groups, the computation time and the number of
iterations required to achieve the optimal value, de-

Table 1
Averaged results of calculation (20x30 task)

Number of
groups Time (min) Number of iterations

1 22.2 34.3

2 20.0 30.2

5 17.1 26.3

10 15.3 23.1

20 13.0 20.2

50 11.0 17.1

100 9.3 14.2

200 7.8 12.1

500 5.7 8.7

1000 4.7 7.1

2000 4.1 6.1

Table 2
Averaged results of calculation (60x90 task)

Number of
groups Time (min) Number of iterations

1 78.6 96.1

2 71.7 87.3

5 56.4 68.2

10 44.9 54.3

20 33.2 40.7

50 23.3 28.3

100 19.3 23.7

200 14.9 18.2

600 10.0 12.1

900 9.4 11.1

1800 8.1 9.2

Information Technology and Control 2018/4/47736

crease. Dependence of time on the number of groups
is shown in Fig. 4.

Figure 4
Dependence of time (y axis) on the number of groups (x axis)

Figure 5
Dependence of the number of iterations (y axis) on the number
of groups (x axis)

Figure 6
Dependence of the average time of one iteration calculation
(y axis) on the number of groups (x axis) (20x30 task)

Figure 7
Dependence of the average time of one iteration calculation
(y axis) on the number of groups (x axis) (60x90 task)

0,0

20,0

40,0

60,0

80,0

100,0

1 10 100 1000 10000

Ti
m

e
(m

in
)

Number of groups

60x90 task 20x30 task

1,0

10,0

100,0

1 10 100 1000 10000

Nu
m
be

r o
f i
te
ra
tio

ns

Number of groups

60x90 task 20x30 task

0,64
0,65
0,66
0,67
0,68
0,69
0,70

0 500 1000 1500 2000

Av
er
ag
e
tim

e
(m

in
)

Number of groups

0,80
0,82
0,84
0,86
0,88
0,90
0,92

0 500 1000 1500 2000

Av
er
ag
e
tim

e
(m

in
)

Number of groups

Dependence of the number of iterations on the num-
ber of groups is shown in Fig. 5.

Dependence of the average time of one iteration cal-
culation on the number of groups is shown in Fig. 6
(20x30 task) and Fig. 7 (60x90 task).
As we can see, the optimal time of one iteration cal-
culation was obtained when the number of groups
is between 100 and 200, i.e. one group have contain
about 10–20 scenarios. When the number of groups
increase, the calculation time of the one iteration in-
creases too, because the number of constraints of the
main (master) task increases respectively.
When we use our proposed two-stage SLP problem
decomposition algorithm modification, we must en-
sure the solution existence for every scenario. For

that purpose, the values of parameter u related to
solution existence were investigated.
At the beginning, the parameter value u was set to
u = 1. Then it was reduced to 0.0001, and the problem
was solved. The process was carried out as long as the
solution existed.
The calculation results showed, that the minimal u
value which can ensure solution existence solving
such tasks, is 0.001.u =

8. Conclusion
A stochastic optimization method has been proposed
to solve two-stage SLP problems, where first-stage
task is unbounded. The method consists of decompo-
sition, aggregation and solving technologies coupling.

737Information Technology and Control 2018/4/47

The decomposition method, based on Sample Aver-
age Approximation for solving SLP problems, is pre-
sented, where the stochastic variables are described
by an absolutely continuous probability law.
The investigation result obtained on choice of parame-
ter u of our proposed two-stage SLP problem decompo-
sition method modification algorithm shows that mini-
mal value, which ensure solution existence, is 0.001.u =

The efficient CPLEX integration has been proposed
for solving SLP problems by the L-shaped algorithm
which enables us to adapt integration parameters to
specific problems.
The obtained results show that the number of itera-
tions decreases by increasing the number of scenario
groups (see Fig. 5), concurrently the overall calcula-
tion time decreases for the same accuracy (see Fig. 4).

The aggregation of the scenarios into 100-200 groups
gives the best average execution time per iteration
solving the SLP by modified Lshaped algorithm,
if the following conditions are met: the number of
variables reaches up to 100; random scenarios are
generated according to the Gaussian law; number of
the scenarios is about 2000. Increasing the number
of groups, the average calculation time of one itera-
tion increases as well (see Figs. 6 and 7). This is due
to the fact that if the number of groups increases, the
number of constraints of the main (master) task in-
creases, respectively.
The disadvantage of the method is that the different
classes of problems can correspond to different num-
bers of optimal groups. If we do not know the number
of optimal groups, our choice may be irrational.

References
1. Birge, J. R., Louveauxl, F. V. Introduction to Stochastic

Programming. Springer, New York, 2011. hhttps://doi.
org/10.1007/978-1-4614-0237-4

2. Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N.
COTS Software Integration for Simulation Optimi-
zation Coupling: Case of ARENA and CPLEX Prod-
ucts. Working Paper EMSE CMP–SFL, 2018. https://
hal-emse.ccsd.cnrs.fr/emse-01687555/document. Ac-
cessed on January 27, 2018.

3. Cambou, M., Filipović, D. Model Uncertainty and Sce-
nario Aggregation. Mathematical Finance, Forthcom-
ing, Swiss Finance Institute Research Paper No. 14-38.
February 2, 2014. https://doi.org/10.2139/ssrn.2441328

4. Fountoulakis, K., Gondzio, J. Performance of First-
and Second-Order Methods for L1-Regularized Least
Squares Problems. Computational Optimization
and Applications, 2016, 65(3), 605-635. https://doi.
org/10.1007/s10589-016-9853-x

5. IBM Inc. IBM ILOG CPLEX Optimization Studio Get-
ting Started with CPLEX (Version 12 Release 6). IBM
Corporation, 2014.

6. Jönsson, H., Jörnsten, K., Silver, E. A. Application of
the Scenario Aggregation Approach to a Two-stage,
Stochastic, Common Component, Inventory Problem
with a Budget Constraint. European Journal of Op-
erational Research, 1993, 68(2), 196-211. https://doi.
org/10.1016/0377-2217(93)90303-5

7. King, A. J., Wallace, S. W. Modeling with Stochastic Pro-
gramming. Springer Series in Operations Research and

Financial Engineering, Springer, New York, 2012. ISBN
978-0-387-87817-1.

8. Ogbe, E., Li, X. A New Cross Decomposition Method for
Stochastic Mixed-Integer Linear Programming. Eu-
ropean Journal of Operational Research, 2017, 256(2),
487-499. https://doi.org/10.1016/j.ejor.2016.08.005

9. Rahmaniani, R., Crainic, T. G., Gendreau, M., Rei, W.
The Benders Decomposition Algorithm: A Litera-
ture Review. European Journal of Operational Re-
search, 2017, 259(3), 801-817. https://doi.org/10.1016/j.
ejor.2016.12.005

10. Rockafellar, R. T., Wets, R. J.-B. Scenarios and Policy
Aggregation in Optimization Under Uncertainty. IIASA
Working Paper. IIASA, Laxenburg, Austria: WP-87-119,
1987. http://pure.iiasa.ac.at/id/eprint/2933/1/WP-87-
119.pdf. Accessed on June 25, 2017.

11. Rockafellar, R. T., Wets, R. J.-B. Scenarios and Policy
Aggregation in Optimization under Uncertainty. Math-
ematics of Operations Research, 1991, 16(1), 119-147.
https://doi.org/10.1287/moor.16.1.119

12. Sakalauskas, L. Application of the Monte-Carlo Meth-
od to Nonlinear Stochastic Optimization with Linear
Constraints. Informatica, 2004, 15(2), 271-282. ISSN
0868-4952.

13. Schulzea, T., Grothey, A., McKinnon, K. A Stabilised
Scenario Decomposition Algorithm Applied to Sto-
chastic Unit Commitment Problems. European Journal
of Operational Research, 2017, 261(1), 247-259. https://
doi.org/10.1016/j.ejor.2017.02.005

Information Technology and Control 2018/4/47738

14. Shabbir, A., Shapiro, A. The Sample Average Approxi-
mation Method for Stochastic Programs with Integer
Recourse. ISyE Technical Report, 2002. https://www2.
isye.gatech.edu/~sahmed/saasip.pdf. Accessed on June
21, 2017.

15. Sun, L., Liu, W., Chai, T., Wang, H., Zheng, B. Crane
Scheduling of Steel-Making and Continuous Casting
Process Using the Mixed-Timed Petri Net Modelling via
CPLEX Optimization. IFAC Proceedings Volumes, 2011,
44(1), 9482-9487. https://doi.org/10.3182/20110828-6-
IT-1002.00170

16. Ušpurienė, A., Sakalauskas, L., Giuliani, S., Meloni,
C. ABC Model for Economic Development of a Firm.
Technological and Economic Development of Econo-
my, 2016, 22(4), 512-531. https://doi.org/10.3846/2029
4913.2016.1190420

17. Vamanan, M., Wang, Q., Batta, R., Szczerba, R. J. Inte-
gration of COTS Software Products ARENA & CPLEX
for an Inventory/Logistics Problem. Computers & Op-
erations Research, 2004, 31(4), 533-547. https://doi.
org/10.1016/S0305-0548(03)00010-8

18. Wang, T., Wang, S., Meng, Q. Liner Ship Fleet Planning:
Models and Algorithms, Part Two: Mathematical Mod-
eling, Elsevier, 2017, 61-72. ISBN: 978-0-12-811502-2.

19. Wets, R. J.-B. The Aggregation Principle in Scenar-
io Analysis and Stochastic Optimization. Algorithms
and Modelling in Mathematical Programming, Spring-
er-Verlag, Berlin, Heidelberg, 1989, 91-113. https://doi.
org/10.1007/978-3-642-83724-1_4

20. Yakowitz, D. S. Two-Stage Stochastic Linear Program-
ming: Stochastic Decomposition Approaches. The Uni-
versity of Arizona, Dissertation, 1991.

