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Public distributed computing is a type of distributed computing in which so-called volunteers provide com-
puting resources to projects. Research show that public distributed computing has the required potential and 
capabilities to handle big data mining tasks. Considering that one of the biggest advantages of such computa-
tional model is low computational resource costs, this raises the question of why this method is not widely used 
for solving such today’s computational challenges as big data mining. The purpose of this paper is to overview 
public distributed computing capabilities for big data mining tasks. The outcome of this paper provides the 
foundation for future research required to bring back attention to this low-cost public distributed computing 
method and make it a suitable platform for big data analysis.
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1. Introduction
Many companies and organizations in today’s world 
are interested in gathering data for various deci-
sion-making tasks. It leads companies to capturing, 
storing and processing huge data sets, which in turn 
refers to a term called big data mining. Over time data 
sets become large and connected to many data points 
making data difficult to store and process. Big data 
mining is a computational process of discovering pat-

terns in large data sets. It takes use of methods at the 
intersection of artificial intelligence, machine learn-
ing, statistics and database systems. Unfortunately, 
internal high-performance computing environments 
or similar traditional data management solutions are 
no longer capable of handling such amounts of data 
[47]. Organizations do not usually have enough inter-
nal computational resources to satisfy the demand. 
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Owning a high-performance grid computing infra-
structure may exceed the financial capacities [47]. 
Even though there are available distributed comput-
ing solutions that allow to easily combine internal IT 
resources into a distributed computing platform, or-
ganizations tend to choose other alternatives. One of 
vastly used solutions is cloud computing, services of 
which are growing continuously. High performance 
computational services are being provided at cheap-
er and cheaper rates and now a number of external 
companies offer their cloud and big data mining solu-
tions at affordable price. Companies often use cloud 
computing services from Microsoft, Amazon, Google, 
Rackspace and others to manage and process the data 
they have [51]. Research show that small and medium 
enterprises (SMEs) consider services provided by ex-
ternal cloud computing companies more secure than 
solutions deployed using their internal infrastructure 
[34]. This makes SMEs interested in cloud and public 
distributed computing solutions.
Unfortunately, SMEs are lacking applications that 
could enable to use their internal IT infrastructures 
(including desktop computers) as platforms for data 
analysis and decision-making tasks. To better under-
stand the field, in Section 2 we will present volun-
teer-based computing solutions (alternatives to cloud 
computing). Next, we will explore BOINC framework 
for big data mining applications and review projects 
based on BOINC in Section 3. We will present a re-
view of adoption issues and possible points of im-
provement in Section 4. Finally, in Section 5, we will 
summarize the status of the field and will determine 
possible directions for future work and research 
needed to make public distributed computing a de-
sired platform for big data mining tasks.

2. Volunteer and Cloud Computing
Interconnected public computers can be set up to 
solve a given task in parallel. This method is called 
public distributed computing. It uses client-server 
model, where client nodes provide their resources to 
project server. Network connection is required for the 
nodes to communicate with the server. This allows 
them to request server for new tasks and to send back 
the results. In some cases, nodes can be set up to com-
municate with each other, however, tasks are usually 

individual and performed in parallel.
Public computational resource harvesting may be 
used for distributed computing. This model is called 
volunteer computing. It relies on people or organiza-
tions donating CPU time, network and storage capa-
bilities from the computers that they own. This way, 
computational resources can be joined to the open 
dynamic network, where new nodes can be easily 
added, and old ones removed. Distributed computing 
is an effective way of taking resources from the com-
pute nodes that would otherwise be wasted. Such an 
infrastructure does not have any additional costs and 
may even reduce the already existing ones, making 
it a great asset. Furthermore, distributed computing 
model-based infrastructure can be set up on a closed 
network. This way, the infrastructure will be limited 
to nodes that are stored inside the organization prem-
ises. It can be entirely managed by its staff if needed. 
These are two major advantages over popular alterna-
tives like cloud computing:
 _ reduced costs on internal IT infrastructure and 

external services;
 _ good solution to some of the data security issues.

We will review security and other adoption issues 
further in Section 4.
Network connected volunteer Desktop Grids donate 
resources to solve large computational problems. 
Such resources include processing power of CPU, 
GPU, RAM, storage and internet connection. These 
resources are harnessed from idle machines using a 
centralized master/worker model. One of the most 
important points that we must consider in the sys-
tems that are based on volunteers is that it is neces-
sary to attract and convince the volunteers to partic-
ipate. The most popular way of drawing volunteers is 
to get them rewarded with credit points. Points are 
estimated by calculating the contribution to scientific 
progress of the project. However, these credit points 
are usually just mean of measure and provide no real 
value to the volunteers. In exchange, the donated re-
sources are contributed to various public projects by 
executing project-related independent tasks. Most of 
such projects uses the BOINC framework that we will 
review in Section 3.1.  [7, 8, 17].
Volunteer or crowd computing is a popular method for 
solving complex research problems from an increas-
ingly diverse range of areas [41]. It permits the user to 
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forget about certain costs associated with buying and 
maintaining physical infrastructures and helps dis-
seminate the project to the public [25]. Establishing 
an own specialized center for data processing might 
be too expensive or inappropriate. It can be a big issue 
if the demand for data analysis is irregular [30]. Volun-
teer computing consists of two aspects: computation 
and participation [8]. These aspects are related to:
 _ allocation and management of large computational 

jobs. Most computing activities that depend 
on interactive input from the user barely load 
the machines. This is causing high percentage 
of resource idleness, making these resources 
attractive for harvesting [6];

 _ encouragement and persuasion of individuals to 
donate their computing resources to the project. 
A powerful security mechanism must be deployed 
that makes sure the users are relieved from the 
security concerns [7]. Trust motivates participants 
not only to share some of their resources, but to 
provide more access to their computers [37].

2.1. Extending the Volunteer Computing 
Model
A number of research projects have been conducted 
to tackle the problem of gaining the required amount 
of resources for certain computations. One of such 
has been presented by EU FP7 EDGI project, re-
viewed in [37]. The project combines BOINC and 
XtreemWeb like desktop grids with cloud computing 
services. It extends these grids with new resources on 
demand making this solution to be like SaaS clouds 
[37]. Users do not have to take costs for additional 
resources, since they are collected from volunteers. 
Furthermore, such a solution results in improved 
response times in volunteer desktop grid systems. 
Volunteer cloud can be an improvement of the cloud 
paradigm making cloud resources to be provided by 
the volunteers [37]. We strongly agree with these 
claims, since big data mining requires large computa-
tional resources that many cannot simply afford. The 
on-demand extension of volunteer Desktop Grid (DG) 
resources with cloud resources was also reported in 
[32]. Of course, volatility and availability issues cause 
significant difficulty in big data mining applications 
that we will discuss later.
Clouds@home is another volunteer cloud system 
that is considered as a new form of cloud computing. 

The aim of the project was to build a low scale and 
price cloud computing infrastructure by merging 
cloud computing and volunteer computing services. 
It builds Cloud-like-infrastructure from volunteer 
computers. The idea is based on enabling virtualiza-
tion technology in volunteer computing resources 
[21], an approach named “application sanboxing”. It 
isolates the application inside the virtual machine 
(VM) by using a wrapper for launching VM and man-
aging applications that have run on it [36, 37].
Despite the efforts to improve or extend, volunteer 
computing is still not always considered the best an-
swer to all problems. The solution does not need to 
be always volunteer-based. According to [30], there 
are some cases when attracting computing resources 
from the outside is hard or inappropriate. Data might 
be confidential, or there might be big amounts of data 
to be analyzed. Since big data mining tasks can easily 
involve datasets containing sensitive data, this sug-
gests that resource harnessing solutions should not 
rely on volunteer computing only and should either 
integrate some other platforms or apply some data 
protection methods. We will discuss this further in 
Section 4.5.

3. Big Data Mining Using BOINC 
Big data mining is a process of discovering new 
knowledge from large volumes of data using statis-
tical methods or artificial intelligence tools. It is an 
important process in many industries: automotive, 
healthcare, banking, insurance, consumer products, 
oil and gas, energy and utilities, retail, government, 
telecommunications, travel and transportation [30]. 
It is expected for the total worldwide data being gath-
ered to reach 39 trillion gigabytes by 2020 [15]. Ac-
cording to survey results, in 2013 about 28% of inter-
viewees working in data mining field have dealt with 
sets ranging from 1 to 100 petabytes. About 2% have 
worked with data sets larger than 100 PB [43]. 
High-performance computing systems are required 
for solving big data mining tasks. Several solutions 
are available to get the required resources [30]:
 _ Computing Clusters (require significant costs for 

the implementation and support);
 _ Service Grids (cheaper, but require effort on 

support);
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 _ Desktop Grids (cheap and easy to support; harvest 
available resources from personal computers; not 
as reliable).

BOINC can be almost considered a standard for run-
ning volunteer computing projects. It is the most 
popular free middleware software used for hetero-
geneous Desktop Grids [30]. Even though BOINC 
allows creating low cost enterprise-level computing 
grids, there are challenges developing a BOINC-based 
big data mining applications [10, 30]:
 _ it might be difficult to decompose the tasks into 

smaller independent ones;
 _ huge data sets to be transferred to the client nodes 

may overload the network;
 _ it is difficult to adapt applications to work on 

various operating systems and architectures;
 _ it is time consuming to keep track of user accounts, 

deal with redundancy and application errors.

Next, we will examine BOINC framework and the ap-
proaches of solving big data mining tasks using it. We 
will give special attention to performance and quality 
of service, since these are well solved issues in alter-
native solutions, such as cloud computing services.

3.1. BOINC
The most popular and standard software for volun-
teer computing projects is called BOINC (Berkeley 
Open Infrastructure for Network Computing) [4, 25]. 
BOINC is designed for volunteer and grid computing. 
It is ideal in cases where not only low-cost access to 
massive computing resources is needed, but also for 
projects having significant public interest in the re-
search being done [41]. It is an open-source middle-
ware system that provides a distributed computing in-
frastructure. Such an infrastructure does not depend 
on the scientific computations or experiments. BOINC 
projects are usually designed for solving challenging 
scientific problems. Such projects are exploiting op-
portunistic resources; therefore, project owners must 
gain public trust and interest. Usually, this is done by 
providing good and trustworthy appearance [37].
BOINC is based on client-server architecture and 
may be used as an example of how public distributed 
computing model works:
 _ data are stored on a common database;
 _ server divides resource demanding tasks into 

smaller ones;

 _ tasks and data are requested and retrieved by the 
client nodes;

 _ computations are performed without separate 
node interaction; 

 _ computation results are uploaded to a server and 
merged into the final solution. 

There are many projects based on BOINC, some of 
more popular ones are the following:
 _ CERN + KC Gigabit Computing Challenge (https://

cernkcchallenge.github.io/Cern-KCChallenge/);
 _ Gridcoin (http://gridcoin.us/);
 _ SETI@home (http://setiathome.ssl.berkeley.

edu/).

To better understand BOINC, one can look at a list of 
special services that usually run on BOINC servers:
 _ Transitioner – handles state transitions of work 

units and results;
 _ Feeder – enhances the performance scheduler;
 _ Validator – checks the validity of the results 

received from the work unit;
 _ Assimilator – processes the results according to 

application-specific rules;
 _ File remover – deletes input and output files when 

jobs are completed;
 _ Work generator – generates work units and 

corresponding input files;
 _ Database cleaner – moves the result and work unit 

records from the database to XML-format archive 
files;

 _ Scheduler – assigns jobs to client nodes depending 
on their characteristics.

Central server may be distributed among several ma-
chines to handle the loads. BOINC API is available 
to developers not only to make their BOINC appli-
cations run on BOINC platform and interact with 
BOINC-client [24], but also to do reporting, process 
visualizations and checkpoints to show the project 
status and help prevent process loss when compu-
tational resources become unavailable. There are 
also solutions allowing legacy application to run in a 
BOINC-grid without any modifications to the source 
code [35, 53].
Resources can be donated by downloading a light-
weight client daemon and connecting it to the project 
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URL. This way, the BOINC client manages communi-
cation with the BOINC server, download of applica-
tions and work units, client-side scheduling and up-
load of the results [8]. The server in return filters out 
malicious results from unreliable resources by using 
custom validation scripts or redundancy checks [37].
Despite its popularity, BOINC still has many draw-
backs that will be discussed in Section 4. It also has 
two limitations [7]:
 _ applications running on BOINC platform are 

limited to the architecture and operating system of 
the environment they are executed in;

 _ BOINC client does not provide adequate security 
for users.

These limitations are going to be further discussed in 
Sections 4.4 and 4.5, accordingly.
BOINC-based Desktop Grid provides means for small 
scientific groups and up to medium size companies to 
work on high performance computations demanding 
problems, like big data mining. This can be done using 
either own or volunteer computing resources. It may 
appear that huge additional resources are needed to 
transfer big amounts of data for analysis. However, 
according to [30], BOINC-based Desktop Grids can 
be used on modern networks. According to them, such 
grids provide the means to process dozens of tera-
bytes of data. A high-speed local network is required 
for connecting the computational resources. 

3.2. Data Mining Tools for BOINC
An observation made by [11] shows that when it turns 
to platforms that harness resources all over the inter-
net, most of the existing solutions are built and opti-
mized to run Bag-of-Tasks applications. Therefore, 
solutions such as BOINC, GridBot [49], Bayanihan 
[46], and many others [2, 9, 14, 33] do not support the 
execution of MapReduce jobs. However, there has 
been some research done towards solving this prob-
lem. One of such is BOINC-MR [17], a system able to 
run MapReduce applications on top of BOINC. The 
goal was to support MapReduce (software popularized 
by Google [19]) on top of an insecure, unreliable envi-
ronment. The presented solution works as follows:
1 a client (reducer) requests for a new task from 

project server;
2 a scheduler appends to each reduce task an IP and 

port of mappers holding output for the same job;

3 a reducer then has the possibility to download the 
required input files directly from the mappers. A 
data copy is stored on for data availability in case 
of an error;

4 each reducer processes the downloaded data by 
running its task;

5 the results are sent back to server.
It is worth noting that BOINC-MR client may act as a 
reducer or as a mapper. This depends on the obtained 
task and done by running the required executable [17].
“distributedDataMining.org” is one additional proj-
ect integrating RapidMiner to BOINC [47]. The project 
goal is the same: to perform data mining tasks. Howev-
er, the approach is less complex. Data with an assigned 
task are pulled from the server using the BOINC cli-
ent. Then, the BOINC client runs data mining tasks 
by starting an instance of the RapidMiner framework. 
It performs parallel data intensive computations and 
sends back the results to server. The results are collect-
ed and sent further to be analyzed by researchers.
MapReduce workflows could be enhanced by making 
project data distribution subsystems use peer-to-
peer protocol called BitTorrent [11]. This would allow 
nodes to download data from multiple sources simul-
taneously. This would speed up the download process, 
improve scalability and take some of the load from the 
central server to the compute nodes. Failing nodes 
during data transfer would not compromise the task, 
thus improving the fault tolerance.
A direct approach of extracting association rules 
from large data sets using BOINC-based Enterprise 
Desktop Grid was described in [30]. Their solution 
could be continued in the same direction by imple-
menting other big data mining methods. This would 
allow small, midsize businesses, scientists and orga-
nizations to use it for solving their big data problems. 
However, in this case, each algorithm would have to 
be adapted and implemented to work with BOINC.
Another interesting approach is called Ad hoc cloud 
computing [39]. This platform also allows performing 
big data mining tasks using BOINC, however, it uses 
existing user infrastructure as a cloud service. The 
scale of infrastructure may range from a startup com-
pany owning several personal computers to a large 
organization. The difference from standard cloud 
service is that Ad hoc clouds gather resources from 
member hosts. These nodes may also be used by their 
owners for other tasks and may sporadically become 
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unavailable. Such a concept improves infrastructure 
efficiency, utilization and return on IT investments by 
reducing service costs. However, such a solution may 
result in an unreliable infrastructure. Despite this, it 
has a great benefit for users looking to migrate to com-
mercial or private cloud models. 
It is a good idea to try out and examine the capabili-
ties of Ad hoc clouds to see if the solution is suitable. 
If not, then the decision to adopt commercial model 
can be made. Based on initial evaluation, the concept 
is feasible. It can be reliable and offer comparable per-
formance to Amazon EC2 [39].
The overviewed big data mining platforms show that 
public distributed computing solutions can compete 
with the existing cloud computing solutions. Even 
though users prefer to employ technology without 
having to have expert skills, the recent cloud com-
puting model is also not fit with a scientific problem 
which is complex and needs large computational 
power. In both cases, technology is a combination 
of knowledge and working hard. When users are re-
quired to solve a certain task using some new technol-
ogy, they do not want to invest a lot of time and effort 
to understand how it works [7, 8].

3.3. Resource Availability and Costs
Organizations may increase the number of their com-
putational resources and reduce service costs by us-
ing a distributed computing platform, for example, 

BOINC. This platform performs assigned computa-
tional tasks by interconnecting owned computational 
resources into a dynamic size computation platform. 
Furthermore, it does not interfere with the employee 
ongoing work processes. It becomes easier to protect 
private data, since all computations are done inside 
the premises with a possibility to add data access lev-
els if required. Such a platform can improve service 
quality, since services can be customized and adapted 
for organization specific needs, like big data mining.
CPU usage and power consumption measurements 
from [31] can be used to support resource availability 
and cost reduction claims. Measurements were taken 
during a short 28-day experiment using energy me-
ter device and Microsoft Windows application called 
“Performance monitor”. It was performed in two or-
ganizations (organization A and B).  Two computers 
were picked randomly for the experiment and both 
were configured to run a BOINC client. Both com-
puters were registered to participate in SETI@home 
project (analyze the radio signals) for two weeks. 
Afterwards, measurements were taken without any 
BOINC projects running on the computers for an-
other two weeks. Employees used both computers for 
work-related tasks during the whole period (except 
weekends). Fig. 1 and Table 1 show that computers 
barely performed any computations and were wast-
ing resources during the period when no BOINC proj-
ects were running [31]. 

  

 

Figure 1
Processor idle time with and without SETI@home project running in Organization A. [31]
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SETI@home project is designed specifically to han-
dle big data sets. We would like to outline the fact that 
internal computational resources could be used for 
other big data mining tasks as well. The question is 
how large the internal IT infrastructure should be to 
handle such tasks. This will be discussed in the next 
section.
Even though a small number of machines participat-
ed in the experiment, the results suggest that such a 
solution might work. Computers were barely loaded 
by the employees which allowed to perform the addi-
tional computation at little cost. Furthermore, it did 
not interrupt any of the ongoing work processes. It is 
possible for an organization to perform additional big 
data mining and similar tasks using public distribut-
ed computing platform. However, a follow-up experi-
ment with higher variety of instances should provide 
more insights.

4. BOINC Adoption Issues
Volunteer computing has some challenging issues: 
volatility, lack of trust, failure, heterogeneity, volun-
tary participation. There are certain challenges mov-
ing from costly and modern cloud datacenters to vol-
unteer resources [8, 37, 41]:
 _ motivating donors to donate resources and in some 

cases provide more access to their computers;
 _ solving volatility and availability problems of vol-

unteer resources;
 _ increasing the service migration efficiency (re-

quires forecasting the availability of the volunteer 
nodes);

 _ solving the need for new computational and stor-
age resources;

Table 1
Resource and power consumption statistics [31]

# BOINC project CPU average 
idle time

Power 
consumption

A Not running 98,77% 16,61 kWh

SETI@home 65,23% 22,03 kWh

B Not running 83,49% 1 kWh

SETI@home 26,86% 2,09 kWh

 _ having on-demand and more predictable return of 
simulation results;

 _ rationalizing the costs.

A number of research papers have been published 
addressing these issues and exploring the combina-
tion of volunteer and cloud computing as possible im-
provements of, or extensions to a real existing project.
According to [52], environmental, organizational, 
managerial and technological factors can also influ-
ence the decision adopting solutions based on dis-
tributed public computing. We only reviewed the 
technological factors. Other factors may present ad-
ditional adoption issues that might be interesting 
research topics and reveal new factors that influence 
the decision.
Next, we will review possible solutions to the chal-
lenges above.

4.1. Quality of Service
BOINC provided services are not as reliable due to the 
public distributed computing model drawbacks. De-
pending on the project, uncertain amounts of data can 
be queued for processing at any time. The problem is 
that it is currently not possible to pre-determine the 
number of computational resources that are going to 
be available to execute the task. Furthermore, nodes 
often can become unavailable making it difficult to 
predict amount of time required for certain task to 
complete. As a result, it is difficult to tell if the avail-
able compute nodes are going to be enough for a cer-
tain task to finish in a decent amount of time. It may 
be especially relevant when handling emergency data 
containing tasks. 
These issues are not acceptable in big data mining ap-
plications. Any delays might cause data to pile up even 
more and crash the whole process. Quality of Service 
(QoS) must be supported to help deal with this issue. 
It would dedicate more resources to process urgent 
data and give priority to send it to the client nodes.
QoS improvement methods have been researched in 
[39]. The proposed solution takes advantage of virtu-
al machines by using V-BOINC [38]. This approach 
not only solves the task continuity problem, but also 
solves dependency issues that we will discuss further 
in Section 4.4. The V-BOINC project server sends VM 
image along with the configuration script to the cli-
ent. The configuration script allows to set the number 
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of CPUs to use, memory, disk space on other limita-
tions. Client node then launches the virtual machine, 
which in turn starts receiving BOINC tasks and re-
turning the results. According to [42], this approach 
has security concerns, since VMs are under risk of 
their images being altered with the malicious code 
injection. This also applies for the offline nodes too. 
Furthermore, VM images may preserve the original 
owner information. This data may be passed to the 
new consumer. Security concerns will be further dis-
cussed in Section 4.5. 

Since there are yet no reliable methods of ensuring 
QoS, this could be a good research topic.

4.2. Capacity Prediction
BOINC client determines host hardware capacity and 
characteristics by periodically measuring host avail-
ability parameters such as uptime and period client 
is online. BOINC also regularly runs the Whetstone 
[18] and Dhrystone [54] benchmarks [5]. However, 
BOINC only measures storage space on machines it is 
installed on. It may overestimate available disk space 
in shared network-accessible volumes, having more 
hosts running BOINC client. Despite this, a study 
on the potential resource capacity of volunteer com-
puting platform was run. Tests were based on power, 
memory, disk space, network throughput, host avail-
ability, user-specified limits on resource usage, and 
host churn [5]. The study showed that this is enough 
to calculate total capacity of volunteer resources. Re-
sulting expression (1) shows total floating-point com-
puting power X available to a project [5]:

X = Xarrival × Xlife × Xncpus × Xflops × Xeff × Xonfrac × 
Xactive × Xredundancy × Xshare

 
(1)

As defined in [5], Xarrival is the average arrival rate of 
hosts, Xlife is the average lifetime of hosts, Xncpus is the 
average number of CPUs per host, Xflops is the average 
FLOPS per CPU, Xeff is the average CPU efficiency, Xon-

frac is the average on-fraction, Xactive is the average ac-
tive-fraction, Xredundancy is the reciprocal of the average 
redundancy, and Xshare is the average resource share 
(relative to other CPU-intensive projects).
However, this solution may not be sufficient. Predic-
tion methodologies can significantly improve efficien-
cy of volunteer resource task distribution manage-

ment. It could be done by estimating the short-term 
resource behavior patterns. The Climateprediction.
net project (CPDN) was created in 1999 (Allen, 1999; 
CPDN, 2015) as a distributed computing initiative to 
address the uncertainties [41]. Urgent simulations, 
real-time and unexpected events may require great-
er resources than volunteer computers may provide 
at a certain time. The behavior of volunteers cannot 
be clearly anticipated or measured. If predicted, it is 
then possible to take proper precautionary actions 
[6]. One way of fixing this is to re-engineer client part 
of a volunteer computing model to an infrastructure 
as a service (IaaS) that would be based on cloud com-
puting (e.g. Amazon Web Services, AWS) [41].
Organizations worry about cloud computing service 
availability [8]. Not only Desktop Grids, such as BOINC 
or XtremWeb [13], have centralized architectures 
causing a potential bottleneck in the continuing evo-
lution of volunteer computing systems, but there are 
also worrying signs of stagnation of active users and 
projects. This causes problems that are related to data 
storage and distribution [3, 16, 17]. Efficiency of use 
of desktop grid environments can greatly benefit with 
prediction of resources availability. As shown in Table 
2, all major cloud providers offer high availability.

Table 2
Public cloud resource availability [8]

Cloud vendor Name of 
services

Monthly uptime 
percentage

Google Google apps < 99,9% -> = 99,0%

Amazon Amazon EC2 < 99,5% -> = 99,0%

Amazon Amazon S3 < 99,9% -> = 99,0%

Microsoft Cloud services < 99,95%

Cloud flare CloudFlare 100%

The major drawback of Desktop Grids lies in the vol-
atility of resources. Such issues are caused by the sys-
tem control policies [6]. Frameworks for automated 
behavior prediction may help solve the problem. Such 
frameworks may include calendar methods [29] or 
classification algorithms known from data mining 
[55]. The main drawback of these methods is that the 
period is determined in an arbitrary way. For exam-
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ple, the most advanced framework for resource pre-
diction in computer systems is the Resource Predic-
tion System [20], but the main disadvantage is that it 
focuses on very short-term predictions. A prediction 
study has been performed on institutional desktop 
pool using three prediction targets: CPU idle time, 
memory load and machine availability [6]. The con-
clusion of the study has shown that even highly dy-
namic environments such as desktop pools allow for 
meaningful predictions of a variety of metrics using 
the Support Vector Machines classifier (SMO).

4.3. Cost Estimation
Volunteer computing can create noticeable energy 
savings by reducing the amount of internal resources 
needed to perform the computations. It allows to ac-
quire the hardware from multiple users, thus diverg-
ing the costs. This is especially significant if GPUs are 
used for computations, which may raise the power re-
quirements up to 30% per each instance [25]. Current 
high-end GPUs have high energy consumption rates, 
making it a big issue having large clusters. Energy 
supply costs can be a significant portion of the total 
expenses for the property [22, 23].
There are cost estimation models for local GPU-
based infrastructures using equations for calculat-
ing computation costs per each instance [25]. The 
equations may consider energy consumption costs, 
machine market price and machine collocation costs. 
However, despite the research efforts there is still no 
reliable way of determining the data processing time 
costs that would help for capacity prediction as men-
tioned before.

4.4. Virtualization
Pre-installing other dependencies (libraries, etc.) 
for regular BOINC applications is not possible or is 
hardly solvable [37]. Virtualization is used for hiding 
physical resources of system from the operating sys-
tem and many issues can be solved using it [38]. Vir-
tualization is defined as a technology that introduces 
a software abstraction layer between the hardware 
and the operating system and applications running 
on top of it [7, 45]. Virtualization technology makes 
application porting to volunteer desktop grids a lot 
easier [37]. Otherwise, to make an application work 
on different architectures, project developers must:
 _ compile application to target architectures;

 _ preserve execution progress upon termination;
 _ either not use dependencies or compile them into 

application if possible;
 _ gain volunteer trust that the project application is 

trustworthy and not malicious.

Solving such problems takes valuable time from proj-
ect developers. Virtualization eliminates unnecessary 
application of porting step for BOINC systems. Param-
eter sweep applications are a good case example [37]. 
Without virtualization, every parameter sweep appli-
cation required a porting effort and hence the service 
grid users would not be interested in the Desktop Grid 
extensions. Applications traditionally running under 
BOINC initially had to be compiled for each different 
client operating system. Developments at CERN [12, 
26] (pioneered by the Test4Theory LHC@home proj-
ect during 2010 2011 [12, 26, 28]) provided means of 
distributing a virtual machine [50] to the volunteer 
computers via BOINC [7]. CernVM [48] has employed 
BOINC VBoxWrapper tool [7]. Later, BOINC develop-
ers enabled virtual machine functionality by imple-
menting interface (VBoxWrapper) between BOINC 
client and VirtualBox [44]. They integrated Virtu-
alBox by storing application and its data in a shared 
folder between the host operating system and virtual 
machine, executing the computations. 
In addition to this, another project called V-BOINC 
was introduced by [38]. V-BOINC also uses virtual-
ization to run applications on volunteer computers 
and sends small virtual machine images to volun-
teers. This way, BOINC applications run within the 
virtual machines rather than on host operating sys-
tem directly. This in turn enabled developers to use 
dependencies under V-BOINC and increased vari-
ety of applications volunteer infrastructure can run. 
More science and business projects could be carried 
out this way, since applications become available to 
wider public [38]. Furthermore, V-BOINC solved ad-
ditional problems like:
 _ application trust;
 _ progress preservation upon termination.

Even though execution time is longer due to virtualiza-
tion (due to user setting of the virtual environment and 
hypervisor [38]), a lot of volunteer computing projects 
have used V-BOINC for its benefits. It is worth noting 
that not all CPU cores and memory can be used be-
cause of VirtualBox limitations. Furthermore, virtual 
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image sizes can vary from a couple of hundred mega-
bytes to tens of gigabytes. This also makes manage-
ment and deployment a major challenge [37].

4.5. Security
Information and system security, in general, has al-
ways been a concern. These concerns must be ad-
dressed to make users and enterprises at least consid-
er public distributed computing for adoption and use. 
Similar security issues have been addressed and suc-
cessfully solved in the cloud computing model that is 
currently widely used. This is anticipated, as one of 
the major requirements for any information system is 
security. Users must be confident and trust their data 
and resources to the environment they use. Data must 
be protected from any unauthorized access, including 
system attacks. 
One approach that can help to protect the data is cryp-
tography. Many cryptographic algorithms can be used 
in cloud computing providing greater security [40]. 
Such a solution can also be deployed in public distrib-
uted computing applications. According to [40], cloud 
computing solutions must offer on-demand self-ser-
vice and resource pooling. Infrastructure must sup-
port rapid elasticity and have broad network access. 
Finally, the service and its costs must be measurable. 
BOINC already meets most of these requirements, 
including measured service. However, it fails to mea-
sure costs and delivery time. We believe that these 
limitations require research and need to be solved.
Both distributed public computing and cloud com-
puting models have similar security concerns [40]: 
 _ system availability; 
 _ data and system integrity; 
 _ user authentication; 
 _ data backups and recovery; 
 _ data confidentiality; 
 _ privacy and access control. 

Distributed public computing and cloud computing 
models share many issues. However, a lot of them 
are already solved in cloud computing model. As we 
know, distributed public computing is a cheap solu-
tion for solving resource demanding tasks. Solving 
these issues would make it a good alternative to cloud 
computing solutions and could open many new op-
portunities. 

The main challenge in volunteer computing is secu-
rity, since entire computing jobs are done using re-
sources from volunteers [8]. BOINC runs under two 
less privileged accounts. The first one, which has the 
more privileges, is for the BOINC client. The BOINC 
client continuously monitors the running applica-
tions that are executed under an even more restricted 
account. However, according to [37], malicious appli-
cation might escape this supervision. Cloud comput-
ing solutions take this problem particularly serious. 
Ensuring data security is a lot more difficult in cloud 
environment than traditional information systems 
[51]. Traditional data access protection methods that 
rely on identity management and authorization are 
not a viable solution anymore for protecting data on 
clouds. Furthermore, research shows that cloud com-
puting solutions provide additional risk by requiring 
outsourcing essential services to third party service 
providers, making it harder to demonstrate compli-
ance, maintain data privacy and provide required ser-
vice availability. Cloud computing applications have 
already solved private data protection issues that 
public distributed computing applications still must 
deal with. The same privacy issues apply for big data 
mining tasks. It can be especially difficult to prevent 
unauthorized access to data, which is distributed 
throughout different kinds of environments (servers, 
personal computers, smart devices). Cloud comput-
ing solutions present many benefits to adopting the 
technology, however, they also bring some challenges 
to adoption, such as: security, compliance, data pro-
tection and legal issues, related to outsourcing data to 
third party. It also involves some of the greater securi-
ty concerns for data storage, execution environment, 
and networks [27]. Emerging new technologies will 
generate even more data that may be used for big data 
mining tasks. This additional data will also have to 
be protected from unauthorized access, modification 
and forgery, denial of service and other attacks [40]. 
Cloud of things (CoT) and other similar technologies 
will create new ways for hackers to get access to data 
[1]. Data privacy protection will especially be import-
ant in hybrid clouds (combination of private and pub-
lic clouds) used for big data mining and other data re-
lated tasks. Security concerns and prerequisite must 
be solved first to create a trustworthy compute envi-
ronment and win user confidence and make them to 
consider adopting such technology [27, 40, 51]. Data 
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privacy issues on cloud computing platforms can be 
grouped into the following categories [51]:
1 data access control to prevent unauthorized resale 

of the data;
2 data replication control to prevent data loss and 

unauthorized modifications;
3 supervision of personal information requirement 

compliance;
4 supervision of cloud subcontractors level of in-

volvement in data processing.
Cloud computing model also covers resource securi-
ty, management and monitoring issues. Even though 
all these issues are solved, the solutions are not stan-
dardized and have no regulations. Each cloud ser-
vice provider has its own rules on how to deploy the 
applications to the cloud environment. Data are any 
organization’s one of the most valued assets and their 
security is a major concern. Even though trusting the 
data to a third party platform can save organization’s 
time and money, it is an additional risk to take. To use 
the required cloud computing services, data must be 
imported into the cloud by putting them either into 
the third-party database directly or through an ap-
plication [51]. The lack of security, as a result, may 
prevent from adopting distributed computing model. 
Companies are required to host data on public infra-
structures and outsource the security management. 
These actions further reduce control of IT assets and 
increase the probability of an attack. Cloud comput-
ing opponents also mention some of other issues, 
such as: vendor lock-in, network bandwidth, system 
availability and legal consequences [42].
It is clearly visible that businesses and organizations 
are interested in using external   services such as 

cloud computing only if there is no serious threat to 
data security. However, even then, as cited in [1], or-
ganizations cannot be sure their data are secure: on 
Jan 30, 2013, The Independent published an article, 
stating, “British internet users’ personal information 
on major ‘cloud’ storage services can be spied upon 
routinely by US authorities”. Private data should not 
be stored in untrusted environment and a virtual stor-
age server located inside the user’s country or trusted 
geographical domain should be used [1].

5. Conclusion
In this paper, we have reviewed the distributed pub-
lic computing model applications for solving big data 
mining tasks. Research results show that big data 
mining processes can be run at very low cost using 
on-premise IT infrastructure. Furthermore, research 
indicates that public distributed computing model is 
capable of handling big data processing without in-
terrupting any other ongoing work processes. All the 
required tools and models are already available. Re-
viewed solution works well with big data projects like 
SETI@home that handles anonymous data and has 
available access to large IT infrastructure. However, 
security and reliability issues are some of the biggest 
concerns preventing this computational method from 
wider adoption. Solving these issues would not only 
open new research topics, but also make public dis-
tributed computing a great asset for any organization 
performing large computations and data processing.
The focus of our further research will be to tackle 
public distributed computing reliability and data se-
curity issues.
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