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State machines are a popular way of modelling the behaviour of systems, including process control systems. 
However, there are also some problems with their use in this domain, in particular in the sub-domains of the 
control of continuous or batch processes. The problems originate from the fact that the continuous and batch 
processes are, in most cases, slow in their reaction; consequently, their control sequences should have a corre-
sponding duration. However, at present, all state machine models are based on instantaneous sequences, with 
only the loop (or do) sequence having a duration. This paper presents a new state machine behaviour model for 
procedural control entities in industrial process control systems. The main feature of the new concept of state 
machine processing is the durability of all action sequences and not only the “do” or “loop” sequence, as is the 
case in the existing state machine formalisms. The new concept enables modelling of control software for slow 
continuous or batch industrial processes in a more straightforward manner and, at the same time, on a higher 
level of abstraction than with using traditional state machine formalisms. The new concept is demonstrated 
and validated by means of a case study, which addresses a control problem from a real industrial project. The 
validation demonstrates that the proposed concept has a significant advantage. The concept is applicable to 
other classes of slow response real time systems as well.
KEYWORDS: process control software, model-driven engineering, procedural control entities, state ma-
chines, behaviour modelling, slow response systems.
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1. Introduction
Industrial process control systems are hardware-soft-
ware systems that control and supervise technolog-
ical processes in order to achieve a process oriented 
goal. These systems are used in all industrial sectors 
because of their positive effects on productivity, prod-
uct quality, flexibility, and efficiency in energy and raw 
material consumption. Software is the central part of 
process control systems because it implements vari-
ous kinds of complex control activities. Interestingly, 
the complexity of the development, operation, and 
maintenance of that software is not so much associ-
ated with the basic control (i.e. achieving and main-
taining the desired state of the process variables), but 
more with so-called procedural control (i.e. perform-
ing activities that ensure the achievement of the goals 
of the system or process). According to the estimates 
of Boeing and Honeywell, process control software 
development efforts represent 60-80% of the total 
control systems development engineering effort [13]; 
and, procedural control software represents the ma-
jor and most complex part of this software. Therefore, 
it is of huge importance how this software is devel-
oped and what its attributes are. 
During the last decade a new software engineering 
paradigm called Model Driven Engineering (MDE) 
has emerged, which has the potential to sustainably 
raise productivity [17] and to reduce the complexity of 
software and systems development [20]. In MDE, the 
primary focus and products of software development 
are models rather than computer programs [21]. MDE 
relies on three main components, namely modelling 
languages, model transformations, and software 
tools. If models end up merely as documentation, they 
are of limited value. A key premise behind MDE is 
that programs are automatically generated from their 
corresponding models. Automation is by far the most 
effective technological means for boosting productiv-
ity and reliability [21]. Hence, executable models are 
a key component of MDE, as well as such concepts as 
automatic transformation of models and validation of 
models [3]. Within MDE, state machines are a popu-
lar way of modelling the behaviour of systems [3]. The 
underlying model of computation for state machines 
is based on the formalism of a finite state machine 
(FSM) [16]. FSMs are very useful for the representa-
tion of reactive systems (which include process con-

trol systems), more than linear or textual notations, 
which are more suitable to transformational systems 
[15].
Although the state machine based formalisms are 
widely used in the modelling of process control soft-
ware, there are also some problems with their use in 
this domain, in particular in the sub-domains of the 
control of continuous or batch processes. The prob-
lems we have encountered during our industrial ap-
plications of control systems originate from the fact 
that the continuous and batch processes are, in most 
cases, slow in their reaction; consequently, their con-
trol sequences should have a corresponding duration. 
However, at present, all state machine models are 
based on instantaneous sequences, with only the loop 
(or do) sequence having a duration. The aim of this 
paper is to present a possible solution to these prob-
lems and illustrate its implementation in a dedicated 
modelling language.
The paper is structured in the following manner. Sec-
tion 2 introduces state machines and their problems 
in the domain of process control. Section 3 presents 
a possible solution to these problems in the form of a 
new state machine behaviour model. Section 4 gives 
a comparison of the traditional and the new state 
machine model on an industrial case study. Section 5 
presents a brief discussion of the presented concept, 
its use, and the conclusions.

2. State Machines and Their Problems
A FSM is a model of computation that specifies the se-
quence of states an object goes through in response to 
events during its lifetime, together with its responses 
to those events [1, Chapter 2]. A FSM is essentially an 
abstract machine that consists of a set of states, an ini-
tial state, an input alphabet of events, and a transition 
function mapping current states and event symbols to 
next states [14]. The term FSM refers to the model of 
computation, but not the diagram representing it; in-
stead, a diagram representing a FSM is traditionally 
called a state diagram or a state transition diagram [3].
The original FSM produces output only when it reach-
es a final state, however there are many variants, the 
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most common being Mealy (producing outputs along 
transitions) [15], Moore (producing outputs at states) 
[8], and a combination of these (Moore-Mealy, pro-
ducing outputs both along transitions and at states).
Although FSMs represent an important concept for 
modelling real-time behaviour, they are at a rath-
er low level of abstraction in terms of managing the 
complexity of large systems development. In the late 
1980s, Harel defined a visual formalism, which he 
called statecharts, for describing states and transi-
tions at a higher level of abstraction and in a modu-
lar manner. Statecharts were essentially state tran-
sition diagrams with the addition of the concepts of 
clustering and refinement (hierarchies of states with 
zoom-in and zoom-out capability), orthogonality 
(concurrency), and broadcast communication [8, 10]. 
Harel and other authors subsequently defined a pre-
liminary semantics for the statechart formalism [11, 
19]. Then, over the years, the statechart formalism 
evolved, resulting in a number of similar, though dis-
tinct variants [23]. The semantics of the original con-
cept was revised by Harel in 1996 and this version is 
often referred to in the literature as statecharts, Harel 
statecharts, or classical statecharts. These classical 
statecharts are, for instance, implemented in the tool 
Statemate [10, 12].
Today there are several state machine dialects, which 
were derived from, or at least strongly influenced by, 
Harel’s statecharts, e.g. UML state machines (as spec-
ified in UML 2.4.1 [18]), or a newer object-oriented 
version of Harel’s statecharts (implemented in Rhap-
sody [9]). Although the mentioned formalisms appear 
to be very similar, there are some subtle syntactic and 
semantic differences between them [3].
In the domain of process control, there are also some 
state machine dialects in use that are similar to those 
mentioned above. The most recent standard in indus-
trial process control and automation systems is IEC 
61499 [22], an extension of the ideas of IEC 61131-3, 
with support for the design phase and for distribut-
ed process control systems. IEC 61499 compliant 
programs are based on networks of function blocks 
(FBs). Every FB has data inputs and outputs, which 
are used by the algorithms, as well as event inputs 
and outputs, which are used by the so-called Execu-
tion Control Chart (ECC). ECC is a specific kind of 
statechart that defines the behaviour through the se-
quencing of the algorithm invocations. Another pro-
cess control approach, similar to IEC 61499 in terms 

of the abstractions it uses and its expressive power, is 
Matlab Simulink/Stateflow. According to [2], there 
is a natural complementarity between the Simulink/
Stateflow and IEC 61499 Function Blocks. Simulink/
Stateflow provides a nice environment for the mod-
elling and simulation of control and embedded sys-
tems, while Function Blocks are good for designing 
distributed control systems. Additionally, Simulink/
Stateflow can also be used in the design phase, due to 
its C or PLC (IEC 61131-3) code generation feature.
All of the above mentioned state machine formalisms 
are fundamentally the same concerning the basic 
state machine execution model. They all share a com-
mon processing characteristic in which only the pro-
cessing within states (i.e. loop or do processing) may 
have a duration, while all other processing (state entry 
and exit processing, and processing of transitions) is 
instantaneous. This model has, in our opinion, some 
drawbacks, particularly when considering its use in 
control systems of continuous or batch processes, 
which are in most cases slow in their reaction. With 
these slow systems, we would often like the entry or 
transition actions to take some time, e.g. to perform 
a device (basic control) command and then wait for 
it to be executed. The control software should conse-
quently be executed as sequences of process actions 
with the duration measured in seconds, sometimes 
even in minutes. 
A common example is the opening of an on/off valve 
in an entry sequence with a requirement of not to al-
low the starting of the loop sequence until the action 
is completed. After issuing a basic control command, 
the sequence waits for its execution, which can take 
several seconds. In the current state machine formal-
isms, the mentioned slow processing can be achieved 
by separating the processing (activities with dura-
tion) from the state model, which is then just trig-
gering these activities from its instantaneous actions 
(e.g. entry actions or transition actions). It is obvious 
that such a separation of behaviour and processing 
will likely result in difficulties caused by the neces-
sary synchronisation of the completion of these ac-
tivities with the starting of the loop sequence. 
Another possible solution in the frame of current 
formalisms is to introduce an additional state, called 
Opening valve, which has the negative consequence 
of lowering the granularity of state machine elements 
and consequently also lowering the level of abstrac-
tion. In addition, such an approach is, in our opinion, 
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highly undesirable since Opening valve can hardly be 
considered as a state, especially in the frame of the 
process oriented view, which we would like to follow.
To solve the described problem, we propose an alter-
native state machine behaviour model, which is de-
scribed in the next section. 

3. New State Machine Behaviour 
Model
In this section, a new extended state machine model 
for describing the dynamics of high-level control enti-
ties is presented. The extension is in the introduction 
of a hierarchical structure of states (i.e. superstates, 
substates and elementary states), in fine structuring of 
the processing, and in the introduction of two types of 
transitions. The new state machine behaviour model is 
described by means of the state transition diagram.
Syntactically, the state transition diagram is a com-
bination of Venn diagrams and directed graphs. Venn 
diagrams are used to visualize sets and operations on 
them, and their only building blocks are closed curves 
or planar shapes. Set membership is presented with 
the interior of a curve. We use Venn diagrams to rep-
resent sets of elements and the containment rela-
tions between them. The synthesis of both notations 
(Venn diagrams and graphs) extends the meaning of 
graph vertices. The vertices appear as shapes (closed 
curves), which can be considered as sets in the sense 
of Venn diagrams (and not only as elements). In the 
extended state transition diagrams, the vertices can 
contain other vertices. 

3.1. Definition of the State Transition 
Diagram and Its Elements

State
Syntactically, a state is a graph node denoted by a 
rectangle with the state name written inside. A state 
is shown in Figure 1.

A state transition diagram can contain different types 
of states, which are divided according to two criteria. 
According to the criterion of the processing types, the 
states are divided in the following way:
 _ Quiescent states are states without any processing.
 _ Active states are states that contain certain 

processing.

According to the duration criterion, the states are di-
vided in the following way:
 _ Transient states are those states that contain only 

one sequence, and when it is executed, a transition 
to another state occurs. Each active transient state 
contains one Transient sequence.

 _ Durative states are those states in which a 
procedural control entity normally remains for 
a longer time. The processing of active durative 
states is divided into several sequences, which can 
be of different types.

A more detailed discussion on the processing of states 
(and transitions) is given in a separate section below.

Superstate
Syntactically, a superstate is a graph node denoted by 
a rectangle with the state name written inside. The 
inner area of the superstate rectangle may contain 
other superstates, states, and other state transition 
diagram elements. A superstate is shown in Figure 2.

Figure 1 
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State diagrams are composed of a hierarchy of 
nested states, with superstates and substates, and 
with elementary states at the lowest level of the 
hierarchy. The purpose of nested states may be to 
incorporate conceptually related entities or, as the 
most important purpose, to avoid the repetition of 
information by closing into a superstate the 
actions and/or transitions and/or dependence 
relations common to a number of states. Note that 
a superstate is, in fact, concurrent with its active 
substates at all nesting levels (there may be as 
many concurrently active states as the number of 
nesting levels). In the nested states, not only pure 
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State diagrams are composed of a hierarchy of nest-
ed states, with superstates and substates, and with 
elementary states at the lowest level of the hierar-
chy. The purpose of nested states may be to incor-
porate conceptually related entities or, as the most 
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important purpose, to avoid the repetition of infor-
mation by closing into a superstate the actions and/
or transitions and/or dependence relations common 
to a number of states. Note that a superstate is, in 
fact, concurrent with its active substates at all nest-
ing levels (there may be as many concurrently active 
states as the number of nesting levels). In the nested 
states, not only pure tree structures are possible, but 
also overlapping superstates. In other words, a state 
may be contained in one of the two superstates, or in 
both of them.
The proposed state machine model does not include 
in its current version the notion of the initial sub-
state. In fact, all TO transitions are drawn explicitly 
to elementary states, while superstates may only have 
FROM transitions.

Transition “on completion”
Syntactically, the transition on completion is a direct-
ed line connecting an ordered pair of nodes (source 
and sink), denoted by a solid line ending with an emp-
ty arrowhead. Transition on completion is shown in 
Figure 3. 

Figure 3 
Transition “on completion”
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Transition on completion is a transition from one state 
(Source) to another state (Sink), which has no particular 
cause event, but occurs after the completion of the 
source state processing. According to the criterion of 
activity (processing), transitions on completion can be 
divided into active, containing activity sequences, and 
inactive, which have no activity sequence. A transition 
from a superstate cannot be "on completion". Each 
elementary active transient state must have exactly one 
FROM transition of the type "on completion".

Transition "on event"
Syntactically, the transition on event is a directed line 
connecting an ordered pair of nodes (source and sink), 
denoted by a solid line ending with a filled arrowhead. 
Transition on event is shown in Figure 4.

Source Sink

Figure 4 Transition "on event"

Transition on event is a transition from one state 
(Source) to another state (Sink), which is executed on 
the occurrence of a particular event. At the beginning of 
such a transition, first any active processing of the 
source state is immediately terminated. A transition 
from a superstate can only be of the type "on event". A 
transition of the type "on event" from a state S with the 
causing event defined by the expression 
State(S)=complete is equivalent to the transition "on 
completion" from state S.
According to the criterion of activity (processing), 
transitions on event, similar to those "on completion", 
can be divided into active, containing activity 
sequences, and inactive, which have no activity 
sequence.

3.2. Definition of the State Transition 
Diagram and Its Elements

The new state machine behaviour model is very 
finely granulated. In other words, we can say that 
the modelled control entities have a very finely 
granulated processing.
A very important feature of the processing in the 
new model is that all processing is composed of 
sequences with a duration (i.e. with non-
instantaneous execution), unlike, for example, the 
Statecharts model, where only the Loop 
processing has duration, while the Entry, the Exit, 
and the processing of the transitions is 
instantaneous. The disadvantage of the latter 
model is in its separation of the states from the 
processing (actions only serve to trigger the 
activities, which are separated from the state 
model); this separation is very likely to bring 
difficulties with the synchronization of the 
activities.
As the processing of the transitions in the new 
state machine model has duration, and since a 
modelled control entity must always be in a 
known state, the processing of the transitions is 
considered as a part of the target state and is called 
Specific entry processing (as it executes on the 
entry and is specific with respect to the source 
state).
The processing in the new state machine model 
consists of the following elements:
a. the processing of states, for each state up to one 

sequence of each sequence type, defined as

• ENTRY sequence, which is executed only 
once on entry to a given active durative 
state,

• LOOP sequence, which is executed 
cyclically all the time while a procedural 
control entity is in a given active durative 
state (for elementary states also the opposite 
is true – the completion of the Loop 
sequence implies the completion of the state, 
hence the two expressions are logically 
equivalent: state completion ≡  Loop 
sequence completion),

• EXIT sequence, which is executed only once 
at the exit from a given active durative state,

• ALWAYS sequence, which is executed 
concurrently with all activities of an active 
durative state, including the sequences of the 
transitions into that state (its specific 
ENTRY sequence),

• Transient sequence, which is executed only 
once at active transient states; and

b. sequences of the transitions into a state, which 
are considered as its specific Entry sequences, 
as stated above.

As a particular detail, let us mention at this point 
that the ENTRY and LOOP sequences are not 
executed if, at the entry to a state, the condition 
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sequence.

3.2. Definition of the State Transition 
Diagram and Its Elements

The new state machine behaviour model is very 
finely granulated. In other words, we can say that 
the modelled control entities have a very finely 
granulated processing.
A very important feature of the processing in the 
new model is that all processing is composed of 
sequences with a duration (i.e. with non-
instantaneous execution), unlike, for example, the 
Statecharts model, where only the Loop 
processing has duration, while the Entry, the Exit, 
and the processing of the transitions is 
instantaneous. The disadvantage of the latter 
model is in its separation of the states from the 
processing (actions only serve to trigger the 
activities, which are separated from the state 
model); this separation is very likely to bring 
difficulties with the synchronization of the 
activities.
As the processing of the transitions in the new 
state machine model has duration, and since a 
modelled control entity must always be in a 
known state, the processing of the transitions is 
considered as a part of the target state and is called 
Specific entry processing (as it executes on the 
entry and is specific with respect to the source 
state).
The processing in the new state machine model 
consists of the following elements:
a. the processing of states, for each state up to one 

sequence of each sequence type, defined as

• ENTRY sequence, which is executed only 
once on entry to a given active durative 
state,

• LOOP sequence, which is executed 
cyclically all the time while a procedural 
control entity is in a given active durative 
state (for elementary states also the opposite 
is true – the completion of the Loop 
sequence implies the completion of the state, 
hence the two expressions are logically 
equivalent: state completion ≡  Loop 
sequence completion),

• EXIT sequence, which is executed only once 
at the exit from a given active durative state,

• ALWAYS sequence, which is executed 
concurrently with all activities of an active 
durative state, including the sequences of the 
transitions into that state (its specific 
ENTRY sequence),

• Transient sequence, which is executed only 
once at active transient states; and

b. sequences of the transitions into a state, which 
are considered as its specific Entry sequences, 
as stated above.

As a particular detail, let us mention at this point 
that the ENTRY and LOOP sequences are not 
executed if, at the entry to a state, the condition 

Transition on event is a transition from one state 
(Source) to another state (Sink), which is executed 
on the occurrence of a particular event. At the begin-
ning of such a transition, first any active processing of 
the source state is immediately terminated. A tran-
sition from a superstate can only be of the type “on 
event”. A transition of the type “on event” from a state 
S with the causing event defined by the expression 
State(S)=complete is equivalent to the transition “on 
completion” from state S.
According to the criterion of activity (processing), 
transitions on event, similar to those “on comple-
tion”, can be divided into active, containing activity 
sequences, and inactive, which have no activity se-
quence.

3.2. Definition of the State Transition 
Diagram and Its Elements
The new state machine behaviour model is very finely 
granulated. In other words, we can say that the mod-
elled control entities have a very finely granulated 
processing.
A very important feature of the processing in the new 
model is that all processing is composed of sequenc-
es with a duration (i.e. with non-instantaneous exe-
cution), unlike, for example, the Statecharts model, 
where only the Loop processing has duration, while 
the Entry, the Exit, and the processing of the transi-
tions is instantaneous. The disadvantage of the latter 
model is in its separation of the states from the pro-
cessing (actions only serve to trigger the activities, 
which are separated from the state model); this sep-
aration is very likely to bring difficulties with the syn-
chronization of the activities.
As the processing of the transitions in the new state 
machine model has duration, and since a modelled 
control entity must always be in a known state, the 
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processing of the transitions is considered as a part 
of the target state and is called Specific entry process-
ing (as it executes on the entry and is specific with re-
spect to the source state).
The processing in the new state machine model con-
sists of the following elements:
a the processing of states, for each state up to one se-

quence of each sequence type, defined as
 _ ENTRY sequence, which is executed only once 

on entry to a given active durative state,
 _ LOOP sequence, which is executed cyclically all 

the time while a procedural control entity is in a 
given active durative state (for elementary states 
also the opposite is true – the completion of the 
Loop sequence implies the completion of the state, 
hence the two expressions are logically equivalent: 
state completion ≡  Loop sequence completion),

 _ EXIT sequence, which is executed only once at 
the exit from a given active durative state,

 _ ALWAYS sequence, which is executed concur-
rently with all activities of an active durative state, 
including the sequences of the transitions into 
that state (its specific ENTRY sequences),

 _ Transient sequence, which is executed only 
once at active transient states; and

b sequences of the transitions into a state, which are 
considered as its specific Entry sequences, as stat-
ed above.

As a particular detail, let us mention at this point that 
the ENTRY and LOOP sequences are not executed if, 
at the entry to a state, the condition for its termina-
tion is satisfied; however, the EXIT sequence is exe-
cuted in every case.

3.3. State Machine Execution
Transitions firing susceptibility
The firing susceptibility of transition T1 begins when 
the processing of transition T2 traverses the source 
state of transition T1. In terms of processing sequenc-
es, the transition becomes susceptible after enabling 
the Always processing and before starting the transi-
tion’s source state Entry sequence (if source state is 
a superstate, Figure 5a), or before starting the tran-
sition’s source state Specific entry sequence, that is 
the sequence of the transition T2 (if source state is an 
elementary state, Figure 5b).

The firing susceptibility of transition T1 ends when 
the processing of transition T2 traverses the source 
state of transition T1, or just before starting transi-
tion’s source state Exit sequence (Figure 6a). The fir-
ing susceptibility of transition T1 also ends on the fir-
ing of transition T2 from the same state (Figure 6b).

Figure 5 
Begin of firing susceptibility

Figure 6 
End of firing susceptibility
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The firing susceptibility of transition T1 ends when the 
processing of transition T2 traverses the source state of 
transition T1, or just before starting transition's source 
state Exit sequence (Figure 6a). The firing susceptibility 
of transition T1 also ends on the firing of transition T2 
from the same state (Figure 6b).
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Transitions priorities
If the transition conditions for more susceptible 
transitions become true at a given moment, the 
transition with the highest priority position will be 
activated according to the following rules:
1. Transitions caused by propagations have higher 

priority than ordinary transitions.
2. Among transitions at different levels in the hierarchy 

of states, higher priority is assigned to transitions 
with the source in higher-level (outer) superstates.

3. Among transitions with the sources at the same level 
in the hierarchy of states, higher priority is assigned 
to transitions with the sink in higher-level (outer) 

superstates.
4. If the transition conditions for more susceptible 

transitions with both sources and sinks at the 
same level become true at a given moment, the 
choice of a transition to be fired is non-
deterministic.

The sequence of processing on state transition
Before giving the definition of the sequence of 
processing on state transition, we shall define the 
term of the root state. The root state is the 
elementary state, active at the time of transition 
firing, that is the source state or a substate of the 
source state, in case that the source state is a 
superstate. The sequence of processing on state 
transition from a source state to a target state is as 
follows:
1. The processing of all substates of the source 

state is terminated. This includes all Entry, 
Loop, Exit, and Always processing and the 
processing of transitions into the target state 
(specific Entry processing) of all substates.

2. On the path from the source to the sink state, 
first for the source state, and then successively, 
following the increasing state hierarchy for 
each superstate of the root state that is not a 
superstate of the target state, the following 
successive steps are performed:
a) termination of the Entry, Loop, Transient 

and Specific entry processing,
b) execution (starting and waiting for 

completion) of the Exit processing,
c) termination of the Always processing.

3. The state variable value changes from the 
source to the sink state.

4. On the path from the source to the sink state, 
following the decreasing state hierarchy for 
each superstate of the sink state that is not a 
superstate of the root state, the following 
successive steps are performed:
a) enabling the Always processing,
b) execution (starting and waiting for 

completion) of the Entry processing,
c) enabling the Loop processing.

5. For the sink state, the following successive 
steps are performed:
a) enabling the Always processing,
b) execution (starting and waiting for 

completion) of the Specific entry processing 
(the processing of the transition into the sink 
state),

c) execution (starting and waiting for 
completion) of the Entry processing,

d) enabling the Loop processing.
If the sink state is a transient state, then instead of 
c) and d), there is an execution (starting and 
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source state Specific entry sequence, that is the 
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of transition T1 also ends on the firing of transition T2 
from the same state (Figure 6b).
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Transitions priorities
If the transition conditions for more susceptible 
transitions become true at a given moment, the 
transition with the highest priority position will be 
activated according to the following rules:
1. Transitions caused by propagations have higher 

priority than ordinary transitions.
2. Among transitions at different levels in the hierarchy 

of states, higher priority is assigned to transitions 
with the source in higher-level (outer) superstates.

3. Among transitions with the sources at the same level 
in the hierarchy of states, higher priority is assigned 
to transitions with the sink in higher-level (outer) 

superstates.
4. If the transition conditions for more susceptible 

transitions with both sources and sinks at the 
same level become true at a given moment, the 
choice of a transition to be fired is non-
deterministic.

The sequence of processing on state transition
Before giving the definition of the sequence of 
processing on state transition, we shall define the 
term of the root state. The root state is the 
elementary state, active at the time of transition 
firing, that is the source state or a substate of the 
source state, in case that the source state is a 
superstate. The sequence of processing on state 
transition from a source state to a target state is as 
follows:
1. The processing of all substates of the source 

state is terminated. This includes all Entry, 
Loop, Exit, and Always processing and the 
processing of transitions into the target state 
(specific Entry processing) of all substates.

2. On the path from the source to the sink state, 
first for the source state, and then successively, 
following the increasing state hierarchy for 
each superstate of the root state that is not a 
superstate of the target state, the following 
successive steps are performed:
a) termination of the Entry, Loop, Transient 

and Specific entry processing,
b) execution (starting and waiting for 

completion) of the Exit processing,
c) termination of the Always processing.

3. The state variable value changes from the 
source to the sink state.

4. On the path from the source to the sink state, 
following the decreasing state hierarchy for 
each superstate of the sink state that is not a 
superstate of the root state, the following 
successive steps are performed:
a) enabling the Always processing,
b) execution (starting and waiting for 

completion) of the Entry processing,
c) enabling the Loop processing.

5. For the sink state, the following successive 
steps are performed:
a) enabling the Always processing,
b) execution (starting and waiting for 

completion) of the Specific entry processing 
(the processing of the transition into the sink 
state),

c) execution (starting and waiting for 
completion) of the Entry processing,

d) enabling the Loop processing.
If the sink state is a transient state, then instead of 
c) and d), there is an execution (starting and 

Transitions priorities
If the transition conditions for more susceptible tran-
sitions become true at a given moment, the transition 
with the highest priority position will be activated ac-
cording to the following rules:
1 Transitions caused by propagations have higher 

priority than ordinary transitions.
2 Among transitions at different levels in the hierar-

chy of states, higher priority is assigned to transi-
tions with the source in higher-level (outer) super-
states.

3 Among transitions with the sources at the same 
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level in the hierarchy of states, higher priority is as-
signed to transitions with the sink in higher-level 
(outer) superstates.

4 If the transition conditions for more susceptible 
transitions with both sources and sinks at the same 
level become true at a given moment, the choice of 
a transition to be fired is non-deterministic.

The sequence of processing on state transition
Before giving the definition of the sequence of pro-
cessing on state transition, we shall define the term 
of the root state. The root state is the elementary 
state, active at the time of transition firing, that is the 
source state or a substate of the source state, in case 
that the source state is a superstate. The sequence of 
processing on state transition from a source state to a 
target state is as follows:
1 The processing of all substates of the source state 

is terminated. This includes all Entry, Loop, Exit, 
and Always processing and the processing of tran-
sitions into the target state (specific Entry process-
ing) of all substates.

2 On the path from the source to the sink state, first 
for the source state, and then successively, follow-
ing the increasing state hierarchy for each super-
state of the root state that is not a superstate of the 
target state, the following successive steps are per-
formed:
a termination of the Entry, Loop, Transient and 

Specific entry processing,
b execution (starting and waiting for completion) 

of the Exit processing,
c termination of the Always processing.

3 The state variable value changes from the source to 
the sink state.

4 On the path from the source to the sink state, fol-
lowing the decreasing state hierarchy for each su-
perstate of the sink state that is not a superstate of 
the root state, the following successive steps are 
performed:
a enabling the Always processing,
b execution (starting and waiting for completion) 

of the Entry processing,
c enabling the Loop processing.

5 For the sink state, the following successive steps 
are performed:
a enabling the Always processing,
b execution (starting and waiting for completion) 

of the Specific entry processing (the processing 
of the transition into the sink state),

c execution (starting and waiting for completion) 
of the Entry processing,

d enabling the Loop processing.
If the sink state is a transient state, then instead of c) 
and d), there is an execution (starting and waiting for 
completion) of its Transient processing.
The new state machine behaviour model allows over-
lapping of superstates. For an illustration of the impli-
cations of this fact, let us consider a few examples of 
state transitions in state machines including super-
states, which are shown in Figure 7. In the example, the 
firing of a transition has the following implications on 
the activation or deactivation of individual superstates.
1 Transition T1 implies activity of elementary state 

S3 and superstates SS2 and SS3. At the transition, 

Figure 7 
An illustration of state transitions including overlapping superstates

waiting for completion) of its Transient processing.
The new state machine behaviour model allows 
overlapping of superstates. For an illustration of the 
implications of this fact, let us consider a few examples 
of state transitions in state machines including 
superstates, which are shown in Figure 7. In the 
example, the firing of a transition has the following 
implications on the activation or deactivation of 
individual superstates.
1. Transition T1 implies activity of elementary state S3 

and superstates SS2 and SS3. At the transition, the 
superstate SS2 has to be activated, while the possible 
need of the activation of SS3  depends on which 
elementary state was active at the time of transition 
firing, as follows:
• if elementary state S1 was active ⇒ superstate 

SS3 is activated, since it has to be active 
concurrently with state S3, which is the next active 
elementary state;

• if elementary state S2 was active ⇒ superstate 
SS3 is not activated, since it already was active, 
being a superstate of S2.

2. Transition T2 implies activity of elementary state S4 
and superstate SS2. At the transition, the possible 
need of the deactivation of SS3 is dependent on 
which elementary state was active at the time of 
transition firing, as follows:
• if elementary state S1 was active ⇒ superstate 

SS3 is not deactivated, since it already was non-
active, not being a superstate of S1;

• if elementary state S2 was active ⇒ superstate 
SS3 is deactivated, since it was active 
concurrently with S2, being its superstate, and it 
should not be active concurrently with S4, not 
being its superstate.

4. A Comparison of the Traditional and 
the New State Machine Model on an 
Industrial Case Study

The proposed new state machine behaviour model has 
been implemented in the domain specific modelling

language ProcGraph. The language is a part of a 
MDE based development methodology described 
in [6]. An earlier version of ProcGraph was 
described in [4]. Various versions of ProcGraph 
have been successfully used over the last fifteen 
years in more than twenty industrial projects, 
ranging in size (expressed in a commonly used 
number-of-signals-based metrics) from a couple of 
hundred to a couple of thousand signals. Some of 
the most interesting projects include PVA glue 
production, resin synthesis in paint and varnish 
production, and several sub-processes of the 
titanium dioxide production process (ore grinding, 
ore digestion, hydrolysis, calcinate grinding, gel 
washing, chemical treatment, pigment washing, 
pigment drying, and pigment micronisation). Let 
us also note that a very similar version of a state 
machine behaviour model, adapted to batch 
process control software, has been implemented in 
a tool for batch process control on a PLC 
platform, called PLCbatch [5, 7]. 
In the following, we give an illustration of the new 
behaviour model using one of the sub-processes of 
the above-mentioned titanium dioxide production 
process.

4.1. A Short Introduction of the 
Industrial Process Considered in the 
Example

Titanium dioxide (TiO2) is a white pigment that is 
widely used in paint and enamel production. The 
production of the TiO2 pigment in the Cinkarna 
chemical works consists of a succession of several 
processes. One of the sub-processes in the first 
stage of the production (the so-called black part of 
the production) is the batch process of ore 
digestion. In fact, it is the second sub-process, the 
first being the ore grinding sub-process. The ore 
digestion sub-process has both batch and 
continuous processing. The continuous part is 
dealing with the transport of various input 
materials (ore, concentrated sulfuric acid, weak 
acid, washing water, etc.). The batch part consists 
of six digester units and a common vessel for pre-
mixing ore and concentrated sulfuric acid.

SS3

SS2SS1

S1 S2 S3T1 S4

T2

Figure 7 An illustration of state transitions including overlapping superstates
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the superstate SS2 has to be activated, while the 
possible need of the activation of SS3  depends on 
which elementary state was active at the time of 
transition firing, as follows:

 _ if elementary state S1 was active ⇒ superstate SS3 
is activated, since it has to be active concurrently 
with state S3, which is the next active elementary 
state;

 _ if elementary state S2 was active ⇒ superstate 
SS3 is not activated, since it already was active, 
being a superstate of S2.

2 Transition T2 implies activity of elementary state 
S4 and superstate SS2. At the transition, the pos-
sible need of the deactivation of SS3 is dependent 
on which elementary state was active at the time of 
transition firing, as follows:

 _ if elementary state S1 was active ⇒ superstate 
SS3 is not deactivated, since it already was non-
active, not being a superstate of S1;

 _ if elementary state S2 was active ⇒ superstate SS3 
is deactivated, since it was active concurrently 
with S2, being its superstate, and it should not 
be active concurrently with S4, not being its 
superstate.

4. A Comparison of the Traditional 
and the New State Machine Model 
on an Industrial Case Study
The proposed new state machine behaviour model 
has been implemented in the domain specific model-
ling language ProcGraph. The language is a part of a 
MDE based development methodology described in 
[6]. An earlier version of ProcGraph was described 
in [4]. Various versions of ProcGraph have been suc-
cessfully used over the last fifteen years in more than 
twenty industrial projects, ranging in size (expressed 
in a commonly used number-of-signals-based met-
rics) from a couple of hundred to a couple of thousand 
signals. Some of the most interesting projects include 
PVA glue production, resin synthesis in paint and var-
nish production, and several sub-processes of the ti-
tanium dioxide production process (ore grinding, ore 
digestion, hydrolysis, calcinate grinding, gel washing, 
chemical treatment, pigment washing, pigment dry-
ing, and pigment micronisation). Let us also note that 
a very similar version of a state machine behaviour 

model, adapted to batch process control software, has 
been implemented in a tool for batch process control 
on a PLC platform, called PLCbatch [5, 7]. 
In the following, we give an illustration of the new be-
haviour model using one of the sub-processes of the 
above-mentioned titanium dioxide production process.

4.1. A Short Introduction of the Industrial 
Process Considered in the Example
Titanium dioxide (TiO2) is a white pigment that is 
widely used in paint and enamel production. The pro-
duction of the TiO2 pigment in the Cinkarna chemical 
works consists of a succession of several processes. 
One of the sub-processes in the first stage of the pro-
duction (the so-called black part of the production) 
is the batch process of ore digestion. In fact, it is the 
second sub-process, the first being the ore grinding 
sub-process. The ore digestion sub-process has both 
batch and continuous processing. The continuous 
part is dealing with the transport of various input 
materials (ore, concentrated sulfuric acid, weak acid, 
washing water, etc.). The batch part consists of six di-
gester units and a common vessel for pre-mixing ore 
and concentrated sulfuric acid.
For the purpose of illustration, a continuous opera-
tion of pneumatic transport of the ground ore from 
the ground ore storage silo into the pre-mixing ves-
sel dosing silo was used. The pneumatic transport is 
performed by means of a fluidisation vessel, which is 
situated beneath the storage silo. During the trans-
port, the fluidisation vessel is alternately filled and 
emptied by means of compressed air, which pushes 
the ore through the pipeline towards the dosing silo. 
Once inside the dosing silo, most of the ore falls to the 
bottom, while some remains on the bag filters at the 
top of the silo, while the air passes through the filters 
and it is released into the atmosphere.
In the illustration, we point out the difference be-
tween two versions of a selected behaviour, namely the 
version that has been produced by using the new be-
haviour model and the version that would be produced 
if the usual state machine behaviour model was used.

4.2. Use of the New State Machine Model
The state machine of the pneumatic transport opera-
tion according to the new model is shown in Figure 8.
The state machine has typical states of a continuous 
operation, namely Stopped, Starting, Running, and 
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Stopping. The state Running is a superstate, which is 
composed of three states, namely elementary states 
Venting and Filling, and a superstate Emptying (of 
the fluidisation vessel). The Emptying superstate is 
composed of two states, namely an elementary state 
Emptying starting and a superstate Emptying run-
ning, which is composed of three elementary states, 
namely Not finished, Wait for finished, and Blowing 
the chamber. As we can see, the behaviour of the op-
eration is quite simple, and the states are rather intu-
itive and self-explanatory.

Figure 8 
Pneumatic transport state machine according to the new model

For the purpose of illustration, a continuous operation of 
pneumatic transport of the ground ore from the ground 
ore storage silo into the pre-mixing vessel dosing silo 
was used. The pneumatic transport is performed by 
means of a fluidisation vessel, which is situated beneath 
the storage silo. During the transport, the fluidisation 
vessel is alternately filled and emptied by means of 
compressed air, which pushes the ore through the 
pipeline towards the dosing silo. Once inside the dosing 
silo, most of the ore falls to the bottom, while some 
remains on the bag filters at the top of the silo, while the 
air passes through the filters and it is released into the 
atmosphere.
In the illustration, we point out the difference between 
two versions of a selected behaviour, namely the 
version that has been produced by using the new 
behaviour model and the version that would be 
produced if the usual state machine behaviour model 
was used.

4.2. Use of the New State Machine 
Model

The state machine of the pneumatic transport 
operation according to the new model is shown in 
Figure 8.
The state machine has typical states of a 
continuous operation, namely Stopped, Starting, 
Running, and Stopping. The state Running is a 
superstate, which is composed of three states, 
namely elementary states Venting and Filling, and 
a superstate Emptying (of the fluidisation vessel). 
The Emptying superstate is composed of two 
states, namely an elementary state Emptying 
starting and a superstate Emptying running, which 
is composed of three elementary states, namely 
Not finished, Wait for finished, and Blowing the 
chamber. As we can see, the behaviour of the 
operation is quite simple, and the states are rather 
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Figure 8 Pneumatic transport state machine according to the new model

4.3. Use of the Traditional State Machine 
Model
Let us see now the state machine of the pneumatic 
transport operation as it would be if the traditional 
state machine model was used. This state machine is 
shown in Figure 9. 
It is obvious that the state diagram in this case is more 
complex due to a larger number of elementary states. 
In fact, the Running superstate in this case has 10 el-
ementary sub-states, while in the case when the new 
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Figure 9 
Pneumatic transport state machine according to the traditional model

intuitive and self-explanatory.

4.3. Use of the Traditional State Machine 
Model

Let us see now the state machine of the pneumatic 
transport operation as it would be if the traditional state 
machine model was used. This state machine is shown 
in Figure 9. 
It is obvious that the state diagram in this case is more 
complex due to a larger number of elementary states. In 
fact, the Running superstate in this case has 10 
elementary sub-states, while in the case when the new 
behaviour model was used, the number of these sub-
states was just 6, as can be seen in Figure 8.

4.4. Comparison of Both State Machine 

Models
In the following, we point out the differences 
between the two state machines and give an
explanation of these differences. There are three 
points where these differences arise.
The first difference is the state Filling (see Figure 
8). This state's processing is composed of three 
parts, each of them having duration. The first part 
includes the filling starting sequence, which has a 
duration due to a number of sub-sequences it is 
composed of, where each sub-sequence has to be 
completed before proceeding to the next sub-
sequence. The second part includes waiting for the 
filling of the chamber to be completed, which also 
takes some time. Finally, the third part, including 
the filling stopping sequence, also has a duration, 

Running

Emptying

Stopped

Filling 
stopping

Venting

Initial actions

Emptying starting

Not finishedWait for finished

Blowing the pipe

Starting

Stopping

Blowing the chamber

Filling 
starting

Filling 
running

 

Figure 9 Pneumatic transport state machine according to the traditional model

behaviour model was used, the number of these sub-
states was just 6, as can be seen in Figure 8.

4.4. Comparison of Both State Machine 
Models
In the following, we point out the differences between 
the two state machines and give an explanation of 
these differences. There are three points where these 
differences arise.
The first difference is the state Filling (see Figure 8). 

This state’s processing is composed of three parts, 
each of them having duration. The first part includes 
the filling starting sequence, which has a duration 
due to a number of sub-sequences it is composed of, 
where each sub-sequence has to be completed before 
proceeding to the next sub-sequence. The second part 
includes waiting for the filling of the chamber to be 
completed, which also takes some time. Finally, the 
third part, including the filling stopping sequence, also 
has a duration, for a similar reason as the filling start-
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ing sequence. The new state machine behaviour mod-
el has enabled us to pack all three durative sequences 
into just one state by allocating the filling starting se-
quence to the state’s Entry sequence, the waiting for 
the completion of filling to the Loop sequence, and the 
filling stopping sequence to the state’s Exit sequence. 
Since in the traditional state behaviour model only 
Loop processing may have duration, the Filling pro-
cessing had to be allocated to three distinct states, 
as shown in Figure 9, namely Filling starting, Filling 
running, and Filling stopping.
The second  difference is in the elementary state Initial 
actions (a sub-state of the Emptying state), which ap-
pears in the state machine according to the traditional 
model in Figure 9, while in the state machine accord-
ing to the new model in Figure 8, this state seems to be  
missing.  But this is not the case, as its functionality 
has now been allocated to the Entry sequence of the 
Emptying state, where it fits best due to the fact that 
these initial actions are, in fact, initial actions of the 
Emptying state. In the traditional model, placing this 
functionality to that point is not possible, since this se-
quence has duration and states’ Entry sequences in the 
traditional model cannot have duration.
The third  difference is in the elementary state Blow-
ing the pipe (a sub-state of the Emptying state), which 
appears in the state machine according to the tradi-
tional model in Figure 9, while in the state machine 
according to the new model in Figure 8, this state also 
seems to be missing. Actually, however, its functional-
ity has now been allocated to the Exit sequence of the 
Emptying running state. In the traditional model, plac-
ing this functionality to that point is not possible, since 
this sequence has a duration and states’ Exit sequences 
in the traditional model cannot have duration. For that 
reason, this functionality was placed into a distinct 
state Blowing the pipe, while the superstate Emptying 
running was omitted, since there was no other pro-
cessing to be allocated to this state. Omitting this state 
could be considered as another drawback of the state 
machine in Figure 9, since the Emptying superstate is 

now composed of just six flat elementary states, which 
represents a certain lack of structure.
The above comparison clearly illustrates the advan-
tages of the proposed new model, which was success-
fully used in a number of industrial applications.

5. Conclusion
In this paper, a new extended state machine behaviour 
model for industrial process control systems was de-
scribed. The extension is in the introduction of a hi-
erarchical structure of states, in a fine structuring of 
the processing, and in the introduction of two types 
of transitions. The main feature of the new concept of 
processing is the durability of all actions sequences – 
not only the do or loop sequence – as is the case of other 
state machine formalisms. This enables modelling of 
control software for slow continuous or batch indus-
trial processes in a more straightforward manner and, 
at the same time, on a higher level of abstraction than 
with using traditional state machine abstractions.
Our experiences with the use of the proposed be-
haviour model in real industrial projects are very pos-
itive, and, in our opinion, the new model has a great 
potential to improve the quality and the complexity 
management of process control software.
The new concept has been implemented in a do-
main-specific modelling language, ProcGraph, which 
has been successfully used in a number of small- and 
medium-sized industrial automation projects.
The concept has been developed for and demonstrat-
ed in the domain of industrial process control sys-
tems; however, it could be applied with benefit to any 
class of slow response real time (reactive) systems.
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