
419Information Technology and Control 2018/3/47

A New State Machine
Behaviour Model for
Procedural Control Entities
in Industrial Process
Control Systems

ITC 3/47
Journal of Information Technology
and Control
Vol. 47 / No. 3 / 2018
pp. 419-430
DOI 10.5755/j01.itc.47.3.19630
© Kaunas University of Technology

A New State Machine Behaviour Model for Procedural Control
Entities in Industrial Process Control Systems

Received 2017/12/08 Accepted after revision 2018/07/16

 http://dx.doi.org/10.5755/j01.itc.47.3.19630

Corresponding author: giovanni.godena@ijs.si

Giovanni Godena, Stanko Strmčnik
Jožef Stefan Institute; Department of Systems and Control; Jamova 39, SI-1000, Ljubljana, Slovenia;
phone: +386 1 477 3759; fax: +386 1 477 3994; e-mails: giovanni.godena@ijs.si, stanko.strmcnik@ijs.si

State machines are a popular way of modelling the behaviour of systems, including process control systems.
However, there are also some problems with their use in this domain, in particular in the sub-domains of the
control of continuous or batch processes. The problems originate from the fact that the continuous and batch
processes are, in most cases, slow in their reaction; consequently, their control sequences should have a corre-
sponding duration. However, at present, all state machine models are based on instantaneous sequences, with
only the loop (or do) sequence having a duration. This paper presents a new state machine behaviour model for
procedural control entities in industrial process control systems. The main feature of the new concept of state
machine processing is the durability of all action sequences and not only the “do” or “loop” sequence, as is the
case in the existing state machine formalisms. The new concept enables modelling of control software for slow
continuous or batch industrial processes in a more straightforward manner and, at the same time, on a higher
level of abstraction than with using traditional state machine formalisms. The new concept is demonstrated
and validated by means of a case study, which addresses a control problem from a real industrial project. The
validation demonstrates that the proposed concept has a significant advantage. The concept is applicable to
other classes of slow response real time systems as well.
KEYWORDS: process control software, model-driven engineering, procedural control entities, state ma-
chines, behaviour modelling, slow response systems.

Information Technology and Control 2018/3/47420

1. Introduction
Industrial process control systems are hardware-soft-
ware systems that control and supervise technolog-
ical processes in order to achieve a process oriented
goal. These systems are used in all industrial sectors
because of their positive effects on productivity, prod-
uct quality, flexibility, and efficiency in energy and raw
material consumption. Software is the central part of
process control systems because it implements vari-
ous kinds of complex control activities. Interestingly,
the complexity of the development, operation, and
maintenance of that software is not so much associ-
ated with the basic control (i.e. achieving and main-
taining the desired state of the process variables), but
more with so-called procedural control (i.e. perform-
ing activities that ensure the achievement of the goals
of the system or process). According to the estimates
of Boeing and Honeywell, process control software
development efforts represent 60-80% of the total
control systems development engineering effort [13];
and, procedural control software represents the ma-
jor and most complex part of this software. Therefore,
it is of huge importance how this software is devel-
oped and what its attributes are.
During the last decade a new software engineering
paradigm called Model Driven Engineering (MDE)
has emerged, which has the potential to sustainably
raise productivity [17] and to reduce the complexity of
software and systems development [20]. In MDE, the
primary focus and products of software development
are models rather than computer programs [21]. MDE
relies on three main components, namely modelling
languages, model transformations, and software
tools. If models end up merely as documentation, they
are of limited value. A key premise behind MDE is
that programs are automatically generated from their
corresponding models. Automation is by far the most
effective technological means for boosting productiv-
ity and reliability [21]. Hence, executable models are
a key component of MDE, as well as such concepts as
automatic transformation of models and validation of
models [3]. Within MDE, state machines are a popu-
lar way of modelling the behaviour of systems [3]. The
underlying model of computation for state machines
is based on the formalism of a finite state machine
(FSM) [16]. FSMs are very useful for the representa-
tion of reactive systems (which include process con-

trol systems), more than linear or textual notations,
which are more suitable to transformational systems
[15].
Although the state machine based formalisms are
widely used in the modelling of process control soft-
ware, there are also some problems with their use in
this domain, in particular in the sub-domains of the
control of continuous or batch processes. The prob-
lems we have encountered during our industrial ap-
plications of control systems originate from the fact
that the continuous and batch processes are, in most
cases, slow in their reaction; consequently, their con-
trol sequences should have a corresponding duration.
However, at present, all state machine models are
based on instantaneous sequences, with only the loop
(or do) sequence having a duration. The aim of this
paper is to present a possible solution to these prob-
lems and illustrate its implementation in a dedicated
modelling language.
The paper is structured in the following manner. Sec-
tion 2 introduces state machines and their problems
in the domain of process control. Section 3 presents
a possible solution to these problems in the form of a
new state machine behaviour model. Section 4 gives
a comparison of the traditional and the new state
machine model on an industrial case study. Section 5
presents a brief discussion of the presented concept,
its use, and the conclusions.

2. State Machines and Their Problems
A FSM is a model of computation that specifies the se-
quence of states an object goes through in response to
events during its lifetime, together with its responses
to those events [1, Chapter 2]. A FSM is essentially an
abstract machine that consists of a set of states, an ini-
tial state, an input alphabet of events, and a transition
function mapping current states and event symbols to
next states [14]. The term FSM refers to the model of
computation, but not the diagram representing it; in-
stead, a diagram representing a FSM is traditionally
called a state diagram or a state transition diagram [3].
The original FSM produces output only when it reach-
es a final state, however there are many variants, the

421Information Technology and Control 2018/3/47

most common being Mealy (producing outputs along
transitions) [15], Moore (producing outputs at states)
[8], and a combination of these (Moore-Mealy, pro-
ducing outputs both along transitions and at states).
Although FSMs represent an important concept for
modelling real-time behaviour, they are at a rath-
er low level of abstraction in terms of managing the
complexity of large systems development. In the late
1980s, Harel defined a visual formalism, which he
called statecharts, for describing states and transi-
tions at a higher level of abstraction and in a modu-
lar manner. Statecharts were essentially state tran-
sition diagrams with the addition of the concepts of
clustering and refinement (hierarchies of states with
zoom-in and zoom-out capability), orthogonality
(concurrency), and broadcast communication [8, 10].
Harel and other authors subsequently defined a pre-
liminary semantics for the statechart formalism [11,
19]. Then, over the years, the statechart formalism
evolved, resulting in a number of similar, though dis-
tinct variants [23]. The semantics of the original con-
cept was revised by Harel in 1996 and this version is
often referred to in the literature as statecharts, Harel
statecharts, or classical statecharts. These classical
statecharts are, for instance, implemented in the tool
Statemate [10, 12].
Today there are several state machine dialects, which
were derived from, or at least strongly influenced by,
Harel’s statecharts, e.g. UML state machines (as spec-
ified in UML 2.4.1 [18]), or a newer object-oriented
version of Harel’s statecharts (implemented in Rhap-
sody [9]). Although the mentioned formalisms appear
to be very similar, there are some subtle syntactic and
semantic differences between them [3].
In the domain of process control, there are also some
state machine dialects in use that are similar to those
mentioned above. The most recent standard in indus-
trial process control and automation systems is IEC
61499 [22], an extension of the ideas of IEC 61131-3,
with support for the design phase and for distribut-
ed process control systems. IEC 61499 compliant
programs are based on networks of function blocks
(FBs). Every FB has data inputs and outputs, which
are used by the algorithms, as well as event inputs
and outputs, which are used by the so-called Execu-
tion Control Chart (ECC). ECC is a specific kind of
statechart that defines the behaviour through the se-
quencing of the algorithm invocations. Another pro-
cess control approach, similar to IEC 61499 in terms

of the abstractions it uses and its expressive power, is
Matlab Simulink/Stateflow. According to [2], there
is a natural complementarity between the Simulink/
Stateflow and IEC 61499 Function Blocks. Simulink/
Stateflow provides a nice environment for the mod-
elling and simulation of control and embedded sys-
tems, while Function Blocks are good for designing
distributed control systems. Additionally, Simulink/
Stateflow can also be used in the design phase, due to
its C or PLC (IEC 61131-3) code generation feature.
All of the above mentioned state machine formalisms
are fundamentally the same concerning the basic
state machine execution model. They all share a com-
mon processing characteristic in which only the pro-
cessing within states (i.e. loop or do processing) may
have a duration, while all other processing (state entry
and exit processing, and processing of transitions) is
instantaneous. This model has, in our opinion, some
drawbacks, particularly when considering its use in
control systems of continuous or batch processes,
which are in most cases slow in their reaction. With
these slow systems, we would often like the entry or
transition actions to take some time, e.g. to perform
a device (basic control) command and then wait for
it to be executed. The control software should conse-
quently be executed as sequences of process actions
with the duration measured in seconds, sometimes
even in minutes.
A common example is the opening of an on/off valve
in an entry sequence with a requirement of not to al-
low the starting of the loop sequence until the action
is completed. After issuing a basic control command,
the sequence waits for its execution, which can take
several seconds. In the current state machine formal-
isms, the mentioned slow processing can be achieved
by separating the processing (activities with dura-
tion) from the state model, which is then just trig-
gering these activities from its instantaneous actions
(e.g. entry actions or transition actions). It is obvious
that such a separation of behaviour and processing
will likely result in difficulties caused by the neces-
sary synchronisation of the completion of these ac-
tivities with the starting of the loop sequence.
Another possible solution in the frame of current
formalisms is to introduce an additional state, called
Opening valve, which has the negative consequence
of lowering the granularity of state machine elements
and consequently also lowering the level of abstrac-
tion. In addition, such an approach is, in our opinion,

Information Technology and Control 2018/3/47422

highly undesirable since Opening valve can hardly be
considered as a state, especially in the frame of the
process oriented view, which we would like to follow.
To solve the described problem, we propose an alter-
native state machine behaviour model, which is de-
scribed in the next section.

3. New State Machine Behaviour
Model
In this section, a new extended state machine model
for describing the dynamics of high-level control enti-
ties is presented. The extension is in the introduction
of a hierarchical structure of states (i.e. superstates,
substates and elementary states), in fine structuring of
the processing, and in the introduction of two types of
transitions. The new state machine behaviour model is
described by means of the state transition diagram.
Syntactically, the state transition diagram is a com-
bination of Venn diagrams and directed graphs. Venn
diagrams are used to visualize sets and operations on
them, and their only building blocks are closed curves
or planar shapes. Set membership is presented with
the interior of a curve. We use Venn diagrams to rep-
resent sets of elements and the containment rela-
tions between them. The synthesis of both notations
(Venn diagrams and graphs) extends the meaning of
graph vertices. The vertices appear as shapes (closed
curves), which can be considered as sets in the sense
of Venn diagrams (and not only as elements). In the
extended state transition diagrams, the vertices can
contain other vertices.

3.1. Definition of the State Transition
Diagram and Its Elements

State
Syntactically, a state is a graph node denoted by a
rectangle with the state name written inside. A state
is shown in Figure 1.

A state transition diagram can contain different types
of states, which are divided according to two criteria.
According to the criterion of the processing types, the
states are divided in the following way:
 _ Quiescent states are states without any processing.
 _ Active states are states that contain certain

processing.

According to the duration criterion, the states are di-
vided in the following way:
 _ Transient states are those states that contain only

one sequence, and when it is executed, a transition
to another state occurs. Each active transient state
contains one Transient sequence.

 _ Durative states are those states in which a
procedural control entity normally remains for
a longer time. The processing of active durative
states is divided into several sequences, which can
be of different types.

A more detailed discussion on the processing of states
(and transitions) is given in a separate section below.

Superstate
Syntactically, a superstate is a graph node denoted by
a rectangle with the state name written inside. The
inner area of the superstate rectangle may contain
other superstates, states, and other state transition
diagram elements. A superstate is shown in Figure 2.

Figure 1
State

the action is completed. After issuing a basic control
command, the sequence waits for its execution, which
can take several seconds. In the current state machine
formalisms, the mentioned slow processing can be
achieved by separating the processing (activities with
duration) from the state model, which is then just
triggering these activities from its instantaneous actions
(e.g. entry actions or transition actions). It is obvious
that such a separation of behaviour and processing will
likely result in difficulties caused by the necessary
synchronisation of the completion of these activities
with the starting of the loop sequence.
Another possible solution in the frame of current
formalisms is to introduce an additional state, called
Opening valve, which has the negative consequence of
lowering the granularity of state machine elements and
consequently also lowering the level of abstraction. In
addition, such an approach is, in our opinion, highly
undesirable since Opening valve can hardly be
considered as a state, especially in the frame of the
process oriented view, which we would like to follow.
To solve the described problem, we propose an
alternative state machine behaviour model, which is
described in the next section.

3. New State Machine Behaviour Model
In this section, a new extended state machine model for
describing the dynamics of high-level control entities is
presented. The extension is in the introduction of a
hierarchical structure of states (i.e. superstates, substates
and elementary states), in fine structuring of the
processing, and in the introduction of two types of
transitions. The new state machine behaviour model is
described by means of the state transition diagram.
Syntactically, the state transition diagram is a
combination of Venn diagrams and directed graphs.
Venn diagrams are used to visualize sets and operations
on them, and their only building blocks are closed
curves or planar shapes. Set membership is presented
with the interior of a curve. We use Venn diagrams to
represent sets of elements and the containment relations
between them. The synthesis of both notations (Venn
diagrams and graphs) extends the meaning of graph
vertices. The vertices appear as shapes (closed curves),
which can be considered as sets in the sense of Venn
diagrams (and not only as elements). In the extended
state transition diagrams, the vertices can contain other
vertices.

3.1. Definition of the State Transition
Diagram and Its Elements

State
Syntactically, a state is a graph node denoted by a
rectangle with the state name written inside. A state is
shown in Figure 1.

State S

Figure 1 State

A state transition diagram can contain different
types of states, which are divided according to two
criteria. According to the criterion of the
processing types, the states are divided in the
following way:

• Quiescent states are states without any
processing.

• Active states are states that contain certain
processing.

According to the duration criterion, the states are
divided in the following way:

• Transient states are those states that contain
only one sequence, and when it is executed, a
transition to another state occurs. Each active
transient state contains one Transient sequence.

• Durative states are those states in which a
procedural control entity normally remains for
a longer time. The processing of active durative
states is divided into several sequences, which
can be of different types.

A more detailed discussion on the processing of
states (and transitions) is given in a separate
section below.

Superstate
Syntactically, a superstate is a graph node denoted
by a rectangle with the state name written inside.
The inner area of the superstate rectangle may
contain other superstates, states, and other state
transition diagram elements. A superstate is shown
in Figure 2.

Superstate SS

State S1

State S2

Figure 2 Superstate

State diagrams are composed of a hierarchy of
nested states, with superstates and substates, and
with elementary states at the lowest level of the
hierarchy. The purpose of nested states may be to
incorporate conceptually related entities or, as the
most important purpose, to avoid the repetition of
information by closing into a superstate the
actions and/or transitions and/or dependence
relations common to a number of states. Note that
a superstate is, in fact, concurrent with its active
substates at all nesting levels (there may be as
many concurrently active states as the number of
nesting levels). In the nested states, not only pure

Figure 2
Superstate

the action is completed. After issuing a basic control
command, the sequence waits for its execution, which
can take several seconds. In the current state machine
formalisms, the mentioned slow processing can be
achieved by separating the processing (activities with
duration) from the state model, which is then just
triggering these activities from its instantaneous actions
(e.g. entry actions or transition actions). It is obvious
that such a separation of behaviour and processing will
likely result in difficulties caused by the necessary
synchronisation of the completion of these activities
with the starting of the loop sequence.
Another possible solution in the frame of current
formalisms is to introduce an additional state, called
Opening valve, which has the negative consequence of
lowering the granularity of state machine elements and
consequently also lowering the level of abstraction. In
addition, such an approach is, in our opinion, highly
undesirable since Opening valve can hardly be
considered as a state, especially in the frame of the
process oriented view, which we would like to follow.
To solve the described problem, we propose an
alternative state machine behaviour model, which is
described in the next section.

3. New State Machine Behaviour Model
In this section, a new extended state machine model for
describing the dynamics of high-level control entities is
presented. The extension is in the introduction of a
hierarchical structure of states (i.e. superstates, substates
and elementary states), in fine structuring of the
processing, and in the introduction of two types of
transitions. The new state machine behaviour model is
described by means of the state transition diagram.
Syntactically, the state transition diagram is a
combination of Venn diagrams and directed graphs.
Venn diagrams are used to visualize sets and operations
on them, and their only building blocks are closed
curves or planar shapes. Set membership is presented
with the interior of a curve. We use Venn diagrams to
represent sets of elements and the containment relations
between them. The synthesis of both notations (Venn
diagrams and graphs) extends the meaning of graph
vertices. The vertices appear as shapes (closed curves),
which can be considered as sets in the sense of Venn
diagrams (and not only as elements). In the extended
state transition diagrams, the vertices can contain other
vertices.

3.1. Definition of the State Transition
Diagram and Its Elements

State
Syntactically, a state is a graph node denoted by a
rectangle with the state name written inside. A state is
shown in Figure 1.

State S

Figure 1 State

A state transition diagram can contain different
types of states, which are divided according to two
criteria. According to the criterion of the
processing types, the states are divided in the
following way:

• Quiescent states are states without any
processing.

• Active states are states that contain certain
processing.

According to the duration criterion, the states are
divided in the following way:

• Transient states are those states that contain
only one sequence, and when it is executed, a
transition to another state occurs. Each active
transient state contains one Transient sequence.

• Durative states are those states in which a
procedural control entity normally remains for
a longer time. The processing of active durative
states is divided into several sequences, which
can be of different types.

A more detailed discussion on the processing of
states (and transitions) is given in a separate
section below.

Superstate
Syntactically, a superstate is a graph node denoted
by a rectangle with the state name written inside.
The inner area of the superstate rectangle may
contain other superstates, states, and other state
transition diagram elements. A superstate is shown
in Figure 2.

Superstate SS

State S1

State S2

Figure 2 Superstate

State diagrams are composed of a hierarchy of
nested states, with superstates and substates, and
with elementary states at the lowest level of the
hierarchy. The purpose of nested states may be to
incorporate conceptually related entities or, as the
most important purpose, to avoid the repetition of
information by closing into a superstate the
actions and/or transitions and/or dependence
relations common to a number of states. Note that
a superstate is, in fact, concurrent with its active
substates at all nesting levels (there may be as
many concurrently active states as the number of
nesting levels). In the nested states, not only pure

State diagrams are composed of a hierarchy of nest-
ed states, with superstates and substates, and with
elementary states at the lowest level of the hierar-
chy. The purpose of nested states may be to incor-
porate conceptually related entities or, as the most

423Information Technology and Control 2018/3/47

important purpose, to avoid the repetition of infor-
mation by closing into a superstate the actions and/
or transitions and/or dependence relations common
to a number of states. Note that a superstate is, in
fact, concurrent with its active substates at all nest-
ing levels (there may be as many concurrently active
states as the number of nesting levels). In the nested
states, not only pure tree structures are possible, but
also overlapping superstates. In other words, a state
may be contained in one of the two superstates, or in
both of them.
The proposed state machine model does not include
in its current version the notion of the initial sub-
state. In fact, all TO transitions are drawn explicitly
to elementary states, while superstates may only have
FROM transitions.

Transition “on completion”
Syntactically, the transition on completion is a direct-
ed line connecting an ordered pair of nodes (source
and sink), denoted by a solid line ending with an emp-
ty arrowhead. Transition on completion is shown in
Figure 3.

Figure 3
Transition “on completion”

tree structures are possible, but also overlapping
superstates. In other words, a state may be contained in
one of the two superstates, or in both of them.
The proposed state machine model does not include in
its current version the notion of the initial substate. In
fact, all TO transitions are drawn explicitly to
elementary states, while superstates may only have
FROM transitions.

Transition "on completion"
Syntactically, the transition on completion is a directed
line connecting an ordered pair of nodes (source and
sink), denoted by a solid line ending with an empty
arrowhead. Transition on completion is shown in Figure
3.

Source Sink

Figure 3 Transition "on completion"

Transition on completion is a transition from one state
(Source) to another state (Sink), which has no particular
cause event, but occurs after the completion of the
source state processing. According to the criterion of
activity (processing), transitions on completion can be
divided into active, containing activity sequences, and
inactive, which have no activity sequence. A transition
from a superstate cannot be "on completion". Each
elementary active transient state must have exactly one
FROM transition of the type "on completion".

Transition "on event"
Syntactically, the transition on event is a directed line
connecting an ordered pair of nodes (source and sink),
denoted by a solid line ending with a filled arrowhead.
Transition on event is shown in Figure 4.

Source Sink

Figure 4 Transition "on event"

Transition on event is a transition from one state
(Source) to another state (Sink), which is executed on
the occurrence of a particular event. At the beginning of
such a transition, first any active processing of the
source state is immediately terminated. A transition
from a superstate can only be of the type "on event". A
transition of the type "on event" from a state S with the
causing event defined by the expression
State(S)=complete is equivalent to the transition "on
completion" from state S.
According to the criterion of activity (processing),
transitions on event, similar to those "on completion",
can be divided into active, containing activity
sequences, and inactive, which have no activity
sequence.

3.2. Definition of the State Transition
Diagram and Its Elements

The new state machine behaviour model is very
finely granulated. In other words, we can say that
the modelled control entities have a very finely
granulated processing.
A very important feature of the processing in the
new model is that all processing is composed of
sequences with a duration (i.e. with non-
instantaneous execution), unlike, for example, the
Statecharts model, where only the Loop
processing has duration, while the Entry, the Exit,
and the processing of the transitions is
instantaneous. The disadvantage of the latter
model is in its separation of the states from the
processing (actions only serve to trigger the
activities, which are separated from the state
model); this separation is very likely to bring
difficulties with the synchronization of the
activities.
As the processing of the transitions in the new
state machine model has duration, and since a
modelled control entity must always be in a
known state, the processing of the transitions is
considered as a part of the target state and is called
Specific entry processing (as it executes on the
entry and is specific with respect to the source
state).
The processing in the new state machine model
consists of the following elements:
a. the processing of states, for each state up to one

sequence of each sequence type, defined as

• ENTRY sequence, which is executed only
once on entry to a given active durative
state,

• LOOP sequence, which is executed
cyclically all the time while a procedural
control entity is in a given active durative
state (for elementary states also the opposite
is true – the completion of the Loop
sequence implies the completion of the state,
hence the two expressions are logically
equivalent: state completion ≡ Loop
sequence completion),

• EXIT sequence, which is executed only once
at the exit from a given active durative state,

• ALWAYS sequence, which is executed
concurrently with all activities of an active
durative state, including the sequences of the
transitions into that state (its specific
ENTRY sequence),

• Transient sequence, which is executed only
once at active transient states; and

b. sequences of the transitions into a state, which
are considered as its specific Entry sequences,
as stated above.

As a particular detail, let us mention at this point
that the ENTRY and LOOP sequences are not
executed if, at the entry to a state, the condition

Transition on completion is a transition from one
state (Source) to another state (Sink), which has no
particular cause event, but occurs after the comple-
tion of the source state processing. According to the
criterion of activity (processing), transitions on com-
pletion can be divided into active, containing activity
sequences, and inactive, which have no activity se-
quence. A transition from a superstate cannot be “on
completion”. Each elementary active transient state
must have exactly one FROM transition of the type
“on completion”.

Transition “on event”
Syntactically, the transition on event is a directed
line connecting an ordered pair of nodes (source and
sink), denoted by a solid line ending with a filled ar-

rowhead. Transition on event is shown in Figure 4.

Figure 4
Transition “on event”

tree structures are possible, but also overlapping
superstates. In other words, a state may be contained in
one of the two superstates, or in both of them.
The proposed state machine model does not include in
its current version the notion of the initial substate. In
fact, all TO transitions are drawn explicitly to
elementary states, while superstates may only have
FROM transitions.

Transition "on completion"
Syntactically, the transition on completion is a directed
line connecting an ordered pair of nodes (source and
sink), denoted by a solid line ending with an empty
arrowhead. Transition on completion is shown in Figure
3.

Source Sink

Figure 3 Transition "on completion"

Transition on completion is a transition from one state
(Source) to another state (Sink), which has no particular
cause event, but occurs after the completion of the
source state processing. According to the criterion of
activity (processing), transitions on completion can be
divided into active, containing activity sequences, and
inactive, which have no activity sequence. A transition
from a superstate cannot be "on completion". Each
elementary active transient state must have exactly one
FROM transition of the type "on completion".

Transition "on event"
Syntactically, the transition on event is a directed line
connecting an ordered pair of nodes (source and sink),
denoted by a solid line ending with a filled arrowhead.
Transition on event is shown in Figure 4.

Source Sink

Figure 4 Transition "on event"

Transition on event is a transition from one state
(Source) to another state (Sink), which is executed on
the occurrence of a particular event. At the beginning of
such a transition, first any active processing of the
source state is immediately terminated. A transition
from a superstate can only be of the type "on event". A
transition of the type "on event" from a state S with the
causing event defined by the expression
State(S)=complete is equivalent to the transition "on
completion" from state S.
According to the criterion of activity (processing),
transitions on event, similar to those "on completion",
can be divided into active, containing activity
sequences, and inactive, which have no activity
sequence.

3.2. Definition of the State Transition
Diagram and Its Elements

The new state machine behaviour model is very
finely granulated. In other words, we can say that
the modelled control entities have a very finely
granulated processing.
A very important feature of the processing in the
new model is that all processing is composed of
sequences with a duration (i.e. with non-
instantaneous execution), unlike, for example, the
Statecharts model, where only the Loop
processing has duration, while the Entry, the Exit,
and the processing of the transitions is
instantaneous. The disadvantage of the latter
model is in its separation of the states from the
processing (actions only serve to trigger the
activities, which are separated from the state
model); this separation is very likely to bring
difficulties with the synchronization of the
activities.
As the processing of the transitions in the new
state machine model has duration, and since a
modelled control entity must always be in a
known state, the processing of the transitions is
considered as a part of the target state and is called
Specific entry processing (as it executes on the
entry and is specific with respect to the source
state).
The processing in the new state machine model
consists of the following elements:
a. the processing of states, for each state up to one

sequence of each sequence type, defined as

• ENTRY sequence, which is executed only
once on entry to a given active durative
state,

• LOOP sequence, which is executed
cyclically all the time while a procedural
control entity is in a given active durative
state (for elementary states also the opposite
is true – the completion of the Loop
sequence implies the completion of the state,
hence the two expressions are logically
equivalent: state completion ≡ Loop
sequence completion),

• EXIT sequence, which is executed only once
at the exit from a given active durative state,

• ALWAYS sequence, which is executed
concurrently with all activities of an active
durative state, including the sequences of the
transitions into that state (its specific
ENTRY sequence),

• Transient sequence, which is executed only
once at active transient states; and

b. sequences of the transitions into a state, which
are considered as its specific Entry sequences,
as stated above.

As a particular detail, let us mention at this point
that the ENTRY and LOOP sequences are not
executed if, at the entry to a state, the condition

Transition on event is a transition from one state
(Source) to another state (Sink), which is executed
on the occurrence of a particular event. At the begin-
ning of such a transition, first any active processing of
the source state is immediately terminated. A tran-
sition from a superstate can only be of the type “on
event”. A transition of the type “on event” from a state
S with the causing event defined by the expression
State(S)=complete is equivalent to the transition “on
completion” from state S.
According to the criterion of activity (processing),
transitions on event, similar to those “on comple-
tion”, can be divided into active, containing activity
sequences, and inactive, which have no activity se-
quence.

3.2. Definition of the State Transition
Diagram and Its Elements
The new state machine behaviour model is very finely
granulated. In other words, we can say that the mod-
elled control entities have a very finely granulated
processing.
A very important feature of the processing in the new
model is that all processing is composed of sequenc-
es with a duration (i.e. with non-instantaneous exe-
cution), unlike, for example, the Statecharts model,
where only the Loop processing has duration, while
the Entry, the Exit, and the processing of the transi-
tions is instantaneous. The disadvantage of the latter
model is in its separation of the states from the pro-
cessing (actions only serve to trigger the activities,
which are separated from the state model); this sep-
aration is very likely to bring difficulties with the syn-
chronization of the activities.
As the processing of the transitions in the new state
machine model has duration, and since a modelled
control entity must always be in a known state, the

Information Technology and Control 2018/3/47424

processing of the transitions is considered as a part
of the target state and is called Specific entry process-
ing (as it executes on the entry and is specific with re-
spect to the source state).
The processing in the new state machine model con-
sists of the following elements:
a the processing of states, for each state up to one se-

quence of each sequence type, defined as
 _ ENTRY sequence, which is executed only once

on entry to a given active durative state,
 _ LOOP sequence, which is executed cyclically all

the time while a procedural control entity is in a
given active durative state (for elementary states
also the opposite is true – the completion of the
Loop sequence implies the completion of the state,
hence the two expressions are logically equivalent:
state completion ≡ Loop sequence completion),

 _ EXIT sequence, which is executed only once at
the exit from a given active durative state,

 _ ALWAYS sequence, which is executed concur-
rently with all activities of an active durative state,
including the sequences of the transitions into
that state (its specific ENTRY sequences),

 _ Transient sequence, which is executed only
once at active transient states; and

b sequences of the transitions into a state, which are
considered as its specific Entry sequences, as stat-
ed above.

As a particular detail, let us mention at this point that
the ENTRY and LOOP sequences are not executed if,
at the entry to a state, the condition for its termina-
tion is satisfied; however, the EXIT sequence is exe-
cuted in every case.

3.3. State Machine Execution
Transitions firing susceptibility
The firing susceptibility of transition T1 begins when
the processing of transition T2 traverses the source
state of transition T1. In terms of processing sequenc-
es, the transition becomes susceptible after enabling
the Always processing and before starting the transi-
tion’s source state Entry sequence (if source state is
a superstate, Figure 5a), or before starting the tran-
sition’s source state Specific entry sequence, that is
the sequence of the transition T2 (if source state is an
elementary state, Figure 5b).

The firing susceptibility of transition T1 ends when
the processing of transition T2 traverses the source
state of transition T1, or just before starting transi-
tion’s source state Exit sequence (Figure 6a). The fir-
ing susceptibility of transition T1 also ends on the fir-
ing of transition T2 from the same state (Figure 6b).

Figure 5
Begin of firing susceptibility

Figure 6
End of firing susceptibility

for its termination is satisfied; however, the EXIT
sequence is executed in every case.

3.3. State Machine Execution
Transitions firing susceptibility
The firing susceptibility of transition T1 begins when
the processing of transition T2 traverses the source state
of transition T1. In terms of processing sequences, the
transition becomes susceptible after enabling the
Always processing and before starting the transition's
source state Entry sequence (if source state is a
superstate, Figure 5a), or before starting the transition's
source state Specific entry sequence, that is the
sequence of the transition T2 (if source state is an
elementary state, Figure 5b).

T2 T1
a)

T2 T1
b)

Figure 5 Begin of firing susceptibility

The firing susceptibility of transition T1 ends when the
processing of transition T2 traverses the source state of
transition T1, or just before starting transition's source
state Exit sequence (Figure 6a). The firing susceptibility
of transition T1 also ends on the firing of transition T2
from the same state (Figure 6b).

T2 T1
a)

T2 T1
b)

Figure 6 End of firing susceptibility

Transitions priorities
If the transition conditions for more susceptible
transitions become true at a given moment, the
transition with the highest priority position will be
activated according to the following rules:
1. Transitions caused by propagations have higher

priority than ordinary transitions.
2. Among transitions at different levels in the hierarchy

of states, higher priority is assigned to transitions
with the source in higher-level (outer) superstates.

3. Among transitions with the sources at the same level
in the hierarchy of states, higher priority is assigned
to transitions with the sink in higher-level (outer)

superstates.
4. If the transition conditions for more susceptible

transitions with both sources and sinks at the
same level become true at a given moment, the
choice of a transition to be fired is non-
deterministic.

The sequence of processing on state transition
Before giving the definition of the sequence of
processing on state transition, we shall define the
term of the root state. The root state is the
elementary state, active at the time of transition
firing, that is the source state or a substate of the
source state, in case that the source state is a
superstate. The sequence of processing on state
transition from a source state to a target state is as
follows:
1. The processing of all substates of the source

state is terminated. This includes all Entry,
Loop, Exit, and Always processing and the
processing of transitions into the target state
(specific Entry processing) of all substates.

2. On the path from the source to the sink state,
first for the source state, and then successively,
following the increasing state hierarchy for
each superstate of the root state that is not a
superstate of the target state, the following
successive steps are performed:
a) termination of the Entry, Loop, Transient

and Specific entry processing,
b) execution (starting and waiting for

completion) of the Exit processing,
c) termination of the Always processing.

3. The state variable value changes from the
source to the sink state.

4. On the path from the source to the sink state,
following the decreasing state hierarchy for
each superstate of the sink state that is not a
superstate of the root state, the following
successive steps are performed:
a) enabling the Always processing,
b) execution (starting and waiting for

completion) of the Entry processing,
c) enabling the Loop processing.

5. For the sink state, the following successive
steps are performed:
a) enabling the Always processing,
b) execution (starting and waiting for

completion) of the Specific entry processing
(the processing of the transition into the sink
state),

c) execution (starting and waiting for
completion) of the Entry processing,

d) enabling the Loop processing.
If the sink state is a transient state, then instead of
c) and d), there is an execution (starting and

a

a

b

b

for its termination is satisfied; however, the EXIT
sequence is executed in every case.

3.3. State Machine Execution
Transitions firing susceptibility
The firing susceptibility of transition T1 begins when
the processing of transition T2 traverses the source state
of transition T1. In terms of processing sequences, the
transition becomes susceptible after enabling the
Always processing and before starting the transition's
source state Entry sequence (if source state is a
superstate, Figure 5a), or before starting the transition's
source state Specific entry sequence, that is the
sequence of the transition T2 (if source state is an
elementary state, Figure 5b).

T2 T1
a)

T2 T1
b)

Figure 5 Begin of firing susceptibility

The firing susceptibility of transition T1 ends when the
processing of transition T2 traverses the source state of
transition T1, or just before starting transition's source
state Exit sequence (Figure 6a). The firing susceptibility
of transition T1 also ends on the firing of transition T2
from the same state (Figure 6b).

T2 T1
a)

T2 T1
b)

Figure 6 End of firing susceptibility

Transitions priorities
If the transition conditions for more susceptible
transitions become true at a given moment, the
transition with the highest priority position will be
activated according to the following rules:
1. Transitions caused by propagations have higher

priority than ordinary transitions.
2. Among transitions at different levels in the hierarchy

of states, higher priority is assigned to transitions
with the source in higher-level (outer) superstates.

3. Among transitions with the sources at the same level
in the hierarchy of states, higher priority is assigned
to transitions with the sink in higher-level (outer)

superstates.
4. If the transition conditions for more susceptible

transitions with both sources and sinks at the
same level become true at a given moment, the
choice of a transition to be fired is non-
deterministic.

The sequence of processing on state transition
Before giving the definition of the sequence of
processing on state transition, we shall define the
term of the root state. The root state is the
elementary state, active at the time of transition
firing, that is the source state or a substate of the
source state, in case that the source state is a
superstate. The sequence of processing on state
transition from a source state to a target state is as
follows:
1. The processing of all substates of the source

state is terminated. This includes all Entry,
Loop, Exit, and Always processing and the
processing of transitions into the target state
(specific Entry processing) of all substates.

2. On the path from the source to the sink state,
first for the source state, and then successively,
following the increasing state hierarchy for
each superstate of the root state that is not a
superstate of the target state, the following
successive steps are performed:
a) termination of the Entry, Loop, Transient

and Specific entry processing,
b) execution (starting and waiting for

completion) of the Exit processing,
c) termination of the Always processing.

3. The state variable value changes from the
source to the sink state.

4. On the path from the source to the sink state,
following the decreasing state hierarchy for
each superstate of the sink state that is not a
superstate of the root state, the following
successive steps are performed:
a) enabling the Always processing,
b) execution (starting and waiting for

completion) of the Entry processing,
c) enabling the Loop processing.

5. For the sink state, the following successive
steps are performed:
a) enabling the Always processing,
b) execution (starting and waiting for

completion) of the Specific entry processing
(the processing of the transition into the sink
state),

c) execution (starting and waiting for
completion) of the Entry processing,

d) enabling the Loop processing.
If the sink state is a transient state, then instead of
c) and d), there is an execution (starting and

Transitions priorities
If the transition conditions for more susceptible tran-
sitions become true at a given moment, the transition
with the highest priority position will be activated ac-
cording to the following rules:
1 Transitions caused by propagations have higher

priority than ordinary transitions.
2 Among transitions at different levels in the hierar-

chy of states, higher priority is assigned to transi-
tions with the source in higher-level (outer) super-
states.

3 Among transitions with the sources at the same

425Information Technology and Control 2018/3/47

level in the hierarchy of states, higher priority is as-
signed to transitions with the sink in higher-level
(outer) superstates.

4 If the transition conditions for more susceptible
transitions with both sources and sinks at the same
level become true at a given moment, the choice of
a transition to be fired is non-deterministic.

The sequence of processing on state transition
Before giving the definition of the sequence of pro-
cessing on state transition, we shall define the term
of the root state. The root state is the elementary
state, active at the time of transition firing, that is the
source state or a substate of the source state, in case
that the source state is a superstate. The sequence of
processing on state transition from a source state to a
target state is as follows:
1 The processing of all substates of the source state

is terminated. This includes all Entry, Loop, Exit,
and Always processing and the processing of tran-
sitions into the target state (specific Entry process-
ing) of all substates.

2 On the path from the source to the sink state, first
for the source state, and then successively, follow-
ing the increasing state hierarchy for each super-
state of the root state that is not a superstate of the
target state, the following successive steps are per-
formed:
a termination of the Entry, Loop, Transient and

Specific entry processing,
b execution (starting and waiting for completion)

of the Exit processing,
c termination of the Always processing.

3 The state variable value changes from the source to
the sink state.

4 On the path from the source to the sink state, fol-
lowing the decreasing state hierarchy for each su-
perstate of the sink state that is not a superstate of
the root state, the following successive steps are
performed:
a enabling the Always processing,
b execution (starting and waiting for completion)

of the Entry processing,
c enabling the Loop processing.

5 For the sink state, the following successive steps
are performed:
a enabling the Always processing,
b execution (starting and waiting for completion)

of the Specific entry processing (the processing
of the transition into the sink state),

c execution (starting and waiting for completion)
of the Entry processing,

d enabling the Loop processing.
If the sink state is a transient state, then instead of c)
and d), there is an execution (starting and waiting for
completion) of its Transient processing.
The new state machine behaviour model allows over-
lapping of superstates. For an illustration of the impli-
cations of this fact, let us consider a few examples of
state transitions in state machines including super-
states, which are shown in Figure 7. In the example, the
firing of a transition has the following implications on
the activation or deactivation of individual superstates.
1 Transition T1 implies activity of elementary state

S3 and superstates SS2 and SS3. At the transition,

Figure 7
An illustration of state transitions including overlapping superstates

waiting for completion) of its Transient processing.
The new state machine behaviour model allows
overlapping of superstates. For an illustration of the
implications of this fact, let us consider a few examples
of state transitions in state machines including
superstates, which are shown in Figure 7. In the
example, the firing of a transition has the following
implications on the activation or deactivation of
individual superstates.
1. Transition T1 implies activity of elementary state S3

and superstates SS2 and SS3. At the transition, the
superstate SS2 has to be activated, while the possible
need of the activation of SS3 depends on which
elementary state was active at the time of transition
firing, as follows:
• if elementary state S1 was active ⇒ superstate

SS3 is activated, since it has to be active
concurrently with state S3, which is the next active
elementary state;

• if elementary state S2 was active ⇒ superstate
SS3 is not activated, since it already was active,
being a superstate of S2.

2. Transition T2 implies activity of elementary state S4
and superstate SS2. At the transition, the possible
need of the deactivation of SS3 is dependent on
which elementary state was active at the time of
transition firing, as follows:
• if elementary state S1 was active ⇒ superstate

SS3 is not deactivated, since it already was non-
active, not being a superstate of S1;

• if elementary state S2 was active ⇒ superstate
SS3 is deactivated, since it was active
concurrently with S2, being its superstate, and it
should not be active concurrently with S4, not
being its superstate.

4. A Comparison of the Traditional and
the New State Machine Model on an
Industrial Case Study

The proposed new state machine behaviour model has
been implemented in the domain specific modelling

language ProcGraph. The language is a part of a
MDE based development methodology described
in [6]. An earlier version of ProcGraph was
described in [4]. Various versions of ProcGraph
have been successfully used over the last fifteen
years in more than twenty industrial projects,
ranging in size (expressed in a commonly used
number-of-signals-based metrics) from a couple of
hundred to a couple of thousand signals. Some of
the most interesting projects include PVA glue
production, resin synthesis in paint and varnish
production, and several sub-processes of the
titanium dioxide production process (ore grinding,
ore digestion, hydrolysis, calcinate grinding, gel
washing, chemical treatment, pigment washing,
pigment drying, and pigment micronisation). Let
us also note that a very similar version of a state
machine behaviour model, adapted to batch
process control software, has been implemented in
a tool for batch process control on a PLC
platform, called PLCbatch [5, 7].
In the following, we give an illustration of the new
behaviour model using one of the sub-processes of
the above-mentioned titanium dioxide production
process.

4.1. A Short Introduction of the
Industrial Process Considered in the
Example

Titanium dioxide (TiO2) is a white pigment that is
widely used in paint and enamel production. The
production of the TiO2 pigment in the Cinkarna
chemical works consists of a succession of several
processes. One of the sub-processes in the first
stage of the production (the so-called black part of
the production) is the batch process of ore
digestion. In fact, it is the second sub-process, the
first being the ore grinding sub-process. The ore
digestion sub-process has both batch and
continuous processing. The continuous part is
dealing with the transport of various input
materials (ore, concentrated sulfuric acid, weak
acid, washing water, etc.). The batch part consists
of six digester units and a common vessel for pre-
mixing ore and concentrated sulfuric acid.

SS3

SS2SS1

S1 S2 S3T1 S4

T2

Figure 7 An illustration of state transitions including overlapping superstates

Information Technology and Control 2018/3/47426

the superstate SS2 has to be activated, while the
possible need of the activation of SS3 depends on
which elementary state was active at the time of
transition firing, as follows:

 _ if elementary state S1 was active ⇒ superstate SS3
is activated, since it has to be active concurrently
with state S3, which is the next active elementary
state;

 _ if elementary state S2 was active ⇒ superstate
SS3 is not activated, since it already was active,
being a superstate of S2.

2 Transition T2 implies activity of elementary state
S4 and superstate SS2. At the transition, the pos-
sible need of the deactivation of SS3 is dependent
on which elementary state was active at the time of
transition firing, as follows:

 _ if elementary state S1 was active ⇒ superstate
SS3 is not deactivated, since it already was non-
active, not being a superstate of S1;

 _ if elementary state S2 was active ⇒ superstate SS3
is deactivated, since it was active concurrently
with S2, being its superstate, and it should not
be active concurrently with S4, not being its
superstate.

4. A Comparison of the Traditional
and the New State Machine Model
on an Industrial Case Study
The proposed new state machine behaviour model
has been implemented in the domain specific model-
ling language ProcGraph. The language is a part of a
MDE based development methodology described in
[6]. An earlier version of ProcGraph was described
in [4]. Various versions of ProcGraph have been suc-
cessfully used over the last fifteen years in more than
twenty industrial projects, ranging in size (expressed
in a commonly used number-of-signals-based met-
rics) from a couple of hundred to a couple of thousand
signals. Some of the most interesting projects include
PVA glue production, resin synthesis in paint and var-
nish production, and several sub-processes of the ti-
tanium dioxide production process (ore grinding, ore
digestion, hydrolysis, calcinate grinding, gel washing,
chemical treatment, pigment washing, pigment dry-
ing, and pigment micronisation). Let us also note that
a very similar version of a state machine behaviour

model, adapted to batch process control software, has
been implemented in a tool for batch process control
on a PLC platform, called PLCbatch [5, 7].
In the following, we give an illustration of the new be-
haviour model using one of the sub-processes of the
above-mentioned titanium dioxide production process.

4.1. A Short Introduction of the Industrial
Process Considered in the Example
Titanium dioxide (TiO2) is a white pigment that is
widely used in paint and enamel production. The pro-
duction of the TiO2 pigment in the Cinkarna chemical
works consists of a succession of several processes.
One of the sub-processes in the first stage of the pro-
duction (the so-called black part of the production)
is the batch process of ore digestion. In fact, it is the
second sub-process, the first being the ore grinding
sub-process. The ore digestion sub-process has both
batch and continuous processing. The continuous
part is dealing with the transport of various input
materials (ore, concentrated sulfuric acid, weak acid,
washing water, etc.). The batch part consists of six di-
gester units and a common vessel for pre-mixing ore
and concentrated sulfuric acid.
For the purpose of illustration, a continuous opera-
tion of pneumatic transport of the ground ore from
the ground ore storage silo into the pre-mixing ves-
sel dosing silo was used. The pneumatic transport is
performed by means of a fluidisation vessel, which is
situated beneath the storage silo. During the trans-
port, the fluidisation vessel is alternately filled and
emptied by means of compressed air, which pushes
the ore through the pipeline towards the dosing silo.
Once inside the dosing silo, most of the ore falls to the
bottom, while some remains on the bag filters at the
top of the silo, while the air passes through the filters
and it is released into the atmosphere.
In the illustration, we point out the difference be-
tween two versions of a selected behaviour, namely the
version that has been produced by using the new be-
haviour model and the version that would be produced
if the usual state machine behaviour model was used.

4.2. Use of the New State Machine Model
The state machine of the pneumatic transport opera-
tion according to the new model is shown in Figure 8.
The state machine has typical states of a continuous
operation, namely Stopped, Starting, Running, and

427Information Technology and Control 2018/3/47

Stopping. The state Running is a superstate, which is
composed of three states, namely elementary states
Venting and Filling, and a superstate Emptying (of
the fluidisation vessel). The Emptying superstate is
composed of two states, namely an elementary state
Emptying starting and a superstate Emptying run-
ning, which is composed of three elementary states,
namely Not finished, Wait for finished, and Blowing
the chamber. As we can see, the behaviour of the op-
eration is quite simple, and the states are rather intu-
itive and self-explanatory.

Figure 8
Pneumatic transport state machine according to the new model

For the purpose of illustration, a continuous operation of
pneumatic transport of the ground ore from the ground
ore storage silo into the pre-mixing vessel dosing silo
was used. The pneumatic transport is performed by
means of a fluidisation vessel, which is situated beneath
the storage silo. During the transport, the fluidisation
vessel is alternately filled and emptied by means of
compressed air, which pushes the ore through the
pipeline towards the dosing silo. Once inside the dosing
silo, most of the ore falls to the bottom, while some
remains on the bag filters at the top of the silo, while the
air passes through the filters and it is released into the
atmosphere.
In the illustration, we point out the difference between
two versions of a selected behaviour, namely the
version that has been produced by using the new
behaviour model and the version that would be
produced if the usual state machine behaviour model
was used.

4.2. Use of the New State Machine
Model

The state machine of the pneumatic transport
operation according to the new model is shown in
Figure 8.
The state machine has typical states of a
continuous operation, namely Stopped, Starting,
Running, and Stopping. The state Running is a
superstate, which is composed of three states,
namely elementary states Venting and Filling, and
a superstate Emptying (of the fluidisation vessel).
The Emptying superstate is composed of two
states, namely an elementary state Emptying
starting and a superstate Emptying running, which
is composed of three elementary states, namely
Not finished, Wait for finished, and Blowing the
chamber. As we can see, the behaviour of the
operation is quite simple, and the states are rather

Running

Emptying

Emptying running

Stopped

Venting

Emptying starting

Not finished

Wait for finished

Starting

Stopping

Blowing the chamber

Filling

Figure 8 Pneumatic transport state machine according to the new model

4.3. Use of the Traditional State Machine
Model
Let us see now the state machine of the pneumatic
transport operation as it would be if the traditional
state machine model was used. This state machine is
shown in Figure 9.
It is obvious that the state diagram in this case is more
complex due to a larger number of elementary states.
In fact, the Running superstate in this case has 10 el-
ementary sub-states, while in the case when the new

Information Technology and Control 2018/3/47428

Figure 9
Pneumatic transport state machine according to the traditional model

intuitive and self-explanatory.

4.3. Use of the Traditional State Machine
Model

Let us see now the state machine of the pneumatic
transport operation as it would be if the traditional state
machine model was used. This state machine is shown
in Figure 9.
It is obvious that the state diagram in this case is more
complex due to a larger number of elementary states. In
fact, the Running superstate in this case has 10
elementary sub-states, while in the case when the new
behaviour model was used, the number of these sub-
states was just 6, as can be seen in Figure 8.

4.4. Comparison of Both State Machine

Models
In the following, we point out the differences
between the two state machines and give an
explanation of these differences. There are three
points where these differences arise.
The first difference is the state Filling (see Figure
8). This state's processing is composed of three
parts, each of them having duration. The first part
includes the filling starting sequence, which has a
duration due to a number of sub-sequences it is
composed of, where each sub-sequence has to be
completed before proceeding to the next sub-
sequence. The second part includes waiting for the
filling of the chamber to be completed, which also
takes some time. Finally, the third part, including
the filling stopping sequence, also has a duration,

Running

Emptying

Stopped

Filling
stopping

Venting

Initial actions

Emptying starting

Not finishedWait for finished

Blowing the pipe

Starting

Stopping

Blowing the chamber

Filling
starting

Filling
running

Figure 9 Pneumatic transport state machine according to the traditional model

behaviour model was used, the number of these sub-
states was just 6, as can be seen in Figure 8.

4.4. Comparison of Both State Machine
Models
In the following, we point out the differences between
the two state machines and give an explanation of
these differences. There are three points where these
differences arise.
The first difference is the state Filling (see Figure 8).

This state’s processing is composed of three parts,
each of them having duration. The first part includes
the filling starting sequence, which has a duration
due to a number of sub-sequences it is composed of,
where each sub-sequence has to be completed before
proceeding to the next sub-sequence. The second part
includes waiting for the filling of the chamber to be
completed, which also takes some time. Finally, the
third part, including the filling stopping sequence, also
has a duration, for a similar reason as the filling start-

429Information Technology and Control 2018/3/47

ing sequence. The new state machine behaviour mod-
el has enabled us to pack all three durative sequences
into just one state by allocating the filling starting se-
quence to the state’s Entry sequence, the waiting for
the completion of filling to the Loop sequence, and the
filling stopping sequence to the state’s Exit sequence.
Since in the traditional state behaviour model only
Loop processing may have duration, the Filling pro-
cessing had to be allocated to three distinct states,
as shown in Figure 9, namely Filling starting, Filling
running, and Filling stopping.
The second difference is in the elementary state Initial
actions (a sub-state of the Emptying state), which ap-
pears in the state machine according to the traditional
model in Figure 9, while in the state machine accord-
ing to the new model in Figure 8, this state seems to be
missing. But this is not the case, as its functionality
has now been allocated to the Entry sequence of the
Emptying state, where it fits best due to the fact that
these initial actions are, in fact, initial actions of the
Emptying state. In the traditional model, placing this
functionality to that point is not possible, since this se-
quence has duration and states’ Entry sequences in the
traditional model cannot have duration.
The third difference is in the elementary state Blow-
ing the pipe (a sub-state of the Emptying state), which
appears in the state machine according to the tradi-
tional model in Figure 9, while in the state machine
according to the new model in Figure 8, this state also
seems to be missing. Actually, however, its functional-
ity has now been allocated to the Exit sequence of the
Emptying running state. In the traditional model, plac-
ing this functionality to that point is not possible, since
this sequence has a duration and states’ Exit sequences
in the traditional model cannot have duration. For that
reason, this functionality was placed into a distinct
state Blowing the pipe, while the superstate Emptying
running was omitted, since there was no other pro-
cessing to be allocated to this state. Omitting this state
could be considered as another drawback of the state
machine in Figure 9, since the Emptying superstate is

now composed of just six flat elementary states, which
represents a certain lack of structure.
The above comparison clearly illustrates the advan-
tages of the proposed new model, which was success-
fully used in a number of industrial applications.

5. Conclusion
In this paper, a new extended state machine behaviour
model for industrial process control systems was de-
scribed. The extension is in the introduction of a hi-
erarchical structure of states, in a fine structuring of
the processing, and in the introduction of two types
of transitions. The main feature of the new concept of
processing is the durability of all actions sequences –
not only the do or loop sequence – as is the case of other
state machine formalisms. This enables modelling of
control software for slow continuous or batch indus-
trial processes in a more straightforward manner and,
at the same time, on a higher level of abstraction than
with using traditional state machine abstractions.
Our experiences with the use of the proposed be-
haviour model in real industrial projects are very pos-
itive, and, in our opinion, the new model has a great
potential to improve the quality and the complexity
management of process control software.
The new concept has been implemented in a do-
main-specific modelling language, ProcGraph, which
has been successfully used in a number of small- and
medium-sized industrial automation projects.
The concept has been developed for and demonstrat-
ed in the domain of industrial process control sys-
tems; however, it could be applied with benefit to any
class of slow response real time (reactive) systems.

Acknowledgement
The financial support of the Slovenian Research
Agency (ARRS) is gratefully acknowledged.

References
1. Booch, G., Jacobson, I. Rumbaugh, J. The Unified Mod-

elling Language User Guide, Addison Wesley, 1999.

2. Chia-han, Y., Vyatkin, V. Model Transformation Be-
tween MATLAB Simulink and Function Blocks. Pro-

ceedings of IEEE International Conference on Indus-
trial Informatics (INDIN’10), Osaka, Japan, IEEE,
2010, 1130-1135.

3. Crane, M. L., Dingel, J. UML vs. Classical vs. Rhap-

Information Technology and Control 2018/3/47430

sody Statecharts: Not All Models Are Created Equal.
Software and Systems Modeling, 2007, 6(4), 415-435.
https://doi.org/10.1007/s10270-006-0042-8

4. Godena, G. ProcGraph: A Procedure-Oriented Graph-
ical Notation for Process-Control Software Specifica-
tion. Control Engineering Practice, 2004, 12(1), 99-111.
https://doi.org/10.1016/S0967-0661(03)00002-9

5. Godena, G. A New Proposal for the Behaviour Model of
Batch Phases. ISA Transactions, 2009, 48, 3-9. https://
doi.org/10.1016/j.isatra.2008.08.002

6. Godena, G., Lukman, T., Kandare, G. A New Approach to
Control Systems Software Development. In: Strmčnik,
S., Juričić, Đ. (Eds.), Case Studies in Control: Putting
Theory to Work, (Advances in Industrial Control, ISSN
1430-9491). London [etc.]: Springer, 2013, 363-406.

7. Godena, G., Steiner, I., Tancek, J., Svetina, M. Design of a
Batch Process Control Tool on the Programmable Log-
ic Controller Platform. In: Hawkins, William M. (Ed.),
Brandl, Dennis (Ed.), Boyes, Walt (Eds.). ISA-88 Imple-
mentation Experiences, (The WBF Book Series, vol. 1).
New York: Momentum Press, 2010, 157-173.

8. Harel, D. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming, 1987, 8(3),
231-274. https://doi.org/10.1016/0167-6423(87)90035-9

9. Harel, D., Kugler, H. The RHAPSODY Semantics of
Statecharts (or, on the executable core of the UML).
In: Ehrig, H. et al. (Eds.), Integration of Software Spec-
ification Techniques for Applications in Engineering.
Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 2004, 3147, 325-354.

10. Harel, D., Naamad, A. The STATEMATE Semantics of
Statecharts. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 1996, 5(4), 293-333.
https://doi.org/10.1145/235321.235322

11. Harel, D., Pnueli, A., Schmidt, J. P., Sherman, R. On the
Formal Semantics of Statecharts. Proceedings of the
2nd IEEE Symposium on Logic in Computer Science,
Computer Society Press of the IEEE, 1987, 54-64.

12. Harel, D., Politi, M. Modeling Reactive Systems
with Statecharts: The STATEMATE Approach. Mc-
Graw-Hill, 1998.

13. Heck, B. S., Wills, L. M., Vachtsevanos, G. J. Software
Technology for Implementing Reusable, Distribut-

ed Control Systems. IEEE Control Systems Mag-
azine, 2003, 23(1), 21-35. https://doi.org/10.1109/
MCS.2003.1172827

14. Howe, D. (Ed.). The Free On-line Dictionary of Comput-
ing (foldoc.org).

15. Huizing, C., de Roever, W. P. Introduction to Design
Choices in the Semantics of Statecharts. Information
Processing Letters, 1991, 37(4), 205-213. https://doi.
org/10.1016/0020-0190(91)90190-S

16. Jusas, V., Neverdauskas, T. Combining Software and
Hardware Test Generation Methods to Verify VHDL
Models. Information Technology and Control, 2013,
42(2), 362-368. https://doi.org/10.5755/j01.itc.42.4.426

17. Mohagheghi, P., Dehlen, V. Where Is the Proof ? – A Re-
view of Experiences from Applying MDE in Industry.
Proceedings of the European Conference on Model
Driven Architecture: Foundations and Applications
(ECMDA-FA’08), Berlin, Germany, 2008, 432-443.
https://doi.org/10.1007/978-3-540-69100-6_31

18. OMG. Unified Modelling Language: Superstructure
Version 2.4.1. Document formal/2011-08-06, Object
Management Group, 2011.

19. Pnueli, A., Shalev, M. What Is in a Step: On the Seman-
tics of Statecharts. Proceedings of the International
Conference on Theoretical Aspects of Computer Soft-
ware (TACS’91), Lecture Notes in Computer Science,
Springer, Heidelberg, 1991, 526, 244-264.

20. Schmidt, D. C. Model-Driven Engineering. IEEE Com-
puter, 2006, 39(2), 25-31. https://doi.org/10.1109/
MC.2006.58

21. Selic, B. The Pragmatics of Model-Driven Develop-
ment. IEEE Software, 2003, 20(5), 19-25. https://doi.
org/10.1109/MS.2003.1231146

22. Thramboulidis, K. IEC 61499 in Factory Automation.
Proceedings of IEEE International Conference on
Industrial Electronics, Technology and Automation
(IETA’05), Bridgeport, CT, USA, Springer. 2005, 115-
124.

23. Von der Beeck, M. A Comparison of Statecharts
Variants. In: Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT’94), Lecture Notes
in Computer Science, Springer, Heidelberg, 1994, 863,
128-148.

