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Revocation functionality is very important for an identity-based signature to revoke users efficiently and se-
curely. Hung et al. proposed a revocable identity-based signature (RIBS) scheme in the standard model and 
proved that it was strongly unforgeable against chosen-message attacks. However, we find that their RIBS 
scheme is insecure. In this paper, we provide a security analysis of Hung et al.’s RIBS scheme by showing con-
crete attacks. Our analysis shows that Hung et al.’s RIBS scheme does not satisfy the requirement of strong 
unforgeability, and thus, an adversary can forge a legal signature for a previously signed message. We also note 
serious flaws in their security proofs. The simulator of Hung et al.’s security argument cannot correctly an-
swer the signing query in the security model, and the adversary can obtain any valid signature. Furthermore, 
we demonstrate that Hung et al.’s RIBS scheme is vulnerable to signing key exposure attack. To solve these 
problems, we construct an improved RIBS scheme with strong unforgeability and signing key exposure resist-
ance in the standard model. Compared with previous RIBS schemes without random oracles, our scheme has 
advantages regarding computational cost and security.
KEYWORDS: Revocable identity-based signature, strong unforgeability, signing key exposure, standard mod-
el, bilinear pairing, security.

1. Introduction
Identity-based cryptography avoids public key certif-
icates and simplifies key management in traditional 
certificated-based cryptosystem [19, 25]. In an iden-

tity-based signature (IBS) scheme, each user sets an 
email address or other identity information as the 
user’s public key, and the corresponding private key 
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of the user is computed by a trusted private key gen-
erator (PKG). Due to its elimination of complicat-
ed certificate management, IBS has attracted great 
attention from researchers. Based on bilinear pair-
ings, many IBS schemes in the random oracle model 
have been presented in [14, 20, 26, 27], but these IBS 
schemes could be insecure in the real world when 
random oracles are instantiated with specific hash 
functions [5]. Therefore, it is necessary to construct 
IBS schemes without random oracles in the standard 
model. The first IBS scheme in the standard model 
was presented by Paterson and Schuldt [15]. Since 
then, several IBS schemes without random oracles 
have appeared in [6, 7, 13].
However, all of the above-mentioned IBS schemes 
only satisfy existential unforgeability, in which an 
adversary is unable to forge a valid signature on a 
message that has not been signed before. Actually, 
the stronger security property, called strong unforge-
ability, is required in some practical applications [4]. 
Strong unforgeability preserves the property of exis-
tential unforgeability and prevents an adversary from 
forging signatures on previously signed messages. 
There are some transformation methods to convert 
existentially unforgeable IBS schemes to strongly un-
forgeable ones [8, 21]. In particular, several efficient 
strongly unforgeable IBS schemes in the standard 
model were directly constructed without the use of 
any transformation, such as [10, 16, 23].
Practical IBS schemes need an efficient revocation 
mechanism to revoke compromised or unauthorized 
users. However, the public key in the IBS scheme can-
not be revoked directly since the user’s identity is the 
user’s public key. To achieve revocation functionality, 
some methods of effectively revoking the user in an 
identity-based setting have been proposed [1, 3, 17, 
18]. The main idea of these methods is that PKG needs 
to periodically update the signing key for each non-re-
voked user. Sun et al. [22] presented a revocable iden-
tity-based signature (RIBS) scheme, but its security 
depends on the random oracle model. To avoid ran-
dom oracles, Tsai et al. [24] proposed an RIBS scheme 
in the standard model, but this scheme only covers 
existential unforgeability. Naturally, constructing 
a strongly unforgeable IBS scheme is very interest-
ing. Liu et al. [12] presented an RIBS scheme with 
strong unforgeability in the standard model. Although 
their scheme reduces the workload of the PKG’s key 

update, the size of a user’s secret key is very large. 
Meanwhile, the signing algorithm in Liu et al.’s RIBS 
scheme is based on the weakly secure Boneh-Boyen 
scheme [2], so it could not resist attack algorithms as 
presented in [11]. Hung et al. [9] presented a new RIBS 
scheme without random oracles in which the signing 
key of each non-revoked user is derived from a fixed 
secret key issued by the PKG via a secure channel and 
a dynamic update key sent by the PKG via a public 
channel. They also claimed that their RIBS scheme 
was strongly unforgeable under the computational 
Diffie-Hellma (CDH) assumption. Nevertheless, we 
find that their conclusion is incorrect.
In this paper, we first show that Hung et al.’s RIBS 
scheme is not strongly unforgeable by providing a 
concrete attack. Next, we show that the simulator of 
Hung et al.’s security proof cannot generate correct 
signatures to respond to the adversary’s signing que-
ries. We also show that their scheme does not consid-
er a signing key exposure attack and cannot withstand 
this attack. Furthermore, we propose an improved 
RIBS scheme that provides strong unforgeability and 
signing key exposure resistance in the standard mod-
el. In addition, the analysis results indicate that our 
scheme has higher computational performance and 
security.    

2. Preliminaries
In this section, we briefly review some preliminaries 
and security notions of strongly unforgeable RIBS 
scheme.

2.1. Bilinear Pairings and Security 
Assumption
Let p be a large prime, G and GT be two multiplicative 
cyclic groups of order p, and g be a generator of G. An 
efficiently computable map e: G×G→GT is said to be a 
bilinear pairing if it has the following properties:
 _ Bilinearity: for any a, b∈  Zp, e(ga, gb)= e(g, g)ab= e(gb, 

ga).
 _ Non-degeneracy: e(g, g)≠1, where 1 is the identity 

element of GT.
 _ Given a tuple (g, ga, gb)∈  G3 with unknown a, b∈  Zp, 

the CDH problem in G is to compute gab.

Definition 1. If no probabilistic polynomial-time al-
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gorithm has a non-negligible probability of solving 
the CDH problem in G, we say that the CDH assump-
tion holds in G.

2.2. Formal Definition and Security Model of 
RIBS Scheme
A strongly unforgeable RIBS scheme is defined by the 
following six algorithms:
Setup: On input of a security parameter λ, this algo-
rithm outputs a PKG’s master secret key msk and the 
public parameters pp.
Extract: On input of pp, msk and a user’s identity ID, 
this algorithm outputs an ID’s secret key IDsk .
KeyUp: Taking as input pp, msk, a non-revoked user’s 
identity ID and a time period t, this algorithm outputs 
the user’s update key ,ID tvk . 
SKGen: Taking as input pp, IDsk   and ,ID tvk , this algo-
rithm outputs a signing key ,ID tdk   for a non-revoked 
user with identity ID. 
Sign: On input of pp, a signing key ,ID tdk   and a mes-
sage M, this algorithm outputs a signature σ   on M .
Verify: Taking as input pp, an identity ID, a time peri-
od t, a message M and a signature σ , a verifier accepts 
σ   if σ  is a valid signature on M with respect to (ID, 
t); otherwise, the verifier rejects σ .
Liu et al. [12] and Hung et al. [9] gave the security 
model of strongly unforgeable RIBS scheme.
Definition 2. An RIBS scheme is said to be strongly 
unforgeable against adaptive chosen-message attacks 
if the probability that an adversary A wins the follow-
ing game played with a challenger C is negligible. 
Setup: C runs the algorithm Setup to produce the 
master secret key msk  and the public parameters pp . 
Then, C sends pp  to A, and keeps msk   secretly.
PKG queries: On receiving a secret key query on an 
identity ID, C runs the algorithm Extract(pp, msk, ID) 
to generate ID’s secret key IDsk  and returns it to A.
KeyUp queries: On receiving an update key query 
on an identity ID and a time period t, C runs the algo-
rithm KeyUp(pp, msk, ID, t) to generate ID’s update 
key ,ID tvk  and returns it to A.
SKGen queries: On receiving a signing key query on 
(ID, t), C returns ⊥ to A if ID has been revoked. Other-
wise, C first asks for a secret key query on ID and an 
update key query on (ID, t) to get a secret key IDsk   and 
an update key ,ID tvk , respectively. Then, C runs the al-

gorithm SKGen(pp, IDsk , ,ID tvk ) to generate ID’s sign-
ing key ,ID tdk  and returns it to A.
Signing queries: On receiving a signature query on a 
message M for an identity ID and a time period t, C first 
issues a SKGen query on (ID, t) to obtain a signing key 

,ID tdk . Then, C runs the algorithm Sign(pp, ,ID tdk ,M) 
to generate a signature σ  on M  and returns it to A.
Forgery: A finally outputs a forged signature *σ   on 
a message *M  for an identity *ID  and a time period *t
. We say A wins in the above the game if the following 
conditions hold:

1 
*σ   is a valid signature of *M   with regard to * *( , )ID t .

2 
*ID   and * *( , )ID t   have not appeared in PKG queries 

and SKGen queries, respectively, 

3 
*σ  is not outputted by Signing query on * * *( , , )M ID t  . 

3. The Review of Hung et al.’s RIBS 
Scheme

3.1. Hung et al.’s RIBS Scheme
For subsequent convenience, we define some nota-
tions used in this paper. We let ID, t and M denote 
a user’s identity, a time period and a message to be 
signed, respectively. ID*, t* and M* denote a challenged 
user’s identity, time period and message, respectively. 
We also assume that all identities and messages are 
bit strings of fixed lengths m and l, respectively. In 
practice, we can achieve identities and messages that 
are bit strings of arbitrary length by using two cryp-
tographic hash functions: HID: {0,1}*→{0,1}m and HM: 
{0,1}*→ {0,1}l.
The RIBS scheme of Hung et al. [9] consists of five al-
gorithms: Setup, Extract, KeyUp, Sign and Verify. 
The details of this scheme are described below.
Setup: On input of a security parameter λ, PKG runs 
this algorithm to produce a master secret key msk and 
the public parameters pp.
1 Select two cyclic groups G and GT of prime or-

der p>2λ, a generator g of G, a bilinear pairing e: 
G×G→GT and two random elements g2, g3 from G.

2 Pick two collision-resistant hash functions H1: 
{0,1}*→{0,1}n and H2: {0,1}*→Zp, where n is the fixed 
length of the output of H1. Further select random el-
ements u0, ui(1≤i≤m), v0, vj(1≤j≤n), w0, wk(1≤k≤l)∈  G.
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3 Select two random integers , pZα β ∈  and compute 
2gα

 , 2g β
  and 1g gα β+= .

4 Publish the parameters ( , , , ,Tpp G G p e=   
1 2 3 0 1 0 1 0 1, , , , , ,..., , , ,..., , , ,m ng g g g u u u v v v w w    

1 2..., , , )lw H H  and keep the master secret key 
2( ,msk gα=   2 )g β

 .
For an identity 1( ,..., ) {0,1}m

mID ID ID= ∈ , 
a string 1( ,..., ) {0,1}n

nT T T= ∈   and a message 
1( ,..., ) {0,1}l

lM M M= ∈  , we define the following 
three functions, which will be used in all subsequent 
schemes:

,1 0
1

( ) i
m

ID
W i

i
F ID u u

=

= ∏ , ,2 0
1

( ) j
n

T
W j

j
F T v v

=

= ∏
 
 and 

,3 0
1

( ) k
l

M
W k

k
F M w w

=

= ∏ .

Extract: Given a user’s identity ID, the PKG runs the 
extraction algorithm to generate ID’s secret key IDsk .
Randomly select s pr Z∈   and compute 1 2 2 ,1( , ) ( ( ) , )s sr r

ID Wsk sk sk g F ID gα= = 
1 2 2 ,1( , ) ( ( ) , )s sr r

ID Wsk sk sk g F ID gα= = .
Send IDsk   to the user via a secure channel.
KeyUp: Given a time period t and a non-revoked us-
er’s identity ID, the PKG runs the key update algo-
rithm to generate the user’s update key ,ID tvk .
Compute 1 1( , ) ( ,..., ) {0,1}n

nT H ID t T T= = ∈ .
Select a random exponent t pr Z∈   and compute 

, 1 2 2 ,2( , ) ( ( ) , )t tr r
ID t Wvk vk vk g F T gβ= = .

Send ,ID tvk   to the user via a public channel.
After receiving 1 2( , )IDsk sk sk=  and , 1( ,ID tvk vk=   

2 )vk  , a non-revoked user with identity ID computes 
, 1 2 3 1 1 2 2( , , ) ( , , )ID tdk dk dk dk sk vk sk vk= = ⋅  as the sign-

ing key at time period t.
Sign: For a message M, a time period t and a signing 
key , 1 2 3( , , )ID tdk dk dk dk= , a signer with identity ID 
runs the signature generation algorithm to create a 
signature σ   on M .
Select a random integer m pr Z∈  and compute 

2 ( , )mrh H M g= .
Compute 1 1 ,3( ) ( ) mrh

Wdk F Mσ = , 2σ = 2( )hdk , 3 3( )hdkσ =   
and 4

mrgσ = .
Output a signature 1 2 3 4( , , , )σ σ σ σ σ=  on M.
Verify: Given an identity ID, a time period t, a mes-
sage M and a signature 1 2 3 4( , , , )σ σ σ σ σ= , a verifier 
runs the signature verification algorithm to check the 
validity of σ .

1 Compute 1( , )T H ID t=  and h =  2 4( , )H M σ .
2 Verify the following equation 

1( , )e gσ =  2 1 ,1 2( , ) ( ( ), )h
We g g e F ID σ⋅   

,2 3 ,3 4( ( ), ) ( ( ), ).W We F T e F Mσ σ⋅ ⋅  

If this equation holds, σ  is a valid signature and the 
verifier accepts σ . Otherwise, the verifier rejects σ .

3.2. Hung et al.’s Security Proof
Hung et al. [9] proved that their RIBS scheme was 
strongly unforgeable against two types of adversar-
ies. The first type of attacker is an external adversary 
who can request all queries except for the challenged 
user’s secret key query. The second type of attacker 
is a revoked user who can request all queries except 
for the challenged user’s update key query in the tar-
get time period. In this subsection, to save space, we 
mainly describe the simulator in Hung et al.’s security 
proof, which uses a forgery of an external adversary to 
solve the CDH problem.
Suppose that an external adversary A1 makes qE se-
cret key queries, qU update key queries and qS sign-
ing queries and outputs a forged signature for Hung 
et al.’s RIBS scheme. By using A1, a simulator C solves 
the CDH problem. Specifically, C is given a random 
instance 3( , , )a bg g g G∈  of the CDH problem, and C’s 
goal is to calculate gab. The details of the interaction 
between C and A1 are described as follows.
Setup: C sets 2( )v E Sl q q= +   and 2m Sl q=  satisfying 

( 1)vl m p+ <  and ( 1)ml l p+ < . C picks three random 
integers pZβ ∈ , (0 )v vk k m≤ ≤  and (0 )m mk k l≤ ≤ , and 
sets 2

bg g=  and 1
ag g g β= . This indicates that the 

master secret key 2( ,amsk g=   2 )g β , but a   is unknown 
to C. Moreover, C chooses two collision-resistant 
hash functions H1: {0,1}* →{0,1}n and H2: {0,1}*→Zp. 
Then, C selects random elements 0 1, ,...,

vm lx x x Z∈ , 
0 1, ,...,

ml lc c c Z∈ , 0 1, ,..., ,my y y  0 1 0 1, ,..., , , ,...,n l pt t t z z z Z∈   
and computes 0

0
tv g= , (1 )jt

jv g j n= ≤ ≤ , 
0 0

0 2
v vl k x yu g g- += , 2

i ix y
iu g g=  (1 )i m≤ ≤ , 0 0

0 2
m ml k c zw g g- +=  

and 2 (1 )k kc z
kw g g k l= ≤ ≤ . Finally, C sends the pub-

lic parameters 1 2 3 0 1( , , , , , , , , , ,Tpp G G p e g g g g u u=   
0 1 0 1 1 2..., , , ,..., , , ,..., , , )m n lu v v v w w w H H  to A1.

To simplify the following description, given an identi-
ty ID , a string T  and a message M , we define the fol-
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lowing five functions 

0
1

( )
m

v v i i
i

F ID l k x x ID
=

= - + + ∑ ,

( )J ID = 0
1

m

i i
i

y y ID
=

+ ∑ , 0
1

( )
n

j j
j

E T t t ID
=

= + ∑ ,

( ) m mK M l k= - + 0
1

l

k k
k

c c M
=

+ ∑ , 

0
1

( )
l

k k
k

L M z z M
=

= + ∑ .

PKG queries: On receiving a secret key query on ID, C 
computes F(ID) and J(ID). If ( ) 0modF ID p= , C exits 
the simulation. Otherwise, C randomly selects s pr Z∈ , 
computes

( ) 1
( ) ( )

1 2 ,1( , ) (( ) ( ) , ( ) ),s s

J ID
r ra aF ID F ID

ID Wsk sk sk g F ID g g
- -

= =

and returns ID’s secret key IDsk  to A1.
KeyUp queries: On receiving an update key query on 
(ID, t), C computes 1( , )T H ID t= . Then, C randomly 
selects t pr Z∈ , uses the secret value β  to compute 

, 1 2 2 ,2( , ) ( ( ) , )t tr r
ID t Wvk vk vk g F T gβ= = , and returns the 

update key ,ID tvk  to A1.
Signing queries: On receiving a signature query on 
(M, ID, t), C answers this query in the following man-
ner.
1 If ( ) 0modF ID p≠ , C computes a secret key IDsk  

and an update key ,ID tvk  by the secret key simulation 
and the update key simulation, respectively. Then, 
C gets a signing key ,ID tdk  at time period t by com-
bining IDsk  and ,ID tvk , runs the algorithm Sign to 
produce a signature σ  on M, and returns σ  to A1.

2 If ( ) 0modF ID p= , C computes ( )K M  and ( )L M . 
Based on ( ) 0modK M p= , it can be divided into 
two subcases.

 _ If ( ) 0modK M p= , C aborts the simulation.
 _ If ( ) 0modK M p≠ , C randomly selects rs , 

,t m pr r Z∈ , and computes 1( , )T H ID t=  
and 2 ( , )mrh H M g= . Next, C computes  

1σ =
( )
( )

2 ,1 ,2 ,3(( ) ( ) ( ) ) ( ) ( ) ,s t m

L M h
r r rh a K M

W W Wg F ID F T g F Mβ
-

2
sr hgσ = , 3

tr hgσ =  and ( )
4 ( ) m

h
ra K Mg gσ

-

= , and 
returns a signature σ =  1 2 3 4( , , , )σ σ σ σ  on M to A1.

Forgery: A1 eventually outputs a forged signature 

* * * * *
1 2 3 4( , , , )σ σ σ σ σ=  with regard to * * *( , , )M ID t . If 

*( ) 0modF ID p≠  or *( )K M ≠ 0mod p , C aborts. 
Otherwise, C computes *T =  * *

1( , )H ID t  and 
* * *

2 4( , )h H M σ= , and then outputs the CDH value

*

* * * * * *

* 1/
1

* ( )/ * ( )/ * ( )/
2 2 3 4

( )

( ) ( ) ( )

h
ab

J ID h E T h L M h
g

g β

σ

σ σ σ
= .

4. Cryptanalysis of Hung et al.’s RIBS 
Scheme

4.1. Hung et al.’s RIBS Vulnerability Against 
Strong Unforgeability
In [9], Hung et al. demonstrated that their RIBS 
scheme satisfies strong unforgeability in the stan-
dard model. However, we find that their conclusion is 
not true. Concretely, given a message-signature pair 
( ,M σ ), there exists an adversary A that can always 
succeed in forging a new valid signature on the same 
message M  as shown below.
A intercepts a valid signature 1 2( , ,σ σ σ=  3 4, )σ σ  
on a message M of an identity ID  at time period t , 
where 1( , )T H ID t= , h = 2 4( , )H M σ , 2

sr hgσ = , 
3

tr hgσ = , ( )
1 2 ,1 ,2 ,3( ) ( ) ( )s t mr h r h rh

W W Wg F ID F T F Mα βσ +=  
and 4

mrgσ = .
A randomly selects '

t pr Z∈ , computes 
''

1 1 ,2 ( ) tr
WF Tσ σ=  

and 
''

3 3
trgσ σ= =

'
t tr h rg + , and sets '

2 2σ σ= , '
4 4σ σ= .

A outputs a signature ' ' ' ' '
1 2 3 4( , , , )σ σ σ σ σ=  on M.

It is obvious that 'σ  is a legal signature of ID on M at 
time period t since 'σ  satisfies the following verifica-
tion equation in Hung et al.’s RIBS scheme:

''
1 1 ,2( , ) ( ( ) , )tr

We g e F T gσ σ=
'( )

2 ,1 ,2 ,3 ,2( ( ) ( ) ( ) ( ) , )s t m tr h r h r rh
W W W We g F ID F T F M F T gα β+=

'( )
2 ,1 ,2 ,3( ( ) ( ) ( ) , )s t t mr h r h r rh

W W We g F ID F T F M gα β ++=
'( )

2 ,1 ,2( , ) ( ( ) , ) ( ( ) , )s t tr h r h rh
W We g g e F ID g e F T gα β ++= ⋅ ⋅ ,3( ( ) , )mr

We F M g⋅

' ' '
2 1 ,1 2 ,2 3 ,3 4( , ) ( ( ), ) ( ( ), ) ( ( ), ).h

W W We g g e F ID e F T e F Mσ σ σ=

From the above attack, we know that the adversary A 
does not make secret queries on ID or update key que-
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ries on (ID, t), and 'σ  is not the output of the signing 
queries on (M, ID, t). Therefore, Hung et al.’s RIBS 
scheme does not satisfy the requirement of strong un-
forgeability. The main reason for the inability to resist 
the above attack is that the previous signature σ  and 
the forged signature 'σ  have the same hash value h . 
 Hence, the adversary can easily re-randomize exist-
ing signatures to forge new signatures on the same 
messages.

4.2. Analysis of Hung et al.’s Security Proof

In Subsection 3.2, we have reviewed the security 
proof of Hung et al.’s RIBS scheme against an external 
adversary. Here, we show that there are serious flaws 
in their proofs.
When an external adversary A1 issues a signa-
ture query on (M, ID, t), the simulator C of Hung 
et al. randomly selects , ,s t m pr r r Z∈  and com-
putes 1( , )T H ID t=  and 2 ( , )mrh H M g= . If 

( ) 0modF ID p=  and ( ) 0modK M p≠ , C computes a 
signature 1( ,σ σ=  2 3 4, , )σ σ σ on M, where 2

sr hgσ = , 

3
tr hgσ = ,

'( ) ( )
4 ( )

m
m m

h ahr
r ra K M K Mg g g gσ

-
-

= = =  and  1σ =
( )
( )

2 ,1 ,2 ,3(( ) ( ) ( ) ) ( ) ( )s t m

L M h
r r rh a K M

W W Wg F ID F T g F Mβ
-

.
From the above simulation, we can see that the hash 
value h  in 1σ  is calculated by M  and mrg , just as h = 

2 ( , )mrH M g . However, in accordance with the verifi-
cation algorithm Verify of Hung et al.’s RIBS scheme, 
the hash value 'h  in the verification equation is calcu-
lated by M  and 4σ , just as 'h = 2 4( , )H M σ . Because 
of '

( )m m
ahr r

K M
= - , we have '

m mr r≠ . Furthermore, we 

get 'h = 2 4( , )H M σ
/

2 ( , )mrH M g= ≠ 2 ( , )mrH M g h=  since 
2H  is collision-resistant. Then, we have     

1( , )e gσ = 2 1 ,1 2 ,2 3( , ) ( ( ), ) ( ( ), )h
W We g g e F ID e F Tσ σ⋅ ⋅  

'

,3 4 2 1 ,1 2( ( ), ) ( , ) ( ( ), )h
W We F M e g g e F IDσ σ⋅ ≠ ⋅

,2 3 ,3 4( ( ), ) ( ( ), )W We F T e F Mσ σ⋅ ⋅ .

Due to 'h ≠ h , the simulated signature σ computed 
by C cannot satisfy the verification equation of Hung et 
al.’s RIBS scheme. Therefore, the simulator C of Hung 
et al. is unable to correctly answer the signing queries 
defined in the security model, and the adversary A1 

cannot obtain any valid signature for ( ) 0modF ID p=  
and ( )K M 0mod p≠ . Moreover, based on the wrong 
simulation, it is not correct that the security of Hung 
et al.’s RIBS scheme is directly reduced to the hard-
ness of the CDH assumption by using A1 against their 
scheme. Thus, their conclusion of Theorem 1 in [9] is 
wrong. Note that a similar security analysis applies 
to an internal adversary. Furthermore, we could con-
clude that Theorem 2 in [9] is also wrong.

4.3. Hung et al.’s RIBS Vulnerability Against 
Signing Key Exposure
Hung et al.’s RIBS scheme does not consider a real-
istic threat known as signing key exposure [1,3,12]. 
That is, if a RIBS scheme is secure against signing key 
exposure attack, the exposure of a user’s signing key 
in the current time period does not reveal any infor-
mation on subsequent signing keys of the user in oth-
er time periods. More concretely, let t* be a target time 
period and ID* be a target user’s identity who is not re-
voked at times t and t*. An adversary is allowed to get 
a signing key * ,ID t

dk  and two update keys * ,ID t
vk  and 

* *,ID t
vk at time t and t*, respectively. Then, the adver-
sary could not obtain a secret key *ID

sk  from * ,ID t
dk  

and * ,ID t
vk , and could not get a signing key * *,ID t

dk  at 
time *t  from * ,ID t

dk  and * *,ID t
vk . 

In this subsection, we show that Hung et al.’s RIBS 
scheme is unable to withstand signing key exposure 
attack as follows.
1 The adversary A obtains a compromised signing key 

* ,ID t
dk  on time period t. In Hung et al.’s RIBS scheme, 

* 1,
( ,

ID t
dk dk=  2 3, )dk dk * *

1 1 2 2( , , )sk vk sk vk= ⋅  is com-
puted by a secret key *

* *
1 2( )

ID
sk sk sk= ，  and an up-

date key * 1 2,
( , )

ID t
vk vk vk= at time period t. Note 

that A can get * ,ID t
vk  and * *,ID t

vk , since all update 
keys are transmitted by a public channel. 

2 A who has * 1 2 3,
( , , )

ID t
dk dk dk dk=  and * ,ID t

vk =  
1 2( , )vk vk  can easily recover the target user’s secret 

key *
* *
1 2( )

ID
sk sk sk= ,  such that *

1sk =  1 1/dk vk  and 
*
2 2sk dk= .

3 A computes the signing key * *,ID t
dk =  

* * * * * * *
1 2 3 1 1 2 2( , , ) ( , , )dk dk dk sk vk sk vk= ⋅  from 
*

*
1( ,

ID
sk sk=  *

2 )sk  and * *
* *
1 2,

( , )
ID t

vk vk vk=  at time 
period *t .

Therefore, Hung et al.’s RIBS scheme is vulnerable to 
signing key exposure. 
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5. An improved RIBS Scheme with 
Strong Unforgeability

5.1. Our Construction
Based on Hung et al.’s RIBS scheme [9], we construct 
a secure RIBS scheme that is strongly unforgeable 
in the standard model. To resist attacks presented 
in Section 4, we add a probabilistic signing key algo-
rithm (SKGen) and modify the signing algorithm in 
our improved scheme. Our IBS scheme is described 
as follows.
The algorithms Setup, Extract and KeyUp are the 
same as those of Hung et al.’s RIBS scheme described 
in Section 3.1.
SKGen: After receiving a secret key 1( ,IDsk sk=  2 )sk  
and an update key , 1( ,ID tvk vk= 2 )vk  at time period t 
from the PKG, a non-revoked user with identity ID 
outputs a signing key via the following steps:
Select two random integers , pr s Z∈  and compute 

1( , )T H ID t= .
Compute the signing key , 1 2 3( , , )ID tdk dk dk dk=  

1 ,1 1 ,2( ( ) ( ) ,s r
W Wsk F ID vk F T= ⋅ ⋅ ⋅ 2 ,ssk g 2 )rvk g . 

Sign: Given a message M and a signing key ,ID tdk  
1 2 3( , , )dk dk dk=  on time period t, a signer with identity 

ID performs the following steps:
1 Select a random exponent m pr Z∈  and compute 

4
mrgσ = .

2 Set 2σ = 2dk  and 3 3dkσ = .
3 Compute 2 2 3 4( , , , , , )h H ID M t σ σ σ=  and 1σ  1 ,3 3( ( ) ) mrh

Wdk F M g= ⋅
1 ,3 3( ( ) ) mrh

Wdk F M g= ⋅ .
4 Output a signature 1 2 3 4( , , , )σ σ σ σ σ=  on M.
Verify: Given a signature 1 2 3 4( , , , )σ σ σ σ σ=  of an 
identity ID on a message M at time period t, a verifier 
checks the validity of σ   as follows:
1 Compute 1( , )T H ID t=   and 2 ( , , ,h H ID M t= 2 3 4, , )σ σ σ  

2 3 4, , )σ σ σ .
2 Verify the following equation 

1( , )e gσ =  2 1 ,1 2( , ) ( ( ), )We g g e F ID σ⋅  

,2 3 ,3 3 4( ( ), ) ( ( ) , ).h
W We F T e F M gσ σ⋅ ⋅

If this equation holds, the verifier accepts σ . Other-
wise, the verifier rejects σ .

Note that we introduce an algorithm SKGen to 
re-randomize the signing key in our scheme, but the 
signing key in Hung et al.’s RIBS scheme has the same 
random numbers used in the secret key and the up-
date key. For a signing key ,ID tdk = 1 2 3( , , )dk dk dk =  

2 ,1 ,2( ( ) ( ) , , )s t s tr s r r r s r r
W Wg F ID F T g gα β + + + ++  and an up-

date key , 1 2( , )ID tvk vk vk=  2 ,2( ( ) , )t tr r
Wg F T gβ=  at 

time period t, it is infeasible to recover the secret key 
1 2 2 ,1( , ) ( ( ) , )s sr r

ID Wsk sk sk g F ID gα= =  from ,ID tdk  and 
,ID tvk . Hence, our scheme is secure against signing 

key exposure attack. In the signing algorithm of our 
scheme, the hash value 2 2 3( , , , , ,h H ID M t dk dk=  )mrg
is hashed by a signer’s identity ID, a message M, a 
time period t, a part 2 3 2 3( , ) ( , )dk dkσ σ =  of a signing 
key ,ID tdk  and an element for the randomness of M. 
Due to the collision resistance of H2, it is difficult to 
re-randomize our RIBS scheme to forge a new signa-
ture without a signing key. Therefore, our scheme is 
resistant to the attack presented in Section 4.1.

5.2. Security Proof
In this subsection, we reduce the security of our RIBS 
scheme to the CDH assumption. Our proof approach 
is similar to that of Hung et al.’s security proof [9]. To 
simplify the security analysis, we also classify attacks 
into two categories: type-1 adversary and type-2 ad-
versary. The type-1 adversary A1 models an external 
attacker who cannot request the secret key query on 
ID* and the signing key query on (ID*, t*). The type-2 
adversary A2 models an internal attacker (or a revoked 
user) who cannot issue the update key and signing key 
queries on (ID*, t*). By presenting the following lem-
mas, we prove that our RIBS scheme is strongly un-
forgeable against two types of adversaries.
Lemma 1. If there exists a type-1 adversary A1 break-
ing strong unforgeability of our RIBS scheme, then the 
CDH problem can be solved. 
Proof. Suppose that A1 forges a valid signature for our 
RIBS scheme after making qE secret key queries, qU 
update key queries, qK signing key queries and qS sign-
ing queries. Then, we are able to construct a simulator 
C that solves the CDH problem by using A1. C is given 
a random instance 3( , , )a bg g g G∈  of the CDH prob-
lem, and the goal of C is to calculate gab. 
Setup: Let 12( )v Sl q q= +  and 2m Sl q=  satisfying 

( 1)vl m p+ <  and ( 1)ml l p+ < , where 1 max{ ,Eq q=
}Kq . C randomly selects pd Z∈  and computes 
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3
dg g= . C sets other parameters  1 2 0 1 0 1 0 1( , , , , , , , ,..., , , ,..., , , ,...,T m nG G p g g g u u u v v v w w

1 2 0 1 0 1 0 1( , , , , , , , ,..., , , ,..., , , ,...,T m nG G p g g g u u u v v v w w 1 2, , )lw H H  as described 
in Section 3.2, where 1

ag g g β=  and 2
bg g= . Note 

that the master secret key 2( ,amsk g= 2 )g β , but a  is 
unknown to C. Meanwhile, C sends the public param-
eters pp  to A1.
To make the expression simpler, we also define five 
functions: ( )F ID , ( )J ID , ( )E T , ( )K M  and ( )L M . 
Accordingly, we have the following equations

( ) ( )
,1 2( ) F ID J ID

WF ID g g= , ( )
,2 ( ) E T

WF T g=  and ( ) ( )
,3 2( ) K M L M

WF M g g=   
( ) ( )

,3 2( ) K M L M
WF M g g= .

Please refer to Section 3.2 for the detailed description 
of these functions.
PKG queries: C maintains an initially empty list Lsk 
that consists of tuples in the form of (ID, rs). When A1 

requests a secret key query on ID, C computes F(ID) 
and J(ID). If ( ) 0modF ID p= , C terminates the sim-
ulation. If ( ) 0modF ID p≠ , C first recalls sr  from 
Lsk if there is a tuple (ID, rs) in Lsk. Otherwise, C ran-
domly selects s pr Z∈  and adds (ID, rs) to Lsk. Then, 

C computes IDsk
( )

( )
1 2 ,1( , ) (( ) ( ) ,s

J ID
ra F ID

Wsk sk g F ID
-

= =  
1

( )( ) )sra F IDg g
-

 and returns ID’s secret key IDsk  to A1.
KeyUp queries: C maintains an initially empty list 
Lvk that consists of tuples in the form of (ID, t, rt). 
When A1 requests an update key query on (ID, t), C 
computes 1( , )T H ID t= . Next, C recalls tr  from Lvk if 
there is a tuple (ID, t, rt) in Lvk. Otherwise, C randomly 
selects t pr Z∈  and adds (ID, t, rt) to Lvk. Then, C uses 
the secret value β  to compute , 1 2( , )ID tvk vk vk= =  

2 ,2( ( ) , )t tr r
Wg F T gβ  and returns an ID’s update key 

,ID tvk  to A1.
SKGen queries: C maintains an initially empty list Ldk 
that consists of tuples in the form of (ID, t, r, s). On receiv-
ing a signing key query on (ID, t), C returns ⊥ to A1 if ID 
has been revoked. Otherwise, C simulates the signing key 
generation algorithm by executing the following steps: 
1 Recall ( , )r s  from Ldk if there is a tuple (ID, t, r, s) 

in Ldk. Otherwise, select random elements , pr s Z∈  
and add (ID, t, r, s) to Ldk.

2 Ask for a secret key query on ID and an update key 
query on (ID, t) to get a secret key 1 2( , )IDsk sk sk=
and an update key , 1( ,ID tvk vk=  2 )vk , respectively.

3 Compute 1( , )T H ID t=  and , 1 2( , ,ID tdk dk dk=  3 )dk
1 ,1 1 ,2 2( ( ) ( ) , ,s r s

W Wsk F ID vk F T sk g= ⋅ ⋅ ⋅ ⋅ 2 )rvk g⋅ .
4 Return a signing key , 1 2( , ,ID tdk dk dk=  3 )dk  to A1.

Note that C cannot compute a secret key and aborts 
simulation in case of ( ) 0modF ID p= .
Signing queries: On receiving a signature query on 
(M, ID, t), C answers this query in the following way.
Case 1: If ( ) 0modF ID p≠ , C makes the signing key 
query on (ID, t) to get a signing key ,ID tdk , and then runs 
the algorithm Sign to produce a signature σ  on M.
Case 2: If ( ) 0modF ID p= , C computes ( )K M  and 

( )L M , and considers the following two subcases:
 _ Case 2.1: If ( ) 0modK M p= , C aborts the 

simulation.
 _ Case 2.1: If ( ) 0modK M p≠ , C recalls , , ( , )s tr r r s  

from Lsk, Lvk and Ldk, respectively, if there were defined. 
Otherwise, C selects random elements , , ,s t pr r r s Z∈  
and adds (ID, rs), (ID, t, rt), (ID, t, r, s) to Lsk, Lvk and 
Ldk, respectively. Then, C randomly selects m pr Z∈ , 
and computes 1( , )T H ID t= , 2

sr sgσ += , 3
tr rgσ += , 

4σ = 
1

( )( ) mra K Mg g
-

, 2 2 3 4( , , , , , )h H ID M t σ σ σ=  and 

1 ,1 2 ,2( ) ( ) ( )s tr s r r
W WF ID g F Tβσ + += ⋅ ⋅

( )
( )( )

L M hd
a K Mg

- -

⋅

,3 3( ( ) ) mrh
WF M g . Finally, C returns a signature 

1 2 3 4( , , , )σ σ σ σ σ= on M to A1.

Let ' ,s sr r s= +  
'

t tr r r= +  and ' ,
( )m m
ar r

K M
= -  we have 

'

2 ,s sr s rg gσ += =  
'

3 ,t tr r rg gσ += =
1

( ) ( )
4 ( )

m
m

ar
ra K M K Mg g gσ

-
-

= = 
1

( ) ( )
4 ( )

m
m

ar
ra K M K Mg g gσ

-
-

= =    
'
mrg= ,  2 2 3 4 2( , , , , , )= ( , , ,h H ID M t H ID M tσ σ σ=  

=
' ' '
, , )s t mr r rg g g  and 

( )
( )

1 ,1 2 ,2( ) ( ) ( ) ( )s t

L M hd
r s r r a K M

W WF ID g F T gβσ
- -

+ += ⋅ ⋅  
,3 3( ( ) ) mrh

WF M g⋅

' '
( )

( )
2 ,1 ,2 2 2( ) ( ) ( )s t

aL M
r r a a K M

W Wg F ID F T g g gβ
-

-= ⋅ ⋅ ⋅ ⋅ ⋅  
( )

,3 3( ( ) ) m

ahd
rhK M

Wg F M g
-

⋅ ⋅

' ' ( ) ( ) ( )
2 ,1 ,2 2( ) ( ) ( ) ( ( ) )s t

a
r ra K M L M d h K M

W Wg F ID F T g g gβ
-

+=

,3 3( ( ) ) mrh
WF M g⋅

' ' ( )
2 ,1 ,2 ,3 3( ) ( ) ( ) ( ( ) )s t

a
r ra h K M

W W Wg F ID F T F M gβ
-

+= ⋅ ⋅ ⋅

,3 3( ( ) ) mrh
WF M g⋅

' ' '

2 ,1 ,2 ,3 3( ) ( ) ( ( ) )s t mr r ra h
W W Wg F ID F T F M gβ+= .
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It is easy to verify that the signature 1 2( , ,σ σ σ=  
3 4, )σ σ  generated by the simulator C is valid since 

1( , )e gσ
' ' '

2 ,1 ,2 ,3 3( ( ) ( ) ( ( ) ) , )s t mr r ra h
W W We g F ID F T F M g gβ+=

' '

2 ,1 ,2( , ) ( ( ), ) ( ( ), )s tr ra
W We g g e F ID g e F T gβ+= ⋅ ⋅

'

,3 3( ( ) , )mrh
We F M g g⋅

2 1 ,1 2 ,2 3( , ) ( ( ), ) ( ( ), )W We g g e F ID e F Tσ σ= ⋅ ⋅

 ,3 3 4( ( ) , )h
We F M g σ⋅ .

Forgery: A1 eventually outputs a forged signature 
* * * * *

1 2 3 4( , , , )σ σ σ σ σ=  with regard to * * *( , , )M ID t , 
where *ID  and * *( , )ID t  have not appeared in the 
secret key and signing key queries, and *σ  is not 
generated by signing queries on * * *( , , )M ID t . If 

*( ) 0modF ID p≠  or *( ) 0modK M p≠ , C aborts the 
simulation. Otherwise, C computes * * *

1( , )T H ID t=  
and * * * * * * *

2 2 3 4( , , , , , )h H ID M t σ σ σ= , and uses the se-
cret value β  to calculate the CDH value abg  in the 
following manner:

* * * *

*
1

* ( ) * ( ) * ( ) *
2 2 3 4 4( ) ( ) ( ) ( )J ID E T L M h dg β

σ

σ σ σ σ
* * **

* * * ** * * *

* * *
2 ,1 ,2 ,3 3

( ) ( ) ( )
2

( ) ( ) ( ( ) )

( ) ( ) ( ) ( )

s t m

s t m m

r r ra h
W W W

r r r rJ ID E T L M h d

g F ID F T F M g

g g g g g

β

β

+

=

* * ** * * * * *

* * * ** * * *

( ) ( ) ( ) ( ) ( )
2 2 2 3

( ) ( ) ( )
3

( ) ( ) ( )

( ) ( ) ( ) ( )

s t m

s t m m

r r ra F ID J ID E T K M L M h

r r r rJ ID E T L M h

g g g g g g g

g g g g
=

2
ag= (since * *( ) ( ) 0modF ID K M p= = )
abg= .

We now analyse the probability that C does not abort 
in the above simulation. If C completes the entire sim-
ulation, the following events must occur.
1 All secret key and signing key queries on an identi-

ty ID satisfy ( ) 0modF ID p≠ .
2 All signing queries on an identity ID and a message 

M satisfy ( ) 0modF ID p≠  or ( ) 0modK M p≠ .
3 The forged signature *σ of identity *ID  on 

message *M  satisfies *( ) 0modF ID p=  and 
*( )=0modK M p .

To simplify the analysis, we define the events as fol-
lows:

: ( ) 0modi iA F ID p≠  for 1=1,..., Si q q+ ,
* *: ( ) 0modA F ID p= ,

: ( ) 0modj jB K M p≠  for =1,..., Sj q ,
* *: ( ) 0modB K M p= .

Thus, the probability that C does not abort is

1
* *

1 1

Pr[ ] Pr[ ]
S Sq q q

i j
i j

abort A A B B
+

= =

¬ ≥    

1
* *

1 1

= Pr[ ]Pr[ ]
S Sq q q

i j
i j

A A B B
+

= =

  

1
* * * *

1 1

= Pr[ ]Pr[ | ]Pr[ ]Pr[ | ]
S Sq q q

i j
i j

A A A B B B
+

= =
  .

Since ( 1)ml l p+ < , we have that 

* *Pr[ ]= Pr[ ( ) 0mod ]A F ID p=

* *Pr[ ( ) 0mod ( ) 0mod ]vF ID p F ID l≥ = =            
*Pr[ ( ) 0mod ]vF ID l= = ⋅

* *Pr[ ( ) 0mod | ( ) 0mod ]vF ID p F ID l= =

1 1
1vl m

=
+

,

1 1
* *

1 1

Pr[ | ] 1 Pr[ | ]
S Sq q q q

i i
i i

A A A A
+ +

= =

= - ¬ 

1
*

1
1 Pr[ | ]

Sq q

i
i

A A
+

=

≥ - ¬∑

11 S

v

q q
l
+

= - .

Since ( 1)vl m p+ < , we have that 

* *Pr[ ]= Pr[ ( ) 0mod ]B K M p=

* *Pr[ ( ) 0mod ( ) 0mod ]mK M p K M l≥ = =  
*Pr[ ( ) 0 mod ]mK M l= = ⋅
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* *Pr[ ( ) 0mod | ( ) 0mod ]mK M p F M l= =

1 1
1ml l

=
+

,

* *

1 1

Pr[ | ] 1 Pr[ | ]
S Sq q

j j
j j

B B B B
= =

= - ¬ 

*

1
1 Pr[ | ]

Sq

j
j

B B
=

≥ - ¬∑

1 S

m

q
l

= - .

As 12( )v Sl q q= +  and 2m Sl q= , we can obtain the re-
sulting probability

11 1 1 1Pr[ ]= 1 1
1 1

S S

v v m m

q q q
abort

l m l l l l
   +

¬ - -   + +   

1

1 1

1 1 1 1= 1 1
2( ) 1 2( ) 2 1 2

S S

S S S S

q q q
q q m q q q l q

   +
- -   + + + +   

1

1=
16( 1)( 1) ( )S Sm l q q q+ + +

.

Therefore, if A1 breaks the strong unforgeability 
of our IBS scheme with probability ε , then C can 
solve the CDH problem with probability at least 

116 ( )( 1)( 1)S Sq q q m l
ε

+ + +
.

Lemma 2. If there exists a type-2 adversary A2 break-
ing strong unforgeability of our RIBS scheme, then the 
CDH problem can be solved. 
Proof. Suppose that A2 makes qE secret key queries, qU 
update key queries, qK signing key queries and qS sign-
ing queries, and forges a valid signature for our RIBS 
scheme with probability ε . Then, we show that a sim-
ulator C can solve the CDH problem by using A2. C is 
given 3( , , )a bg g g G∈ , and C’s goal is to output gab. 
Setup: C sets 22( )t Sl q q= +  and 2m Sl q=  satisfying 

( 1)tl n p+ <  and ( 1)ml l p+ < , where 2 max{ , }U Eq q q= . 
C randomly selects , pd Zχ ∈ , (0 )t tk k n≤ ≤  and 

(0 )m mk k l≤ ≤ . Additionally, C  selects random elements 
' ' ' ' ' '
0 1 0 1, ,..., , , ,..., ,m n px x x t t t Z∈  ' ' '

0 1, ,...,
tn ly y y Z∈ , and sets 

1 =a ag g g gχ χ += , 2
bg g= ,  

'
0

0
xu g= , 

'
(1 )ix

iu g i m= ≤ ≤ , 
' '
0 0

0 2
t tl k y tv g g- += , ju =  

' '

2 (1 )j jy tg g j n≤ ≤  and 3
dg g= . 

Note that the master secret key 2 2( , )amsk g gχ= , but a  
is unknown to C. Then, C constructs other parameters 

0 ,w (1 )kw k l≤ ≤ , 1H  and 2H  in the same manner as 
in Lemma 1. Finally, C sends public parameters pp  to 
the adversary A2.
Given an identity ID , a string T  and a message M , 
we also define the following five functions :

' '
2 0

1
( )

m

i i
i

E ID x x ID
=

= + ∑ ,

' '
2 0

1
( )

n

t t j j
j

F T l k y y T
=

= - + + ∑ ,

2 ( )J T = ' '
0

1

n

j j
j

t t T
=

+ ∑ ,

0
1

( )
l

m m k k
k

K M l k c c M
=

= - + + ∑ , 

0( )L M z= +  
1

l

k k
k

z M
=

∑ . 

Consequently, we have three equations ,1 ( )WF ID  
2 ( )E IDg= , 2 2( ) ( )

,2 2( ) F T J T
WF T g g=  and ,3 ( )WF M =  

( ) ( )
2
K M L Mg g .

PKG queries: C maintains an initially empty list 
Lsk in the same manner as PKG queries in Lem-
ma 1. On receiving a secret key query on ID, C 
recalls sr  from Lsk. Then, C computes IDsk =  

1 2 2 ,1( , ) ( ( ) , )s sr r
Wsk sk g F ID gχ= , and returns IDsk  to A2.

KeyUp queries: C maintains an initially emp-
ty list Lvk in the same manner as KeyUp queries 
in Lemma 1. On receiving an update key que-
ry on (ID, t), C computes 1( , )T H ID t= , 2 ( )F T  
and 2 ( )J T . If 2 ( ) 0modF T p= , C aborts. If 

2 ( ) 0modF T p≠ , C recalls tr  from Lvk, computes 
2

2 2

( ) 1
( ) ( )

, 1 2 ,2( , ) (( ) ( ) , ( ) ),t t

J T
r rF T F Ta a

ID t Wvk vk vk g F T g g
- -

= = ⋅
and returns ,ID tvk  to A2.
SKGen queries: On receiving a signing key query 
on (ID, t), C performs the same as SKGen queries in 
Lemma 1 to return a signing key ,ID tdk  to A2. Similar-
ly, C aborts the simulation when C cannot generate an 
update key with 2 ( ) 0modF T p= .
Signing queries: On receiving a signature query on 
(M, ID, t), C computes 1( , )T H ID t= , 2 ( )F T  and 2 ( )J T , 
 and then responds to this query as follows.
Case 1: If 2 ( ) 0modF T p≠ , C performs the same as in 
Case 1 in Lemma 1 and returns a signature σ  on M to A2.



585Information Technology and Control 2018/3/47

Case 2: If 2 ( ) 0modF T p= , C computes ( )K M  and 
( )L M , and considers the following two subcases:

 _ Case 2.1: If ( ) 0modK M p= , C terminates the 
simulation.

 _ Case 2.2: If ( ) 0modK M p≠ , C returns a signature 
σ  on M to A2 as in Case 2.2 in Lemma 1.

Forgery: A2 eventually outputs a forged signature 
* * * * *

1 2 3 4( , , , )σ σ σ σ σ=  with regard to * * *( , , )M ID t , where 
* *( , )ID t  has not appeared in the update key and sign-

ing key queries, and *σ  is not generated by signing 
queries on * *( , ,M ID  * )t . C computes * * *

1( , )T H ID t=  
and * * * * * * *

2 2 3 4( , , , , , )h H ID M t σ σ σ= . If *
2 ( )F T ≠  

0mod p  or *( ) 0modK M p≠ , C terminates simula-
tion. Otherwise, C uses the secret value χ  to calculate 
the CDH value abg  as below:

* * * *
2 2

*
1

( ) ( )* * * ( ) *
2 2 3 4 4( ) ( ) ( ) ( )E ID J T L M h dg χ

σ

σ σ σ σ
* * **

* * * ** * * *
2 2

* * *
2 ,1 ,2 ,3 3

( ) ( ) ( )
2

( ) ( ) ( ( ) )

( ) ( ) ( ) ( )

s t m

s t m m

r r ra h
W W W

r r r rE ID J T L M d h

g F ID F T F M g

g g g g g

χ

χ

+

=

* * ** * * * * *
2 2 2

* * * ** * * *
2 2

( ) ( ) ( ) ( ) ( )
2 2 2 3

( ) ( ) ( )
3

( ) ( ) ( )

( ) ( ) ( ) ( )

s t m

s t m m

r r rE ID F T J Ta K M L M h

r r r rE ID J T L M h

g g g g g g g
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The probability analysis is similar to Lemma 1. The 
probability that C completes the simulation not 
aborting is at least 

2

1
16 ( )( 1)( 1)S Sq q q n l+ + +

, and C 

can solve the CDH problem with probability at least 

216 ( )( 1)( 1)S Sq q q n l
ε

+ + +
.

Combining Lemma 1 and Lemma 2, we can obtain the 
following theorem.
Theorem 1. In the standard model, our RIBS scheme is 
strongly unforgeable against adaptive chosen-message 
attacks under the CDH assumption.

5.3. Comparison

We give a comparison between our scheme and the 
previous RIBS schemes in the standard model. In Ta-
ble 1, |G| denotes the bit-length of an element in group 
G, and TP and TE denote a pairing operation and an ex-
ponentiation operation, respectively. We do not take 
into account relatively efficient operations, such as 
hash operations, multiplication, etc.
As shown in Table 1, among the three strong unforge-
able IBS schemes [10,16,23], the signature length and 
signature verification cost of Sato et al.’s IBS scheme 
are the largest, while Tsai et al.’s IBS scheme has the 
largest signature cost. However, none of three schemes 
[10,16,23] support key revocation mechanism. 
Three RIBS schemes have the same signature size, 
but our RIBS scheme is more efficient than Liu et 
al.’s scheme [12] and Hung et al.’s scheme [9] in terms 
of computational costs of the signing and verifying 
phases. It is noteworthy that Hung et al.’s scheme 
is vulnerable to signing key exposure and that our 
scheme and Liu et al.’s scheme can resist signing key 
exposure attack. However, there are some flaws in Liu 
et al.’s security proof as presented in [11], and the size 
of each user’s secret key increases logarithmically 
with the number of total users involved in Liu et al.’s 

Table 1 
Comparisons of computational costs and security with previous RIBS schemes

RIBS scheme Signature size Sign Verify Signing key exposure resistance Security

Sato et al.’s scheme [16] 5|G| 3TE 6TP No Yes

Kwon’s scheme [10] 3|G| 3TE TE + 4TP No Yes

Tsai et al.’s scheme [23] 3|G| 4TE TE + 4TP No Yes

Liu et al.’s scheme [12] 4|G| 3TE 2TE + 4TP Yes No

Hung et al.’s scheme [9] 4|G| 5TE TE + 4TP No No

Our scheme 4|G| 3TE TE + 4TP Yes Yes
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scheme. In addition, Hung et al.’s scheme does not sat-
isfy strong unforgeability, but our scheme is strongly 
unforgeable in the standard model.

 

6. Conclusions
In this paper, we revisit Hung et al.’s RIBS scheme and 
its security proof [9]. Unfortunately, we find that their 
scheme does not possess strong unforgeability and 
that its security proof has serious flaws. Moreover, 
their scheme is insecure against signing key exposure 
attack. To resolve these problems, we propose an im-

proved RIBS scheme in the standard model. The analy-
sis results show that our RIBS scheme satisfies strong 
unforgeability and signing key exposure resistance.
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