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With the increasing need of computational power the trend towards multicore processors is ubiquitous. The 
current on-chip architecture comprises multiple cores which usually share last level cache which can be physi-
cally distributed on chip. In order to provide system predictability, especially for a real time system where qual-
ity of service (QoS) depends on minimum miss rates and low worst case execution time (WCET) for applica-
tions running on different cores, efficient cache management techniques are required. Since memory hierarchy 
and its management is the key of overall system performance and access to off-chip memory for data consumes 
many clock cycles along with many units of power it is important to restrict the off-chip access and provide the 
optimum solution for the on-chip access. To increase performance and energy efficiency, various techniques 
are proposed. This article aims to provide the researchers with the state-of-the-art critical review of the var-
ious approaches that focus on data replication and cache partitioning techniques for L3 cache. The existing 
literature is presented through several classifications based on appropriate design and algorithm. Maintaining 
energy efficient system is a crucial challenge for multicore processors. We have discussed various techniques 
which address upscaling performance without compromising on energy efficiency. Lastly, different literature 
work is discussed where authors evaluate cache and/or various processors for high performance applications 
such as bioinformatics, image and video processing, IOT applications and applications using DSP processors. 
KEYWORDS: last level cache, multicore, data replication, cache partitioning, cache management, energy effi-
ciency, high-performance applications. 

1  Introduction
As the computational power and large amounts of 
data processing are increasingly in demand, on-chip 

multicore optimal performance becomes crucial. 
Modern multicore architectures support hierarchi-



589Information Technology and Control 2018/3/47

cal memory organization; this includes private L1 and 
L2 caches for each individual core, L3 shared on-chip 
cache, and off-chip DRAM. Last-level Cache (LLC) or 
L3 cache is an integral component where data stored 
are easily accessed by many cores concurrently. LLC 
allows low latency access rate for data with high tem-
poral and spatial locality compared to off-chip mem-
ory data retrieval. However, multicore performance 
can easily degrade due to large evictions of data from 
LLC and interference caused by cores performing on 
the same cache lines. Although L1 and L2 cache elim-
inates the problem of cache contention but offers lim-
ited space for data storage. The resultant interference 
and data eviction can lead to highly variable perfor-
mance that can be detrimental to the system quality 
of service (QoS). Energy efficiency is another vital 
aspect to consider in multicore systems. Higher en-
ergy requirement not only is an unsustainable prac-
tice but can also generate poor system predictability. 
Thereby, it is imperative to develop countermeasures 
to efficiently utilize LLC for improved performance 
and energy consumption. This article provides two 
categories of measurements for improved LLC utili-
zation: data replication and partitioning techniques 
applied on LLC. Table 1 shows the comparative anal-
ysis of the various techniques employed to optimize 
the L3 cache using Data Replication and Cache Par-
titioning. 
Data replication mechanism is essential for main-
taining high cache hit rates and data locality by rep-
licating cache lines on LLC close to the requesting 
core [39]. Proposed data replication protocol offers 
many advantages. The protocol will decrease energy 
consumption (resulting in low heat generation) and 
memory latency by replicating cache lines which will 
be reused frequently in the last level cache of the re-
questing core. Moreover, with the help of a classifier, 
which will be adjusted on runtime at the granularity 
of cache lines, the protocol will balance data locality 
on caches and off-chip miss rates. This protocol will 
allow coherence complexity which will be similar to 
classic coherence protocol. Data replicas will be al-
lowed on the last level cache of core where the request 
will be made. Furthermore, coherence complexity 
will also be allowed. This means if a miss occurs in 
the L1 cache and as a result, the last level cache will be 
searched for requesting data; data are invalidated on 
the local cache of a core. 

Partitioning techniques increase process indepen-
dence, reduce interference among jobs running on 
different cores concurrently, and hence utilize pro-
cessor’s capacity efficiently. Many methods have been 
implemented or proposed both in software and hard-
ware to address issues regarding partitioning. This 
paper addresses some cache partitioning techniques 
most common being page coloring which brings an 
improvement to way-partitioning by allocating dif-
ferent colors to pages assigned to tasks [25]. Page 
coloring reduces chances of overlapping of L3 cache 
space among processors. This article describes how 
page coloring is employed. OS scheduling algorithm 
also impacts contention among workloads. Two main 
scheduling algorithms, partitioned-based scheduling 
algorithm and global-based scheduling algorithm, are 
presented and evaluated against the performance of 
page coloring. Moving on, dynamic cache partitioning 
scheme known as COLORIS [73] is another method-
ology which addresses the issue of cache interference 
more finely by allowing dynamic re-coloring based 
on application phase transition [30]. This article 
discusses cache utilization with dynamic cache par-
titioning and the consequent overhead with re-par-
titioning. Both of the above-mentioned techniques 
are still coarse-grained, that is to say, addresses par-
titioning at the set of blocks. Vantage, another meth-
od, implements fine-grained allocations to processes 
on multiple cores by partitioning at cache lines [61]. 
It proposes high associativity with line placement in 
LLC. There is increased isolation brought on by par-
titioning most of the cache rather than all of it. This 
way, when workloads assigned to partitions require 
more capacity than allocated, can borrow space from 
the un-partitioned region and so reduce eviction of 
other cache lines. This article uses statistical analysis 
to evaluate Vantage. In order to exploit heterogeneity 
in spatial locality among workloads, a two-dimen-
sional approach called Spatial Locality-aware Cache 
Partitioning (SLCP) [26] was proposed. It claims to 
modify cache line sizes as well as allocating capacity 
[36]. It calculates capacity requirement in terms of 
the temporal and spatial locality at run-time for each 
individual task. Software techniques, as described, 
alleviate cache interference to an extent but require 
cache locking, implemented in hardware, to fully iso-
late tasks among cores. 
The rest of the paper is organized as follows. Section 
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2 provides an insight into multicore architecture and 
memory hierarchy. It also elaborates how energy plays 
an important role when designing such multicore 
platforms. Section 3 focuses on Data replication tech-
niques. Section 4 discusses shared cache partitioning 
techniques. In Section 5, energy efficient implemen-
tation with respect to both data replication and par-
titioning techniques on LLC is presented. Section 6 
gives some insight on how LLC design plays a crucial 
role in High-Performance Computing. Moreover, 
Section 7 enlist some of the main limitations to Data 
Replication or Cache Partitioning techniques. Lastly, 
Section 8 concludes the research paper.
 

2.  Background
In order to increase the processor’s performance 
which can be affected by various reasons including 
memory latency computer architects proposed the 
idea of number of cores on a single processor chip. 
Multi-core processors do various tasks like multi-
threading, multitasking, security and other physical 
checks which results in higher heat generation. This 
in turn will raise other issues like scalability and pow-
er constraints among multi-core network commu-
nication. Applications used multithreading on mul-
ticores to get faster operations. In order to improve 
performance and energy efficiency good scalability 
for multicore and assurance of single core perfor-
mance is important [39]. 
Memory hierarchy efficiency is directly proportional 
to access latencies of private and shared caches and 
their hit rates. Much of the die area of the processor 
occupied by the Last Level caches are expected to 
hold quite a few megabytes of data. The shared Last 
level cache, which provides megabytes to multicore, 
is hard to manage since it requires cache coherency 
protocols on architectural level. These protocols uti-
lize data locality and scalability of directory to get 
data faster from local caches in single chip multicore 
organizations but, on other hand, data continue to 
displace on private caches. Private caches also suffer 
from capacity limitation due to frequent communi-
cation between cores over data [40]. Capacity lim-
itation is also one of the reasons for cache miss rates 
[5]. In order to reduce these miss rates several tech-
niques have been proposed so far like larger block-

size, Instruction pre-fetching, data pre-fetching, 
higher associativity, controlled pre-fetching, compil-
er pre-fetching and victim caches. These techniques 
reduce miss rates, however cache performance is not 
enough due to often miss penalties in case of cache 
miss. Here introduced the idea of multi-level caches 
along with techniques like priority to read miss over 
write miss, non-blocking caches, critical word first etc. 
Introduction of multi-level cache significantly im-
proves performance of overall system as compared 
to single cache organization. Later, when multi core 
was introduced with already proposed techniques, 
the data locality and off chip miss rates were balanced 
by Last level cache organization. Private LLC organi-
zation, on the other hand, had high off chip miss rate. 
Non-Uniform cache access is a result of shared LLC 
organization that effects chip locality but their off 
chip miss rates are low since cache lines are not rep-
licated [37]. 
Multicore processor improves parallelism and per-
formance as compared to single core processors, but 
it comes with complexities like coherency, memory 
consistency and synchronization issues. Many solu-
tions have been proposed so far in order to reduce 
complexities and achieve maximum performance 
from multicore architecture. To reduce coherence 
complexity, data migration and data replication, en-
forced on cache using snoopy or directory protocol. 
However, snoopy protocol does not show significant 
performance when the number of cores increased 
more than eight cores per processor. Here directo-
ry protocol takes lead with contrast to various cache 
coherency protocols like MSI, MESI, MOSI, MOESI, 
MESIF, MERSI, DragonFly and FireFly. 
Multicore processors have their own private (L1 and/
or L2) and shared cache (L3 and/or L4 also known as 
Last Level Cache) where directory is stored on each 
LLC of core that is also shared with cores. Directory 
keeps track of the metadata on each block and of which 
cache block holds what data along with its status. 

3. Data Replication Techniques
This section will elaborate on the various data repli-
cation techniques employed in LLC to enhance the ef-
ficiency of multicore processors. Multiple approach-
es are discussed as proposed by different researchers. 
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3.1.  Data Replication on Last Level Cache

Baseline multi-core system contains network con-
troller for communication between cores and main-
taining network traffic. Each core contains private 
cache along with cache lines, shared cache (Last level 
cache) with directory to maintain coherency among 
caches. In classic approach of MESI (Modified-Exclu-

Table 1 
Comparative Analysis of L3 Cache Optimizing Techniques

efficiency of multicore processors. Multiple approaches are discussed as proposed by different 
researchers.  

3.1 Data Replication On Last Level Cache 

Baseline multi-core system contains network controller for communication between cores and 
maintaining network traffic. Each core contains private cache along with cache lines, shared cache (Last 
level cache) with directory to maintain coherency among caches. In classic approach of MESI (Modified-
Exclusive-Shared-Invalid) protocol, if one private cache L1 of core A holds data and another private 
cache of other core B requests for the same data, then it sends request on network [10]. If requested data 
in private cache of Core A are valid and the respective core is free to respond back, then Core B is given 
the requested data and data block is marked with Shared state; otherwise core B needs to wait. 
Meanwhile, if another core C requests for the same data, then it needs to wait too in order to get requested 
data. This phenomenon effects processor performance while cores are in waiting state. It also increases 
network traffic since cores need to check repeatedly if data are available [48]. 
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To overcome the issue, many researchers have proposed replication techniques. Kurian et al. [39] have 

sive-Shared-Invalid) protocol, if one private cache L1 
of core A holds data and another private cache of other 
core B requests for the same data, then it sends request 
on network [10]. If requested data in private cache of 
Core A are valid and the respective core is free to re-
spond back, then Core B is given the requested data and 
data block is marked with Shared state; otherwise core 
B needs to wait. Meanwhile, if another core C requests 
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for the same data, then it needs to wait too in order to 
get requested data. This phenomenon effects proces-
sor performance while cores are in waiting state. It also 
increases network traffic since cores need to check re-
peatedly if data are available [48]. 
To overcome the issue, many researchers have pro-
posed replication techniques. Kurian et al. [39] have 
come up with the idea of copying data into requestor 
LLC slice so that if private cache needs data it should 
be available to its own shared LLC. This mechanism 
will track and classify reuse of each cache line of last 
level cache with the help of classifier who will track 
down the locality information of the cores. 

3.1.1.  Methodology
Authors classify each core into either replica shar-
er or non-replica sharer. Initially, all cores will be 
non-replica sharer since there is no replica made so 
far. Each core, either replica sharer or non-replica 
sharer, will contain home reuse counter and replica 
reuse counter along with replica threshold. 
On a read miss, request will be sent to home location 
and data will be replicated on private and LLC cache 
if replication bit mode is true (replication bit is set 
to true when home reuse counter gets to replication 
threshold). 
Replication bit mode and home reuse counter (tracks 
the number of times home location is accessed by spe-
cific core for data) is initially set to zero (0). When re-
quest for data comes to home location, reuse counter 
is incremented by one. If home reuse counter is small-
er than the threshold value, data will not be replicated 
and only requested data will be given to private cache 
of requester core. 
When a miss occurs for write request, directory pro-
tocol checks local LLC for replicated data.  
1 If replica is not found, request will be sent to home 

location. On each access request, home reuse count-
er will be incremented. As soon as home reuse 
counter reaches the threshold value, replica will be 
created for requester core; otherwise requested data 
will be directly given to requester core. 

2 If replica is found at LLC location in Modified (M) 
or Exclusive (E) state, data are given to private 
cache and replica counter will be incremented. 

3 If replica in LLC block is in Shared (S) state, then 
directory will first invalidate all replicas in LLC and 

data in private cache before updating and home re-
use counter will be set to 0 for all non-replica shar-
er except writer. 

By far Least Recently Used (LRU) protocol is consid-
ered to be most successful block replacement protocol 
but it still has a room for improvement. Various authors 
have proposed modified versions of LRU [18]. Kurian 
et al. [39] proposed locality classifier which with the 
help of the locality information identifies if core will 
remain replica sharer or not. It helps to identify when 
any invalidation or eviction request comes to core. 

3.1.2.  Evaluation
By reviewing ideas for data replication it has been 
observed that data replication has a fault of storage 
overhead since data replication is placed in cache. For 
example, lets suppose 16kb data be stored in local pri-
vate cache of 64kb, whereas its replication copy (16kb) 
is stored in its local LLC of 128kb. Replication space 
of the same size is also filled in home location LLC 
and home location private cache. For the 16kb data, 
additional storage overhead (considering only repli-
cation data size in LLC of both cores) is 32kb (almost 
double the size in this example). Moreover, in order 
to keep track the replicated data and to maintain the 
coherency between them, a directory is also needed 
which will take its own storage capacity. On the other 
hand, coherency protocol capacity also increases due 
to the addition of separate tags and counters of the 
directory protocol to maintain coherency in private 
caches of the replicated data. Additionally, classifier 
needs to update locality information each time along 
with the replicated core sharer list [6]. This makes the 
directory an expensive solution as compared to previ-
ously proposed coherency protocols. 
Network traffic increases when communication be-
tween caches and LLC occurs for the acknowledg-
ment of invalidation and eviction [39]. These signals 
are actually the acknowledgment messages, used to 
send invalidation and eviction information along 
with home reuse counter and replica reuse counter.

3.2.  Data Replication on CMP-NuRAPID
To improve the performance of Chip MultiProces-
sors (CMP), various designers have combined design 
metrics with constraints in order to optimize perfor-
mance [42, 56]. Many researchers have proposed dif-
ferent approaches [68, 72, 74] to optimize CMP per-
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formance. Chishti et al. [15] proposed data replication 
ideas on CMP-NuRAPID that replication should be 
made near to requester core and it should only take 
place for read requests. They replicated data on re-
quester core if only read requests are made from core. 
They controlled replication by avoiding replicating 
data for read-write requests. 

3.2.1.  Methodology
The authors in [15] have explored the possibilities of 
achieving fast access and enough capacity in shared 
and private cache by proposing the following ideas:  
1  To allocate copies (for read-only requests) close to 

the requesting core, so that access should be fast. 
Controlled-replication is required to minimize ca-
pacity issue raised by replicating copies near to the 
requesting core. 

2 Since off-chip communication is slower than on-
chip communication, in-situ communication was 
proposed to have fast access to data. 

3 The authors have proposed the idea of capaci-
ty-stealing from neighboring cache, since com-
munication between the neighbors in CMP is not 
expensive. This provides dynamic customization 
of on-chip capacity. 

The authors also exploits data arrays, tag arrays and 
pointers in CMP-NuRAPID architecture to execute 
proposed ideas. In order to achieve replication for 
read-only requests MESI protocol was modified. A 
new state was added in already existing MESI protocol 
so that in-situ communication can also be achieved. 
This new protocol was named as MESIC (Modified, 
Exclusive, Shared, Invalidate, Communication). 

3.2.2.  Evaluation
Chishti et al. [15] analyzed the performance metric 
for controlled replication and In-situ communica-
tion individually and together with metric parame-
ters; multithread workloads and multiprogrammed 
workloads, respectively [9]. Results show that pro-
posed techniques significantly decrease capacity and 
Read-only sharing misses. On average, CMP-NuRAP-
ID achieved better performance over shared cache by 
13% and for private caches by 8%.

3.3. Tag Replication Along with Cache Line
Replication on data level still lacks significant out-
come and provides a room for improvement. To keep 

this in consideration, Wang et al. [70] proposed an 
idea to replicate cache tag along with cache data. They 
utilize data locality information to replicate most re-
cently accessed cache tag into buffer named Tag Rep-
lication Buffer (TRB). 

3.3.1.  Methodology
Tag replica is created when data are fetched into pri-
vate cache and there is no tag entry of it in tag replica 
buffer and second when data are fetched into private 
cache and its entry is added into tag array. In order to 
improve security and reliability of TRB, [70] further 
proposed Selective-TRB. This scheme only works for 
dirty cache lines and replicates only dirty cache line 
data. The authors in [70] further exploit LRU replace-
ment policy to propose their own modified LRU poli-
cy with the help of FIFO. 

3.3.2. Evaluation

Wang et al. [70] exploited memory access locality to 
design TRB and to increase reliability in TRB. The 
authors also proposed Selective-TRB which dis-
played significant performance rate in contrast with 
other proposed work for data replication and small-
er overhead since, these techniques works on dirty 
cache lines. TRB shows performance improvement 
of almost 90% when tags are accessed via tag buffer 
(keeping tags replica). Their Selective tags replica-
tion technique with modified replacement policy 
LRU+FIFO shows improvement of 97% when per-
formed over tags of dirty cache data. 

3.4.  Replication on Cluster Level
Hardavellas et al. [28] proposes replication of data on 
clusters for reactive-NUCA architecture. Cluster lev-
el replica is defined as a number of cores where maxi-
mum one replica should be present on a cache. 

3.4.1.  Methodology
During analysis the authors in [28] observed that differ-
ent characteristics were exhibited, when the cache was 
accessed both for instructions and data (in both private 
and shared caches), which in result leads to the imple-
mentation of not only different data migration policies 
but also different replication and placement policies [7]. 
By exploiting this observation, the authors designed Re-
active-NUCA for block placement in distributed caches 
with lower overhead and latency. Architecture places 
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blocks at the appropriate location of cache by reacting 
to class of cache access. The proposed technique intel-
ligently works with O.S to minimize coherency issues 
and support data placement, migration and replication 
policy without using any external protocol. 

3.4.2.  Evaluation
The size of cluster was increased by adding as many 
cores as possible, resulting in increasing hit latency on 
last level cache but reduced data locality and last lev-
el miss rates. Since miss rate on the last level did not 
improved and also due to the existing clustering, each 
location needs to search whether the data is present 
in L1 cache or not, causing not only delays in network 
but also exhibit drastic network performance. 
However, results show that RNUCA displayed perfor-
mance stability and improvement on average by 14% 
for private cache designs, 6% for shared and 5% for ideal 
cache design. Their maximum achievement was 32%.

4.  Cache Partitioning Techniques
This section lays out a comparative analysis of various 
methodologies proposed to isolate workloads in LLC 
and to help alleviate interference between co-running 
processes on multicore processors. 

4.1.  Page Coloring Cache Partitioning
Page coloring cache partitioning technique, as pro-
posed by Gracioli and Frohlich [25], allows isolation 
in task workloads in multicore processors by assign-
ing different colors to individual tasks [27]. This sec-
tion discusses the methodology used and the experi-
ments carried out on various working set sizes (WSS) 
using either Partitioned-based scheduling algorithm 
(Partitioned-EDF) or Global-based scheduling algo-
rithm (Global- EDF), and its evaluation. 

4.1.1.  Methodology
Page coloring is a software-based partitioning tech-
nique designed to reduce cache interference caused 
when a task on one core evicts L3 cache line belonging 
to a (possibly) preempted task of the same core or an-
other core. Page coloring utilizes the virtual to physical 
page address translations in a set-associative indexed 
cache [66]. Using an 8MB shared 16-way set associa-
tive cache with 64-bytes per line, we are provided with 
213 sets in the cache (8MB/16 ways x 1 way/64 B). The 
first 6 bits in the cache address relate to words in the 
cache line, the next 13 bits access a set, and the next 13 
bits define a line from one of the 16 ways. 
In page coloring, colors are assigned to each page such 
as color 0 to page 0, color 1 to page 1 and so on. The 
colors are repeated after reaching the maximum col-

Figure 1 
Mapping of physical pages to cache locations [24]
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In page coloring, colors are assigned to each page such as color 0 to page 0, color 1 to page 1 and so on. 
The colors are repeated after reaching the maximum color, calculated as (cache size / number of ways / 
page size). Hence, in our example, page 128 maps to the same color as page 0. Figure 1 shows how the 
actual pages are mapped to each cache set.  
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or, calculated as (cache size / number of ways / page 
size). Hence, in our example, page 128 maps to the 
same color as page 0. Figure 1 shows how the actual 
pages are mapped to each cache set. 
Scheduling algorithms play an important part in the 
performance of partitioning schemes. The two al-
gorithms discussed in Page Coloring Methodology 
are global-based scheduling and partitioned-based 
scheduling. Global Earliest-Deadline-First (G-EDF) 
[24] is a type of global scheduling algorithm where the 
OS defines one ready queue of tasks to be distributed 
among the available processors. When a job is pre-
empted from one core, it can be migrated to another 
processor for resumption. On the other hand, in a Par-
titioned-EDF (P-EDF), a partitioning heuristic stat-
ically assigns tasks into available processors where 
they are executed and no migration takes place for 
preemptive tasks. G-EDF is optimal for mixed-criti-
cality levels co-exist in the same system. 

4.1.2.  Evaluation
The experiment was carried out on an Intel i7-2600 
processor [62]. The super colors were assigned to the 
number of tasks in each set with two additional colors 
for an uncolored heap and another one for the OS. The 
super color is calculated when the number of colors 
defined for tasks are less than the maximum number 
of colors, as given by (1). 

= % . .Supercolor pagecolor max num ofcolors. (1)

The experiment was carried out with the following 
scenarios by evaluating page coloring in terms of OS 
scheduling algorithms on the Worst-Case Execution 
Time (WCET) of tasks.  
 _ S1: OS and each task allocate data from a different 

super color. 
 _ S2: Each task allocates data from a different super 

color. OS allocates data from a non-colored and 
sequential heap. This creates interference between 
data allocated by OS and the data of each task, 
because OS can access a cache line of any color. 

 _ S3: Each task allocates data from the same super 
color. OS allocates data from a different super color.  

Page coloring cache partitioning increases the system 
predictability by meeting deadlines [67]. It achieves 
this by using isolation of workloads. In P-EDF, page 

coloring was effective up to 128 KB of WSS and in 
G-EDF up to 64 KB due to some interference caused 
during migration. Inter-core communication is re-
duced by cache coherency protocol since all data are 
small enough to be able to fit in L2 cache and invalida-
tions are minimized in L3. For larger WSS, the P-EDF 
is effective since partitioning of the L3 cache isolates 
and hence avoids contention between tasks running 
on different cores simultaneously. 

4.2. Coloris: Dynamic Page Coloring
Due to the dynamic nature of applications, frequent 
repartitions of L3 cache become crucial for cache uti-
lization. Static partitioning as discussed in Section 
4.1 fails to address re-coloring repartitioning based 
on application phase change. Ye et al. [73] came up 
with COLORIS (COLOR ISolation), which is a frame-
work implemented to dynamically repartition cache 
while maintaining fairness or Qos. 
Re-coloring is a tedious task that can incur substan-
tial overhead. It requires allocation of page frames, 
copying pages from memory and freeing old page 
frames when necessary. There can also be chances 
of naive allocation of colors among applications in 
such a way as to increase contention among tasks and 
consequent thrashing. A simple example would be 
a 2-core, 6-page color system with two running pro-
cesses (P1, P2) and one ready process (P3). The page 
colors allotted to these three processes might be 1, 2, 
3, 4, 5, 6 and 1, 2, 3, respectively [35]. Now, if process 
P2 needs to be preempted and replaced with process 
P3 to run on one core while P1 continues to run on the 
other, two processes will increase contention drasti-
cally for the same subset of space in the cache as the 
colors for both processes are the same. This would re-
quire re-coloring in an efficient manner. 
This section will discuss its implementation details 
and the findings based on the experimental results. 

4.2.1.  Methodology
Shown in Figure 2 is the architecture of COLORIS 
which comprises two major components: a Page Col-
or Manager and a Color-aware Page Allocator. 
The Color-aware Page Allocator has replaced the Linux 
memory allocator framework which involves overhead 
by frequently calling the Buddy System to refill the list 
of free pages of a specific color in the page frame cache 
[65]. In COLORIS, instead, a memory pool is utilized 
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for all page requests in a way that free pages, which are 
assigned the same color, are linked together and hence 
multiple lists are formed. The allocator, when request-
ed for a page, collaborates with Page Color Manager 
to ascertain the colors assigned to the requesting pro-
cess. The allocator then picks one of these colors in a 
round-robin manner and returns a page with that color 
from the memory pool. In the case of absence of that 
color another color is picked, also assigned to the pro-
cess, or in the case of none of them present it contacts 
the Buddy System to populate the memory pool with 
new pages of various colors. 

Figure 2 
Architectural Overview of COLORIS [73]
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The Page Color Manager, as already briefly explained, 
is a component in COLORIS responsible for assign-
ing colors to processes via specific policies. In order to 
effectively utilize all the L3 cache space among cores, 
Color Manager adopts a more flexible scheme. It di-
vides the cache into N contiguous sections with an 
equivalent number of cores. Then each section is as-
signed to the individual core of C/N page colors where 
C is the total number of colors available. In this way, N 
co-running processes have the advantage of fully uti-
lizing cache capacity with enhanced isolation. 
The static partitioning still incurs a large overhead 
when migration of processes needs to be performed in 
the case of load balancing. To overcome this problem 
and to exploit dynamic phase changing of the process, 
re-coloring is exercised. Page Color Manager makes 
online color assignment changes based on dynamic 

application behavior in such a way that if one process 
does not require the entire local cache section, some 
colors can be reclaimed; likewise, other processes can 
get more cache space by sharing colors from other 
sections [46]. This does, however, reinstate some in-
terference but by sharing information on color utili-
zation and scheduling processes using schedulers the 
chances of contention can be mitigated. 

4.2.2.  Evaluation
With respect to re-coloring, experiments were carried 
out using four benchmarks: povary, tonto, omnetpp and 
gamess. omnetpp is memory intensive with others hav-
ing a smaller memory footprint in order for repartition-
ing to be possible. Multiple configurations were tested 
on a 32-bit Ubuntu 12.04 Linux OS with kernel version 
3.8.8 using threshold values as shown in Table 2.

Table 2 
Experimental Configuration [73]

Configuratons LowThreshold(%) HighThreshold(%)

C1  30  65

C2  30  75 

C3  0  100 

C4 (40, 0, 30, 40) (80, 60, 65, 80)

C5  -  - 

C6  30  75

These are global cache miss rate thresholds. Appli-
cations with miss rates higher than High Threshold 
require more cache space where as with applications 
having miss rates lower than Low Threshold can pro-
vide their local cache vacant space for repartitioning. 
In C3, re-coloring is not possible due to their threshold 
levels. C5 was used for the special case in which every 
benchmark was executed using full cache space (for 
more details, please refer to the given reference [73]). 
Using static cache partitioning, the miss rates of om-
netpp reach 77.8%. Whereas, using re-coloring (C1 and 
C2) the miss rates were contained within the range 
of threshold. This means QoS requirement was met. 
Instead of using system default QoS specification de-
pendent upon uniform threshold values, independent 
QoS can be satisfied as shown in C4 configuration. 
Here, Low Threshold was kept at 0 for tonto in order 
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to avoid taking its cache space and hence its miss rate 
was retained below 40%. This shows that individual 
QoS can be effectively guaranteed using COLORIS 
framework for repartitioning. 

4.3. Vantage: Fine-Grain Cache Partitioning
Techniques, so far discussed in Cache Partitioning, 
are coarse-grained partitioning which allows sections 
in terms of sets (multiples of page size x cache way). 
This reduces associativity and cannot be extended 
to support a number of cores more than 4 without 
compromising QoS and isolation among partitions. 
Vantage, proposed by Sanchez and Kozyrakis [61], is a 
scalable and efficient technique which employs fine-
grained cache partitioning. Vantage is capable of sup-
porting a large number of partitions defined at cache 
line granularity for on chip multiprocessors (CMPs) 
with as many as 32 cores. It proposes to maintain high 
associativity and strong isolation. Vantage is applica-
ble on caches with high associativity such as skew-as-
sociative caches [63] or zcaches [60] indexed with 
good hashing. It can work with set associative caches 
but with lower performance. 
Vantage is derived from statistical analysis and not 
from empirical observation. It implements partitions 
partially most of the cache, instead of complete cache 
space. This way when partitions outgrow their allo-
cations, they can take space from an unpartitioned 
cache instead of compromising space from other par-
titions which effectively reduces interference. 

4.3.1.  Methodology
Vantage uses soft partitioning which does not phys-
ically restrict line placement. It evicts lines using 
churn-based management. Churn-based Manage-
ment uses insertion rates (insertions per unit of time) 
known as churns to match demotions of line per par-
titions. This is implemented by firstly dividing the 

cache into two logical regions – a managed and an 
unmanaged region, by using tags [49]. LRU (Least Re-
cently Used) replacement algorithm is used to rank 
line irrespective of region. On eviction, lines from the 
unmanaged region have higher priority over lines in 
the managed region. Churn-based Management al-
lots apertures per partition. This way replacement 
candidates below the assigned aperture are demoted 
first to the unmanaged region and either evicted or in 
the case of getting a hit are promoted back. Promo-
tion and demotions are manipulated simply by using 
tags. Aperture (A) is the threshold value used to allow 
demotions on average rather than one candidate per 
eviction. This increases the associativity. For exam-
ple, if A = 0.05, it will demote every candidate that is 
on the top 5% of eviction priorities. It thus keeps the 
insertion and demotion rates of each partition equiv-
alent so that their sizes are approximately constant. 
Since Vantage implements partitioning through the 
replacement process, this implicates for changes in 
the cache controller. The cache controller is given the 
target size of each partition which is set using exter-
nal allocation policy (such as UCP [58]) and partition 
ID of each cache access. Each line is, thereby, tagged 
and on each replacement controller performs evic-
tions from the unmanaged region, demotions or pro-
motions from the managed regions based on access 
rates of cache lines. 

4.3.2. Evaluation
The simulation is performed using an x86-64 sim-
ulator based on Pin [43] which models both small 
and large-scale CMPs. For small-scale configuration 
wherein simulations were carried out using a 4-core 
system, the performance is evaluated using a mixture 
of 350 workloads derived from different categories as 
listed in Table 3. There are 35 possible combinations 
of these four categories each forming a class. There 

Table 3 
Classification of SPEC CPU2006 workloads [61]

 Insensitive(n) perlbench, bwaves, gamess, gromacs, namd, gobmk, dealII, povray, calculix, hmmer

Cache-friendly (f ) bzip2, gcc, zeusmp, cactusADM, leslie3d, astar 

Cache-fitting (t) soplex, lbm, omnetpp, sphinx3, xalancbmk 

Thrashing/streaming (s) mcf, milc, GemsFDTD, libquantum
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are 10 mixes per class with each application being 
randomly selected from the ones in its category yield-
ing 350 workloads. 
Vantage provides much larger improvements than ei-
ther way-partitioning or Promotion-Insertion Pseu-
do-Partitioning (PIPP) giving a 6.2% geometric mean 
on average and up to 40% speedups. PIPP or way-par-
titioning shows worst-case performance of 29% and 
22% respectively, as compared to 4% for Vantage. Par-
titioning adversely affects associativity for these work-
loads using way-partitioning or PIPP which establish-
es the importance of maintaining high associativity. 
Vantage also shows higher performance in all work-
loads except one, i.e., an un-partitioned cache, which 
is a factor by which other configurations such as 
way-partitioning have an edge. However, in associa-
tivity sensitive workloads, Vantage has already out-
performed both alternatives. Evaluation using zcache 
shows how high associativity in Vantage has allowed 
it to provide higher throughput. 

4.4  Spatial Locality-Aware Cache 
Partitioning
Vantage does provide fine-grained partitioning de-
sign but is limited to: 1) caches with good hashing and 
associativity, and 2) it only exploits temporal locality 
[8]. Heterogeneity in the spatial locality is rarely used 
in the partitioning schemes discussed above. Spatial 
locality refers to block/line size which, if manipulat-
ed correctly, can reduce the capacity allocation among 

multiple cores and thereby provide drastic improve-
ments in system performance. Gupta and Zhou [26] 
proposed Spatial Locality-Aware Cache Partitioning 
(SLCP), which leverages a two-dimensional optimi-
zation in cache partitioning wherein both block size 
and capacity is considered providing heterogeneous 
organization for various workloads. 
SLCP argues that, for memory intensive work, a 
larger block size would render a small overall cache 
capacity requirement. In order to achieve this goal, 
a unified approach is proposed in SLCP, known as 
Locality Score to measure both temporal locality and 
spatial locality at runtime and make amendments as 
to the optimal heterogeneous organization. Locality 
Score LS(X, Y) is a function that defines the hit rate 
based on the future window size (X) of a referenced 
address and the neighborhood size (Y) of a fully-asso-
ciative cache with capacity of (X * Y). X is essentially 
the reuse distance, whereas Y is the block/line size. 

4.4.1  Methodology
SLCP online Locality-monitoring framework uses 
a hardware approach for estimating a two-dimen-
sional locality (temporal and spatial) in cache access 
streams. Figure 3 shows an architectural view of 
the SLCP including processors and cache hierarchy 
where two things have been added: 1) the online local-
ity monitor hardware, and 2) the logic for running the 
partitioning algorithm. 
SLCP hardware is comprised of a few sets of auxiliary 
tag directories (ATD) [58] and locality score (LScore) 
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counters. Multiple ATDs and LScore counters are 
employed for different cache block sizes. All the ATDs 
have the same number of way as in the original cache 
so as to capture the locality information for different 
cache capacity. The LScore counters are used to re-
cord cache hits in the ATDs when varying number of 
ways and various block sizes are assigned. 
Locality score counters are added to each core with 
the intent of maximizing the weighted sum of scores 
across all the co-scheduled benchmarks to be fed into 
the partitioning algorithm in SLCP. 
The two-dimensional LScore array is based on (L, K), 
where Lthentry in the LScore–K counter maintains: 
1) the number of cache hits for block size K, and 2) the 
capacity of L*(C0 / α ), where C0 is the baseline cache 
capacity and (C0 / α ) is the capacity of one cache way 
using α  as the associativity of LLC. This is reduced 
into a single-dimensional LScore vector (L) to lever-
age the lookahead algorithm [26]. The lookahead algo-
rithm is used to determine the partition configuration 
only after a fixed amount of cycles. LScore counters 
are shifted, instead of resetting them completely, so 
that history is retained. 

4.4.2.  Evaluation
SLCP is implemented using an in-house execu-
tion-driven simulator. Baseline memory hierarchy 
configuration constitutes three levels of caches, private 
L1 and L2 caches and a shared non-inclusive L3 cache. 
SLCP is tested with the following five categories of 
4-way multiprogrammed workloads: 4H, 3H1L, 2H2L, 
1H3L and 4L. The 4H category has 4 benchmarks with 
high MPKI (Misses Per Kilo Instructions) and the 
3H1L category has 3 benchmarks with high MPKI and 
1 benchmark with low MPKI and so on. 
SLCP shows an average of 18.2% (20.9%) perfor-
mance improvement, highlighting the importance of 
leveraging spatial locality for partitioning. The per-
formance improvements can be regarded as due to the 
joint optimizations of SLCP which assign less capac-
ity to the benchmarks that can exploit spatial locali-
ty in limited cache capacity. It can also be perceived 
that multiprogrammed workloads with a higher num-
ber of high MPKI benchmarks tend to improve with 
SLCP. This can be awarded by assigning large cache 
block sizes which trigger higher hit rates as well as 
IPC improvements while at the same time also donate 
cache capacity to other benchmarks.

5.  Energy Efficiency
Energy efficiency is a crucial consideration in multi-
core systems, especially in mobile devices where bat-
tery life can be adversely affected and devices tend to 
heat up leading to poor performance. Many architec-
tures support disjoint execution of background and 
foreground applications to cater to high responsive-
ness which can increase energy tax in terms of bat-
tery life, power and capital expenditure. In multicore 
processors, the allocation of the core to applications 
and frequency of these cores are factors to consider 
while making energy efficient policies. Cache energy 
reduction techniques have been widely studied. In 
these techniques, turning off parts of the cache in or-
der to reduce static energy is usually employed. Race-
to-halt, a term coined, to indicate a scenario where 
additional cores used to speed up execution is liable 
to conserving energy by finishing up tasks quickly and 
consequently allowing the system to be in a low-pow-
er state [16]. This can, however, lead to counter-intu-
itive performance when memory-bound applications 
are run on a number of cores at high frequency and are 
in a waiting state for the data to be provided. 
LLC spend a larger fraction of their energy in the form 
of leakage energy and hence need techniques which 
work by turning off a part of the cache to reduce the 
leakage energy consumption. These approaches 
based on the retentiveness of turned-off blocks, are 
broadly ramified into two techniques, namely state 
preserving and state destroying. Based on this, Li et 
al. [41] have compared the effectiveness of both tech-
niques. They conclude that it is more cost effective to 
employ a state-destroying technique when fetching 
a missed block is not critical, compared to state-pre-
serving technique. This is because state-destroying 
technique completely turns off the block and hence 
helps to conserve more energy. 
For both state-preserving and state-destroying leak-
age control, architectural techniques make use of 
some well-known circuit-level mechanisms. Powell 
et al. [57] propose a circuit design named gated VDD, 
which facilitates state-destroying leakage control. 
This technique adds an extra transistor in the supply 
voltage path or ground path of the SRAM (static ran-
dom access memory) cell. For reducing the leakage 
energy of the SRAM cell, this transistor is turned off 
and by stacking effect of the transistor, the leakage 
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current is reduced by orders of magnitude. 
Several energy saving techniques are based on the 
generational nature of cache access, which implies 
that cache lines have a period of frequent use when 
they are first brought into the cache, and then have 
a period of dead time before they are evicted. There-
fore, if a cache line has not been accessed for a certain 
number of cycles (called decay interval or update win-
dow), it indicates that the line has become dead and 
it can be put in low leakage mode for saving energy. 
Using this principle, Flautner et al. [21] proposed a 
drowsy-cache technique which puts the dead cache 
lines into low-power state-preserving mode. Simi-
larly, Kaxiras et al. [34] proposed a decay cache tech-
nique which puts the dead cache lines into low-power 
state-destroying mode. 
Several researchers have proposed improvements to 
the original decay-cache technique, but in all such 
proposals, the optimal value of the decay interval was 
varying with the applications. Zhou et al. [75] pro-
posed a technique for dynamically adapting decay 
interval for each application. Their technique only 
turns off data and keeps tags alive. Using tags, their 
technique estimates the hypothetical miss rate, which 
would be there if all the data lines were active. Then, 
the aggressiveness of cache line turning off is con-
trolled to make the actual miss rate to closely track 
the hypothetical miss rate. Abella et al. [1] keep track 
of the inter access time and the number of accesses 
for each cache line and use this to compute suitably 
decay time for each individual cache line. 
Lu and Guo [44] proposed two dynamic voltage /fre-
quency scheduling (DVFS) based algorithms: 1) pre-
DVS, and 2) post-DVS, for multicore systems which 
employ fixed-priority scheduling with task splitting. 
The post-DVS, also known as DVFS after schedul-
ing, works like a conventional DVS for fixed-priority 
scheduling. It allocates just the right amount of fre-
quency to sub-tasks which are split, after schedul-
ing in a way that tasks which are performed first are 
executed quickly so the leading ones get enough fre-
quency to meet the deadlines. This conserves energy 
while meeting timing constraints on synchronization 
for scheduling with task-splitting. Moreover, pre-
DVS performs pre scheduling frequency evaluation 
of tasks. This assumes prolonged execution times 
for scheduling of tasks so that all tasks are complet-
ed within the required time limit so energy is saved, 

achieving more energy conservation than post-DVS. 
It manages this by determining the total utilization of 
task-set and number of available cores so that every 
task is divided equally among all the cores and the en-
ergy is maximally conserved. 
Another methodology, as proposed by Xu et al. [71], re-
fers to minimizing energy consumption in multicore 
platform for parallel tasks. It takes a practical approach 
by considering processors with discrete modes of op-
erations and have timing constraints. The algorithm 
discussed operate on either rigid task, which have fixed 
parallelism or moldable task whose parallelism can 
only be decided at run time. For both types of tasks, first 
the problem is formulated as a 0-1 Integer Linear Pro-
gram (0-1 ILP) and then either a two-step (rigid tasks) 
or a three-step (moldable tasks) heuristic is applied. In 
the first case, the heuristic schedules tasks using a lev-
el-packing algorithm and then it decides upon another 
step to determine the level of frequency required with 
minimum energy consumption. Similarly, in moldable 
tasks, the third step also addresses the level of parallel-
ism required for each individual task. Based on simu-
lation results, the heuristics energy consumption is 
almost equal to that of 0-1 ILPs. 
Chen at al. [13] combined both DVFS and Dynam-
ic Power Management (DPM) to address the energy 
consumption issue with multicore systems. Their 
approach is based on Mixed Integer Linear Program-
ming (MILP), optimizes both DVFS and DPM for 
applications composed of a set of tasks. It uses acyl-
ic graphs (DAG) to represent their precedence levels 
while mapping them on multicore processors. The 
energy model considers varied sources of power con-
sumption for a set of discrete frequencies, and also 
the time/energy overhead. The algorithm is used to 
determine the optimal time-triggered non-preemp-
tive schedule and execution frequency of tasks in an 
application, and in doing so reduces total energy con-
sumed in MPSoCs. 
Mittal and Zhang [51] used dynamic cache reconfig-
uration techniques for cache leakage energy saving. 
The caches are configured to conserve maximum en-
ergy and keep performance sensitivity bounded. They 
tested a large number of potential configurations using 
low-overhead and micro-architecture components 
with easy integration on multicore chips. The meth-
odology makes certain that energy is uniformly con-
served throughout the system, outperforming other 



601Information Technology and Control 2018/3/47

comparable methodologies used in high end embed-
ded, desktop, servers and other multitasking systems.

6.  Last Level Cache in High-
Performance Applications
Introduction of caches in third generation comput-
er architecture solved the problem of slowness and 
expensiveness of main memory in early decades of 
computing. As time passed by, level of caches were 
introduced to achieve higher CPU performance. Cur-
rent growth in the area of high speed performance 
applications like physics simulations e.g. ALE3D, 
chemistry or biology applications e.g. IBM sequoia; 
require high performance of processors. As time pass-
es, many techniques are introduced in order to opti-
mize processor performance like pipelining, higher 
clock speed, parallelism, branch prediction and even 
number of transistors are added per chip. These tradi-
tional approaches, however, bring some limitations or 
challenges like memory latency or power dissipation. 
To hide memory latency, many multithreaded tech-
niques have been introduced and adopted by proces-
sors like Intel Xeon family processors, Atom, Core i7 
and others.

6.1.  High Performance DSP Applications
Digital signal processors process analog signals but 
high performance digital signal processing systems 
process digital signals rapidly. One of high perfor-
mance applications of DSP is wireless base station. 
System designers of the high performance DSP were 
given limited option of choice but some of manufac-
tures produce series of programmable DSP parts. DSP 
processors by Intel, Analog Devices [59], Motorolla, 
Texas Instrument improved already existed architec-
ture by improving performance achieved by improving 
clock speed and reducing power consumption [17]. 
Many high performance applications, for example, 
data analytics applications, image processing and/
or graphic processing applications required machine 
learning techniques on big data which required exten-
sive computational power. Faella [19] compared DSP 
processor, GPU and Intel Core i7 to analyze the per-
formance of these processors for support vector ma-
chine (SVM) algorithm. It was observed that last level 

cache was better utilized and needed for the imple-
mentation of the proposed method. The performance 
measure done by the author shows lower clock speed 
for DSP processors than Intel i7 processor. A per-
formance comparison of GPUs with Intel i7 showed 
that although GPU clock speed was slower than Intel 
i7, it showed better performance with performance 
improvement techniques. This may be attributed ei-
ther due to its adaptability of different computational 
intensive algorithms or its architectural support for 
parallel computations.

6.2.  Bioinformatics Applications
Bioinformatics applications required higher perfor-
mance computation for analyzing huge amount of 
data. Current methodologies and computing power 
are not sufficient enough to surpass this bottleneck 
[22]. However, many manufacturers provide multi-
core processors and/or prototypes to achieve the high 
performance computation like Intel Terascale Pro-
cessors [45] or Microsystems UltraSPARC T2 [64]. 
Intel Terascale processors provide first level cache L1 
to each core and numerous levels of L2 cache. How-
ever, researches are carried on to explore the possi-
bility of large and low latency last level cache using 
3D-stacking [29]. 
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Still many applications required some parallelization algorithms since they are not able to fully exploit 
the power provided by these processors. Galvez et al. [22] provided such parallelism algorithm (named 
as Fast LSA) in order to fully exploit the computational power. The algorithm was tested on different 
benchmarks, which shows great performance on a standalone general-purpose multicore chip. The 
performance of an algorithm that did not require floating point calculations was measured on 
Multicore64-NW, and it obtained 20 times faster optimal alignment. The algorithm exploits the three 
level cache of TilExpress-20G cards along with improved MESH for communication between cores, 
cache and shared memory. Another optimizing technique utilizing caches was proposed by Chaichoompu 
et al. [11]. The authors proposed multithreading and vectorizing strategies to improve performance. To 
exploit multithreading in bioinformatics applications, the authors proposed a compiler optimization 
strategy to perform software profiling in order to analyze and distinguish the portions which 
bioinformatics tool can improve or those which cannot be improved. Later those code parts, which are 
not executed in a sequential manner, were modified by thread library or via loop optimization technique. 
The optimized code was verified in a final step to compare the results on multiple cores processors. Intel 
Core 2 Duo, Intel Core Solo, Intel Pentium 4 were used in order to test the proposed algorithm. These all 
processors own two level of caches in which last level cache is L2. Figure 4 shows the flow of the 
algorithm. 

 
6.3  IOT Based Applications 

 
In an Internet era, high computing devices are growing and evolving Internet of things (IoT). Intelligence 
is embedded into devices which are network of sensors, actuators or processors to ease daily life style.  
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Still many applications required some parallelization 
algorithms since they are not able to fully exploit the 
power provided by these processors. Galvez et al. [22] 
provided such parallelism algorithm (named as Fast 
LSA) in order to fully exploit the computational pow-
er. The algorithm was tested on different benchmarks, 
which shows great performance on a standalone gen-
eral-purpose multicore chip. The performance of an 
algorithm that did not require floating point calcula-
tions was measured on Multicore64-NW, and it ob-
tained 20 times faster optimal alignment. The algo-
rithm exploits the three level cache of TilExpress-20G 
cards along with improved MESH for communication 
between cores, cache and shared memory. Another 
optimizing technique utilizing caches was proposed 
by Chaichoompu et al. [11]. The authors proposed 
multithreading and vectorizing strategies to improve 
performance. To exploit multithreading in bioinfor-
matics applications, the authors proposed a compiler 
optimization strategy to perform software profiling in 
order to analyze and distinguish the portions which 
bioinformatics tool can improve or those which can-
not be improved. Later those code parts, which are 
not executed in a sequential manner, were modified 
by thread library or via loop optimization technique. 
The optimized code was verified in a final step to 
compare the results on multiple cores processors. In-
tel Core 2 Duo, Intel Core Solo, Intel Pentium 4 were 
used in order to test the proposed algorithm. These all 
processors own two level of caches in which last level 
cache is L2. Figure 4 shows the flow of the algorithm.

6.3. IOT Based Applications
In an Internet era, high computing devices are grow-
ing and evolving Internet of things (IoT). Intelligence 
is embedded into devices which are network of sen-
sors, actuators or processors to ease daily life style. 
From short range transceivers to high impact gadgets 
[3], all sorts of devices ranging from those of automo-
tive industry to those of aerospace, from infrastruc-
ture to medical services, from defense industry to daily 
house hold items, and in many more other areas, IoT-
based applications have so much influence to improve 
our way of life. According to statistics, 70 billion of de-
vices will be connected to Internet in the 2020. Howev-
er, the discussed field is still growing and researchers 
are working on optimizing the already existed solu-
tions and finding solutions for complex problems. 

For high computation, many IoT devices used GPU 
or Hybrid GPU/CPU approaches. GPUs are multicore 
architecture which are highly parallel and use multi-
threading [20, 32]. Modern GPUs, including GigaByte 
GTX and NVIDIA Geforce, have hundreds of process-
ing units which achieve massive arithmetic calcula-
tion [38]. For high-performance computing, there are 
high-performance optimized GPUs that help to com-
pute big data in data centers. However, their perfor-
mance requirement based on sufficient parallelism, 
combine memory access and/or coherent execution 
among threads. Many applications have non regular 
memory access pattern and GPU caches exhibit poor 
performance if there is mismatch in cache hierarchy 
design [14]. In GPUs, memory latency is usually not 
hidden in larger caches, hence GPUs use multithread-
ing to hide latency, but it is useful only for applica-
tions which use multithreading. 
To avoid poor performance and to achieve easy com-
munication between threads, some GPU manufactur-
ers improved memory hierarchy design and thread-
ing communication. NVIDIA introduced Compute 
Unified Device Architecture (CUDA), which provides 
parallel computing platform and runs on hundreds 
of GPU processor core and is highly parallel in na-
ture [33]. Due to intensive computational power, it is 
much faster than CPU and is used in many high-per-
formance computing applications. The installed 
shared memory has low-latency and it is plugged-in 
near each processor core [55]. CUDA based GPUs are 
introduced with global and shared memory access, 
where global memory accesses are always cached in 
L2 cache.

6.4.  Image and Video Processing Applications
Many high computational applications require high 
performance processors to carry out extensive com-
putation in less time and given memory storage. 
Sometimes it is hard to choose between different pro-
cessors, which can cater application needs. Evaluating 
the performance of processor before choosing one, is 
the key to satisfy application computational needs. 
Many authors try to evaluate processor’s performance 
on different basis, like time to perform one single op-
eration, memory consumption or energy consumption 
of processor and have proposed different techniques 
to optimize the performance by optimizing cache or 
last level cache. Asaduzzaman and Mahgoub [2] eval-



603Information Technology and Control 2018/3/47

uated the performance of cache in DSP processors for 
MPEG4 applications using different cache sizes. They 
proposed simulation program which optimizes the 
cache size for task rate. The authors have run a sim-
ulation program against 384KB, 512KB and 1024KB. 
For 384KB cache size, proposed simulation fails since 
DSP utilization reached beyond 100% usage but, for 
512KB and 1024 cache size, performance improved 
but it did not impact on DSP utilization. Hoozemans 
et. al. [31] evaluated the performance of VLIW proces-
sors, rVEX and Xilinx MicroBlaze for high resolution 
image processing applications. The authors conclude 
that rVEX processors gave 80% faster result for image 
processing convolution algorithm and 2.3 to 3 factor 
times better result for grayscale conversion. Blair et al. 
[4] evaluated by comparing FPGA, GPU and DSP per-
formance for image processing and computer vision 
algorithms. The authors compare performance on 
different algorithms for the execution time to process 
images or computer visions. It has been stated that 
GPU performance is better than FPGA implementa-
tion on DSP slices.

7. Challenges
This section discusses the challenges and limitations 
of data replication and cache partitioning techniques 
in Last Level Cache. 

7.1.  Data Replication
Data replication is one of the most effective and highly 
researched technique, used to handle memory latency 
issue, since it increases the availability of data, and en-
hances the performance and reliability [23]. However, 
it comes with overheads too, e.g., if the environment 
deals only with read-only request, then performance 
will be increased significantly (as discussed and proved 
in Section 3), otherwise for write requests there is a 
need to maintain consistency among replicas. 

7.1.1.  Storage
Replication techniques come with storage overhead 
which cannot be dealt with beyond some extent, since 
replication techniques do not only rely on creating 
multiple copies, but they also need to maintain the 
consistency among them. Some of the techniques [39, 
70] use additional classifier or tags, which also re-

quires additional capacity to store information about 
replicated data. Kurian et al. [39] showed that locality 
classifier, which is required to maintain consistency, 
took additional 30% of storage overhead for 64 cores 
and it increase gradually as the number of cores are 
added in the system. Classifier used to maintain con-
sistency took extra 36 bits for each entry in the 64-
core processor which ultimately costs 60% more stor-
age than the baseline protocol as discussed in [39]. 
Storage overhead for tag replication is massive [70], 
due to this reason the researchers prefer to use selec-
tive replication approach. Nevertheless, storage over-
head still manages to reach 15.6%, which ultimately 
may cause performance degradation, considering a 
gradual increase in data replication and failures in 
the network. 

7.1.2.  Maintaining Consistency 
All data replication techniques come in packaged 
with the protocols and methodologies for maintain-
ing consistency. These protocols and methodologies 
covers consistency issues, however, achieving full 
consistency is impossible and some inconsistencies 
are still present in the system. 
There is a chance of conflict, when updating replicas, 
e.g., if the number of updates increases (due to more 
replicas), then there is a possibility of conflict among 
updates at the same time. If the number of replicas 
are increased, then there is a chance that consistency 
becomes weak due to difficulty in maintaining con-
sistency among all replicas (e.g., insufficient network 
bandwidth).

7.1.3.  Network Traffic
All replications involving consistency models and ap-
proaches are the reason for additional network traffic 
and bandwidth requirement [47]. To maintain consis-
tency, there is a need to update every single data item 
replicated, which in turn results in additional opera-
tion of write-update requests, including original data 
access or write request. These protocols need extra 
acknowledgment transactions in case of data invali-
dation or eviction [24, 40, 70].

7.1.4.  Additional Power Consumption
Data replication techniques are proposed to minimize 
memory latency and increase energy efficiency, how-
ever, protocols incurred with consistency are the rea-
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son for additional energy consumption of system. For 
example, if replicas are greater in number and there 
is a need to update or fetch replicated data and pro-
cessor is busy with some other task, then request will 
be piled up and ultimately all bandwidth will be used 
to fulfill an on ongoing operation. This situation ulti-
mately increases energy consumption of the system.

7.2.  Cache Partitioning

Cache partitioning is only useful when cache size is 
not large [50]. It is harmful in some extent for the ap-
plications exploiting locality [12], however, it is use-
ful for the application which relies on last level cache 
[52]. There are other similar limitations as well. 

7.2.1.  LRU Replacement
LRU is considered to be the one of the best replace-
ment techniques in case of data eviction, and design-
ers opt the policy in architecture to identify the data 
need to be replaced. However, studies have discussed 
[48, 49, 50] and some researches proved that if LRU 
policies are not optimized according to competing 
resources, it can degrade performance [54]. For ex-
ample, some of LRU based replacement policies do 
not work with some of cache partitioning techniques 
which are designed considering full-associative cach-
es [52] and applied to set-associate caches [52]. 

7.2.2. Performance Overhead
Despite the advantage of cache partitioning tech-
niques there is still performance overhead due to 
load-imbalance, handling of different miss latency via 
same approach, bandwidth congestion due to network 
traffic etc. Some of cache partitioning techniques try 

to overcome these overheads, for example, miss rate 
penalty, but still they lack to fully cover these issues. 
Limitation of LRU policy as discussed in [69] is also 
one of the reasons for performance overhead. 

7.2.3.  Design Choice
Cache partitioning techniques are used not only to op-
timize performance of cache but to achieve Quality of 
Service (QoS), improving energy efficiency or load bal-
ancing etc. To achieve these goals, one needs to careful-
ly select parameter for cache partitioning techniques 
on different architecture. Cache partitioning tech-
niques include parameters like replacement policies, 
quota allocation, partitioning interval, etc. [53].

8.  Conclusion
Technology is advancing at break-neck speed and 
with it the requirements in terms of application pro-
cessing time and manipulation of real-time data. 
This research article explores the different dynamics 
in improving overall last level cache performance. 
It particularly focused on various optimizing tech-
niques such as Data Replication and Cache Parti-
tioning. Energy efficiency is an important design is-
sue in multicore processors, hence the article have 
comprehensively compared different mechanisms 
addressing energy saving. The manuscript surveyed 
different authors’ work which evaluates processors 
performance in high performance applications. Fi-
nally, there are always challenges and trade-offs in 
implementing any optimizing technique, which have 
been discussed in detail.
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