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The development of computational and communication technology enabled the introduction of a Distribution Man-
agement System (DMS) as a sophisticated approach to solve various problems regarding the power supply in mod-
ern society. These advanced systems execute a large number of workflows to meet the requirements and provide the 
desirable functionalities. Very high demands for computational resources, during the DMS operation, imposed a ne-
cessity for an adequate DMS workflow management. Three DMS workflow scheduling concepts (architectures) are 
presented in this paper: centralized, mixed and hierarchical. These scheduling concepts are compared by different 
parameters, such as performance, scalability and complexity of implementation. The conducted experimental study 
shows that the hierarchical scheduling concept not only provides the best performance, but is also the most scalable 
and entirely eligible in terms of implementation complexity.
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1. Introduction

1.1. Motivation
Distribution Management System (DMS) is developed 
as an industry-grade product which manages the entire 
distribution network (DN) [9]. Nowadays, distribution 
systems are vast. Therefore, a specific data model (net-
work model) [7], used to represent a DN, may describe 
several tens of millions of entities [6]. Additionally, the 
complexity of DMS is reflected by an extensive num-
ber of main requirements that have to be met: control 
and monitoring, smart operation, DN analysis, optimi-
zation and planning, demand-response management 
and management of outages. To meet these expecta-
tions, DMS is tightly integrated with other systems 
like Supervisory Control and Data Acquisition, Cus-
tomer Information System, Meter Data Management, 
Weather Information System, Asset Management and 
Geographical Information System. 
Such DMS, integrated into the Smart Grid concept [3, 
29], uses a Grid [2, 15, 20] to store and process afore-
mentioned large amounts of data so that required 
functionalities are provided [25]. Each functionality 
demands execution of different (most commonly de-
pendent) tasks on Grid resources. A set of tasks whose 
execution completes a certain functionality deter-
mines a workflow [14]. 
DMS operates as a reactive system [17, 27]. This cat-
egory of computer system is characterized by an in-
teraction with computational environment during 
which information exchanges occur. Their reaction to 
the influences coming from the environment is an ini-
tiation of different activities (workflows) which can 
result in a state modification. DMS receives various 
stimulations for generating workflows: actions gen-
erated via a user interface, changes of topology and 
measured values from a SCADA [3] or model changes 
from a GIS [38]. The interaction can happen in any 
random moment, so the full set of workflows that has 
to be executed (workflow application) is not known 
in advance, it evolves in time instead. Furthermore, 
workflows may be mutually dependent [25] and pri-
oritized [21] (e.g. processing of an alarm event is more 
important than execution of “what-if ” analyses [25]). 
Consequently, the additional complexities are includ-
ed in the workflow management. 
The Grid workflow management system provides 

scheduling process to coordinate the execution of 
workflows in order to assign a stream of tasks to avail-
able resources with a goal to optimize various perfor-
mance metrics [13, 22]: minimization of single work-
flow execution time, fairness of load distribution or 
minimization of makespan (execution time of work-
flow application) [8, 19]. 
Behavior of Grid resources is not predictable in suffi-
ciently good measure [41]. For example, during work-
flow execution, some resources suddenly may get 
busy with internal tasks, while a computer network 
can be overloaded for some time period. For these rea-
sons, the estimated time when a task will be executed 
often does not coincide with the time when the task 
is really completed. Thus, unsteadiness of computa-
tional resources is another difficulty which a work-
flow management has to handle.
Based on the previous discussion, the scheduling pro-
cess has to deal with the following challenges:
 _ manipulation with large data workflows;
 _ examination of the dependency of workflows;
 _ consideration of priority of workflows;
 _ dynamic environment – unpredictable behavior of 

Grid resources and dynamical arrival of workflows 
to execution;

 _ optimal utilization of Grid resources.

1.2. Literature Review
Two types of scheduling algorithms are thoroughly 
researched, namely, static [4, 32], which can be used 
only when all workflows are known prior, and dynam-
ic [23, 32], which must be utilized when circumstanc-
es are unforeseeable. Dynamic algorithms are neces-
sary for adequate DMS operation, because workflows 
are generated at random timestamps and fluctuation 
of computing performance is constantly present [41]. 
Some papers propose solving similar problems by us-
ing artificial intelligence, like neural networks [39] 
and genetic algorithms [26]. On the other hand, some 
approaches are based on collecting information about 
Grid, executing predefined algorithms and making 
scheduling decisions [10, 11, 14].
The chosen concept (architecture) of workflow sched-
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uling may have a significant impact on the system 
operation [16]. Different concepts may use different 
scheduling algorithms to provide parallel and distrib-
uted task execution, better utilization of computation-
al resources which results in overall increased perfor-
mance – the speed of workflow execution.
The centralized scheduling concept implies existence 
of one scheduling unit which coordinates the execu-
tion of all workflows [16]. Opposite of the centralized 
concept, the distributed scheduling includes multiple 
units which make decisions about workflow manage-
ment [14]. Therefore, one unit usually holds infor-
mation about a subset of workflows assigned to it (a 
part of workflow application). If work of distributed 
scheduling units is not coordinated [31], the best deci-
sions about a subset of workflows made by one sched-
uling unit may not ensure the best performance of the 
whole workflow application [24]. Hierarchical sched-
uling is conducted with one central scheduling unit 
and some low-level scheduling units [5]. The central 
unit does the preliminary examination of workflow 
application and sends workflows to low-level units 
which are responsible for assigning common tasks to 
Grid resources.

1.3. Aim and Contribution 
This paper aims to compare qualities of different 
workflow scheduling concepts, like performance, 
scalability and complexity of implementation. Each 
concept has to consider requirements listed in the 
Motivation section.
Makespan is used to quantify performance which is 
the main indicator of feasibility and successfulness of 
a scheduling concept [41]. For these purposes, prac-
tical experiments, which simulate the DMS real-time 
control, are developed. 
By analyzing design, we will present the complexity of 
implementation and explain scalability of each work-
flow scheduling concept.

1.4. The Organization of the Paper 
After Introduction, the general architecture of a DMS 
and its main workflows are presented in the second 
section. Section 3 explains the model of the workflow 
application, which is the starting point of the efficient 
operation of the Workflow Management System that 
is introduced in Section 4. Section 5 presents an ex-

perimental study, while Section 6 contains final re-
marks and conclusion.

2. DMS Grid Architecture and 
Workflows
Diverse types of data are processed during DMS op-
eration [25]: 
 _ static data (rarely changed after the initial import) 

fully describe a DN, entities and their connectivity;
 _ dynamic data (frequently changed) represent 

dynamic states of the devices within a DN, e.g. 
voltage values;

 _ graphic data are used for visualization of a DN.

DMS is built as a collection of services adapted to 
operate in a distributed computing environment. In 
order for DMS to operate correctly, it is essential that 
services cooperate and exchange information. Each 
service implements a specific functionality while 
preserving data to provide them an effective, secure 
and continuous operation. Figure 1 presents the core 
services of DMS [25]:
 _ Static Data Service (SDS) provides read/write 

actions on the static data. Most commonly, SDS 
relies on a relational database which is hosted on 
the current computational resource.

 _ Dynamic Data Service (DDS) caches the 
dynamic data. Since these data change frequently, 
huge time-series data about process variables are 
stored.

 _ Graphical Data Service (GDS) is responsible for 
maintaining the graphical data. It enables each 
user client application only to maintain its current 
view of the DN in its memory. 

 _ Computing Services (CSs) are numerous since 
they provide means for execution of DMS functions 
[35]. DMS functions are fairly burdensome and the 
most frequent workflows [25]. They receive static 
and correspondent dynamic data for a part of the 
DN, and perform a requested set of calculations. 
In respect to the requirements of complex 
calculations, CSs are deployed on resources with 
powerful CPUs. Tasks executed on this type of 
DMS service are called computing tasks. Figure 1 
shows a Grid with Nc computing services (CSs).
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The Grid uses a peer-to-peer communication model 
which is convenient for large data transfers [30]. It 
provides the least time losses while transferring data 
between computational resources [33].
As a result of analyzing requirements and functional-
ities, the most common DMS workflows are the fol-
lowing: 
 _ DMS Function Execution is triggered when a 

change of the state of a device occurs. It includes four 
tasks – a part of dynamic data and correspondent 
static data are transferred to a CS, so that relevant 
calculations may be done. Consequently, graphical 
data are updated with results (Figure 2(a)).

 _ Model Update is a workflow which is executed 
when static data have to be updated. It consists 
of three tasks – based on the modification of 
static data, it is necessary to update graphical and 
dynamic data (Figure 2(b)).

Figure 1
DMS services deployed on a computational Grid

Figure 2 
DMS workflows: a) DMS Function Execution, b) Model Update, 
c) Graphical View Refresh 

 _ Graphical View Refresh is initiated as a possible 
GDS error recovery. Three tasks are executed 
during this workflow – a part of static data and 
correspondent dynamic data are transferred to 
GDS, so that graphical data may be refreshed 
(Figure 2(c)). 

Each DMS workflow can be represented as a set of 
tasks with dependencies between them [37] by a di-
rected acyclic graph (DAG) [28]. The vertices of the 
DAG represent tasks, while the edges are data depen-
dencies between them. A task becomes executable 
when all its dependencies are met: all predecessor 
tasks are completed and input data required by the 
task are available at a Grid resource. 
Workflows which arrive for execution are ranked by 
the priority. All tasks included in a workflow take over 
the same priority as the workflow. Furthermore, de-
pendencies between workflows may occur, e.g. execu-
tion of DMS functions over a part of a DN is directly 
dependent on the initial import of that DN part [25].
Since historical data can be used to evaluate the 
workload of tasks [18], a task iT  is characterized with 
the following properties:

ip  – priority; 

it   – estimated time to execute the task (which cor-
responds to the estimated task workload iw );

in  – execution resource (DMS service, 
);

iTP  – set of predecessor tasks;

iTS  – set of successor tasks.
Scheduling algorithms use these properties to choose 
the optimal allocation of resources for task execution. 
Optimization goal is to rearrange incoming workflow 
tasks in order to support the priority and get maxi-
mum usage of all Grid resources, so that the makespan 
is minimized. 

3. The Workflow Application
This section provides a description of the workflow 
application model [25] which is further used to define 
optimization problem.

3.1. The Workflow Application Model
Workflow application is built by connecting tasks 

 3

 
Figure 1. DMS services deployed on a computational Grid 

The Grid uses a peer-to-peer communication model which is 
convenient for large data transfers [30]. It provides the least 
time losses while transferring data between computational 
resources [33]. 
As a result of analyzing requirements and functionalities, the 
most common DMS workflows are the following:  
 DMS Function Execution is triggered when a change of 

the state of a device occurs. It includes four tasks – a part 
of dynamic data and correspondent static data are 
transferred to a CS, so that relevant calculations may be 
done. Consequently, graphical data are updated with 
results (Figure 2(a)). 

 Model Update is a workflow which is executed when 
static data have to be updated. It consists of three tasks – 
based on the modification of static data, it is necessary to 
update graphical and dynamic data (Figure 2(b)). 

 Graphical View Refresh is initiated as a possible GDS 
error recovery. Three tasks are executed during this 
workflow – a part of static data and correspondent 
dynamic data are transferred to GDS, so that graphical 
data may be refreshed (Figure 2(c)).  

 
Figure 2. DMS workflows: a) DMS Function Execution, b) 

Model Update, c) Graphical View Refresh  

Each DMS workflow can be represented as a set of tasks with 
dependencies between them [37] by a directed acyclic graph 
(DAG) [28]. The vertices of the DAG represent tasks, while 
the edges are data dependencies between them. A task 
becomes executable when all its dependencies are met: all 
predecessor tasks are completed and input data required by 
the task are available at a Grid resource.  
Workflows which arrive for execution are ranked by the 
priority. All tasks included in a workflow take over the same 
priority as the workflow. Furthermore, dependencies 
between workflows may occur, e.g. execution of DMS 
functions over a part of a DN is directly dependent on the 
initial import of that DN part [25]. 

Since historical data can be used to evaluate the workload of 
tasks [18], a task iT  is characterized with the following 
properties: 

ip  – priority;  

it   – estimated time to execute the task (which 
corresponds to the estimated task workload iw ); 

in  – execution resource (DMS service, 
}CS,DDS,GDS,SDS{in ); 

iTP  – set of predecessor tasks; 

iTS  – set of successor tasks. 
Scheduling algorithms use these properties to choose the 
optimal allocation of resources for task execution. 
Optimization goal is to rearrange incoming workflow tasks 
in order to support the priority and get maximum usage of all 
Grid resources, so that the makespan is minimized.  

3 The Workflow Application 

This section provides a description of the workflow 
application model [25] which is further used to define 
optimization problem. 

3.1 The Workflow Application Model 

Workflow application is built by connecting tasks of 
dependent workflows. Output tasks of a "parent" workflow 
become predecessors for all input tasks of a "child" 
workflow, therefore, the workflow application is also 
represented as a DAG. Tasks without any predecessors are 
input tasks, while tasks without any successors are output 
tasks of a workflow application. 
An efficient workflow scheduling requires quality 
information about the managed workflow application. For 
that reason, the workflow application model is enriched with 
additional data. Every node and edge of the workflow 
application DAG receive a weight. The weight of a node is 
the estimated execution time of a task, while the weight of an 
edge represents the time necessary to transfer data between 
computational Grid resources on which the task and its 
successor are executed. 
Data transfer rates (the amount of data which can be 
transferred via network) between computational resources 
are well-known. The transfer rate between resources in  and 

jn  is denoted by .
i jn nrate The amount of data that needs to 

be transferred after the completion of task iT  and before the 

start of task jT , is denoted by .
i jT Tdata The communication 

time cost of edge (i, j) is defined as: 

ji

ji

jTiT
nn

TT

rate

data
c   . (1) 

If iTst  and iTct  are defined as the start time and the 

completion time of a task iT , respectively, and innt  as the 

earliest available time of a resource in , then the task iT  
becomes eligible for execution at the timestamp: 

SDS DDS 

GDS 

UI SCADA Simulation 

UI 

Network 

Data Import 

… CSNc CS1 

SDS – Static Data Service 
DDS – Dynamic Data Service 
GDS – Graphical Data Service 
CS    – Computing Services 

SDS DDS

CS 

GDS

a) 

SDS DDS

GDS

c) 

DDS GDS

SDS 

b) 

 3

 
Figure 1. DMS services deployed on a computational Grid 

The Grid uses a peer-to-peer communication model which is 
convenient for large data transfers [30]. It provides the least 
time losses while transferring data between computational 
resources [33]. 
As a result of analyzing requirements and functionalities, the 
most common DMS workflows are the following:  
 DMS Function Execution is triggered when a change of 

the state of a device occurs. It includes four tasks – a part 
of dynamic data and correspondent static data are 
transferred to a CS, so that relevant calculations may be 
done. Consequently, graphical data are updated with 
results (Figure 2(a)). 

 Model Update is a workflow which is executed when 
static data have to be updated. It consists of three tasks – 
based on the modification of static data, it is necessary to 
update graphical and dynamic data (Figure 2(b)). 

 Graphical View Refresh is initiated as a possible GDS 
error recovery. Three tasks are executed during this 
workflow – a part of static data and correspondent 
dynamic data are transferred to GDS, so that graphical 
data may be refreshed (Figure 2(c)).  

 
Figure 2. DMS workflows: a) DMS Function Execution, b) 

Model Update, c) Graphical View Refresh  

Each DMS workflow can be represented as a set of tasks with 
dependencies between them [37] by a directed acyclic graph 
(DAG) [28]. The vertices of the DAG represent tasks, while 
the edges are data dependencies between them. A task 
becomes executable when all its dependencies are met: all 
predecessor tasks are completed and input data required by 
the task are available at a Grid resource.  
Workflows which arrive for execution are ranked by the 
priority. All tasks included in a workflow take over the same 
priority as the workflow. Furthermore, dependencies 
between workflows may occur, e.g. execution of DMS 
functions over a part of a DN is directly dependent on the 
initial import of that DN part [25]. 

Since historical data can be used to evaluate the workload of 
tasks [18], a task iT  is characterized with the following 
properties: 

ip  – priority;  

it   – estimated time to execute the task (which 
corresponds to the estimated task workload iw ); 

in  – execution resource (DMS service, 
}CS,DDS,GDS,SDS{in ); 

iTP  – set of predecessor tasks; 

iTS  – set of successor tasks. 
Scheduling algorithms use these properties to choose the 
optimal allocation of resources for task execution. 
Optimization goal is to rearrange incoming workflow tasks 
in order to support the priority and get maximum usage of all 
Grid resources, so that the makespan is minimized.  

3 The Workflow Application 

This section provides a description of the workflow 
application model [25] which is further used to define 
optimization problem. 

3.1 The Workflow Application Model 

Workflow application is built by connecting tasks of 
dependent workflows. Output tasks of a "parent" workflow 
become predecessors for all input tasks of a "child" 
workflow, therefore, the workflow application is also 
represented as a DAG. Tasks without any predecessors are 
input tasks, while tasks without any successors are output 
tasks of a workflow application. 
An efficient workflow scheduling requires quality 
information about the managed workflow application. For 
that reason, the workflow application model is enriched with 
additional data. Every node and edge of the workflow 
application DAG receive a weight. The weight of a node is 
the estimated execution time of a task, while the weight of an 
edge represents the time necessary to transfer data between 
computational Grid resources on which the task and its 
successor are executed. 
Data transfer rates (the amount of data which can be 
transferred via network) between computational resources 
are well-known. The transfer rate between resources in  and 

jn  is denoted by .
i jn nrate The amount of data that needs to 

be transferred after the completion of task iT  and before the 

start of task jT , is denoted by .
i jT Tdata The communication 

time cost of edge (i, j) is defined as: 

ji

ji

jTiT
nn

TT

rate

data
c   . (1) 

If iTst  and iTct  are defined as the start time and the 

completion time of a task iT , respectively, and innt  as the 

earliest available time of a resource in , then the task iT  
becomes eligible for execution at the timestamp: 

SDS DDS 

GDS 

UI SCADA Simulation 

UI 

Network 

Data Import 

… CSNc CS1 

SDS – Static Data Service 
DDS – Dynamic Data Service 
GDS – Graphical Data Service 
CS    – Computing Services 

SDS DDS

CS 

GDS

SDS DDS

GDSDDS GDS

SDS 

a b b



97Information Technology and Control 2018/1/47

of dependent workflows. Output tasks of a “parent” 
workflow become predecessors for all input tasks of 
a “child” workflow, therefore, the workflow applica-
tion is also represented as a DAG. Tasks without any 
predecessors are input tasks, while tasks without 
any successors are output tasks of a workflow appli-
cation.
An efficient workflow scheduling requires quality in-
formation about the managed workflow application. 
For that reason, the workflow application model is 
enriched with additional data. Every node and edge of 
the workflow application DAG receive a weight. The 
weight of a node is the estimated execution time of a 
task, while the weight of an edge represents the time 
necessary to transfer data between computational 
Grid resources on which the task and its successor 
are executed.
Data transfer rates (the amount of data which can be 
transferred via network) between computational re-
sources are well-known. The transfer rate between re-
sources in  and jn  is denoted by .

i jn nrate The amount 
of data that needs to be transferred after the completion 
of task iT  and before the start of task jT , is denoted by 

.
i jT Tdata The communication time cost of edge (i, j) is 

defined as:

ji

ji

jTiT
nn

TT

rate

data
c = . (1)

IF  and  are defined as the start time and the 
completion time of a task iT , respectively, and  as 
the earliest available time of a resource in , then the 
task iT  becomes eligible for execution at the time-
stamp

. (2)

he completion time  is calculated as the sum of the 
start time  and the estimated execution time it :

. (3)

Finally, the model of workflow application acquires 
its definite form which fully describes all workflows, 
task dependences and their properties (see Figure 3). 

3.2. The Optimization Problem
The makespan represents the objective function of 
the addressed optimization problem. Information 
held by the workflow application model is sufficient 
to define it [8]:

.
(4)

Outputs is the set of output tasks. 
The optimization goal is to assign tasks to resources 
in order to minimize the makespan, respecting the ac-
tual constraints: dynamic environment, task depen-
dencies and priorities.

4. The Workflow Management System
A Workflow Management System (WMS) is the 
backbone of the workflow manipulation within a 
Grid. It does not execute tasks, but coordinates them 
and ensures that tasks are carried out in a proper or-
der and that their execution is done simultaneously 
whenever is possible [13, 22]. A WMS may support 
different scheduling concepts, like centralized [16], 
hierarchical [31], distributed [5], or some derived im-
plementations [14, 25].

Figure 3
The workflow application model
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4.1. The Centralized Scheduling Concept
The basic WMS developed for centralized schedul-
ing concept is presented in Figure 5. In the following 
sections, while elaborating mixed and hierarchical 
scheduling concepts, basic modifications related to 
Figure 5 will be pointed out.
WMS (see Figure 5) consists of two major compo-
nents, DAG Manager and Task Scheduler. Moreover, 
it implements a scheduling algorithm to provide sup-
port for the high-throughput scheduling process. The 
algorithm searches for executable tasks whose com-
pletion will have the greatest impact on the overall 
performance – makespan. To ensure this, during the 
execution of the scheduling algorithm an algorithmic 
parameter whose value corresponds to the influence 
of a task on the makespan is calculated for every task. 
Therefore, the value of the algorithmic parameter de-
termines which ready task (a task without predeces-
sors) has an advantage during the allocation of Grid 
resources. It should be noticed that ready tasks are 
mutually independent since they have no predeces-
sors.

4.1.1. The Algorithmic Parameter
The algorithmic parameter is determined based on 
the Critical Path Algorithm [34, 36]. This approach 
aims to determine the longest of all execution paths 
for every task [25]. It answers the question on which 
tasks have the most impact on the overall execution 
time.
In accordance with this, the tasks are ordered de-
creasingly by their rank (the algorithmic parameter). 
The rank of each output task corresponds to its exe-
cution time:

i
OutputsT

T trank
i

i =
∈

.
(5)

The ranks of other tasks are calculated recursively:

}{max jjTiT
iTj

i T
ST

iT rankctrank ++=
∈

. (6)

4.1.2. The DAG Manager 
The workflow application is represented via a DAG 
and it is continually evolving during the system oper-
ation. The DAG Manager manipulates the workflow 

application and its main mission is to provide sorted 
ready tasks (according to algorithmic parameter and 
priority, at the time when a resource is available). The 
priority has greater influence on assigning task to re-
sources than algorithmic parameter. If one task has 
higher priority and lesser value of algorithmic param-
eter than another task, the first task will acquire an 
advantage while mapping tasks to resources.
The DAG Manager monitors for a new workflow ar-
rival or a task completion. When any of the events oc-
cur, the DAG is updated: a new workflow is included, 
while the completed task is removed from the work-
flow application. 
As a consequence, the dependency information is up-
dated and an analysis of DAG is initiated. The result of 
the analysis is a collection of ready and independent 
tasks. Subsequently, the algorithmic parameter is cal-
culated. The collection of ready tasks is then classi-
fied according to priority, execution resource and al-
gorithmic parameter (Figure 4). 

Figure 4 
Ready tasks sorted according to priority, execution resource 
and algorithmic parameter
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The basic idea is that when a Grid resource becomes 
available, an utmost priority task with the greatest al-
gorithmic parameter is submitted to execution queue.
It should be noted that Grid uses peer-to-peer com-
munication model [30, 33] to save time in transferring 
data. Peer-to-peer communication provides a means 
to transfer output of an executed task directly (without 
mediator) from the Grid resource on which the task is 
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Figure 5 
The Workflow Management System
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completed to the Grid resource where the successor of 
the task has to be executed. However, when a successor 
task is a computing task which has to be executed on a 
CS, and since this type of DMS service is hosted on mul-
tiply computational resources, the WMS has to resolve 
to which CS should output data be transferred. Hence, if 
any of the ready tasks which are sent to execution have 
a computing task as a successor, the engineered WMS 
determines the most appropriate CS for executing the 
successor computing task. Therefore, the ready task 
and the CS address are sent to Grid. Consequently, the 
output of the ready task is directed to the submitted ad-
dress. To ensure this behavior and support beneficial 
scheduling, the DAG Manager provides the following 
estimation of CSs workloads:
1 After the classification, ready tasks with the high-

est priority and the greatest rank are extracted and 
further analyzed (it is expected that these tasks 
will be executed first). Computing ready tasks are 
excluded from this step. 

2 If any of the extracted tasks have computing tasks 
as successors, appropriate CSs have to be deter-
mined for each computing successor, so that ad-
dresses of suitable CSs may be submitted together 
with non-computing ready tasks. This approach 
ensures that outputs of non-computing task 
(which have computing tasks as successors) are 
transferred to previously determined CSs.

3 The workload of CSs is examined (centralized 
WMS is aware of computing tasks already assigned 
to CSs). The successor computing tasks with the 
highest priority and the largest rank are mapped to 
the CSs with the lowest workload.

4 It is obvious that ready computing tasks are exclud-
ed from analysis in Step 1 since they are already 
mapped to CSs (during Step 3 in one of the previ-
ous scheduling). During the previous scheduling, 
they were successors of one or more ready tasks.

The estimation of CSs workload is executed only 
for centralized scheduling, hence it is displayed as a 
dashed square in Figure 5. When a CS becomes avail-
able, the DAG Manager chooses the most eligible com-
puting task (a computing task with the highest prior-
ity and the greatest rank). It is chosen from the set of 
ready computing tasks previously mapped to the CS 
during the estimation of CSs workload phase. The 
outputs of the predecessor of this task are directly 
transferred to the available CS.

4.1.3. The Task Scheduler
The Task Scheduler is responsible for submitting tasks 
to the Grid resources and monitoring task completion. 
The scheduler maintains the task queue which is con-
stantly read. The tasks are independent and already 
mapped to appropriate computational resources. 

4.2. The Mixed Scheduling Concept
By using the mixed scheduling concept, scheduling of 
computing tasks is improved at the expense of losing 
some transfer-time gaining achieved through peer-to-
peer communication. An additional distributed sched-
uling [1] is included and it exclusively manages ready 
computing task. The aim of distributed scheduling is to 
achieve parallelism through the workload distribution 
and obtain better execution time. A more advanced 
computing engine includes multiple CSs and estab-
lishes the Computing Broker (CB) (see Figure 6).
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Figure 6 
Modification of the Grid for mixed scheduling

CB represents a mediator between multiple CSs and 
the other parts of the system. The drawback of this 
approach is that direct peer-to-peer communication 
between the CSs and other resources (DMS services) 
does not exist. 
The CSs implement a distributed scheduling algo-
rithm, hence, the estimation of CSs workload as a 
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part of centralized scheduler becomes redundant. 
The CSs become more complex considering that in 
addition to executing computing tasks, they are per-
forming workload balancing. Now WMS consists of 
two schedulers, the main centralized scheduler and 
the distributed scheduler for computing tasks.
The centralized scheduler continues to analyze DAG, 
calculates algorithmic parameters and classifies 
ready tasks. Non-computing tasks are scheduled in 
the orderly manner – the most eligible task is sent to 
the available resource. However, scheduling comput-
ing tasks is now a responsibility of the advanced com-
puting engine, and as soon as a computing task be-
comes ready, it is transferred to CB. CB receives ready 
computing tasks from the Task Scheduler and input 
data from other Grid resources. When a CS adopts a 
task, it takes data contained by CB and executes ex-
pected calculation. After completing the task, the CS 
transfers results to CB, which forwards them to the 
appropriate Grid resource and notifies the central-
ized scheduler (more accurate, the Task Scheduler) of 
the task completion.

4.2.1. The Distributed Algorithm
It is of the most significance that CSs share informa-
tion about their current workload, thus the coopera-
tive scheduling is provided [14, 31]. By ensuring co-
operative operation, a CS makes decisions regarding 
the scheduling in line with other CSs. Hence, each CS 
is responsible to carry out its own part of scheduling 
work which will contribute to achieving the common 
global goal – workload distribution according to the 
capacity of computational resources.
NC is defined as the set of all CSs within a Grid. The 
cardinality of NC is denoted by cN . If in  indicates a 
CS,  and  represent the current workload and 
computational capacity of resource ,in  respectively. 
Accordingly, the desired workload distribution over 
the CSs is determined:

. (7)

The aim of distributed scheduling is to make work-
load distribution converge towards the desired distri-
bution:

. (8)

The distributed algorithm is an iterative algorithm 
and it is based on the physical phenomenon of diffu-
sion. As matter is moved from a region of high con-
centration to a region of low concentration, comput-
ing tasks similarly migrate from a more loaded CS to 
a less loaded CS. 
The algorithm makes decisions about workload dis-
tribution at the iteration h by using the workload in-
formation of the iteration h – 1 [12].  represents 
the current workload of computing service in  at iter-
ation h (sum of workloads (w) of all computing tasks 
currently assigned to in ). According to the diffusion 
algorithm, the CS marked with in  exchanges a share 

of workload  with another CS labeled 

as jn  at each iterative step, where parameter α deter-
mines how much of workload difference is exchanged 
[12, 40]. 
Workload modification of in  after the workload ex-
change with all CSs is described by the following 
equation:

. (9)

By rearranging Equation (9), the following form is ob-
tained:

. (10)

Equation (10) is linear, therefore the iterative distri-
bution algorithm may be presented in matrix form:

, (11)

where  is the workload distribution of CSs at it-
eration h:

 
, (12)

and DM is a diffusion matrix with the following en-
tries:
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. (13)

Completion of the algorithm is related to the possi-
bility to lead any initial workload distribution to the 
workload balanced state.

4.2.2. The Implementation of the Distributed 
Algorithm by CSs
CSs exchange messages about current workload so 
that cooperative scheduling is achieved. It is unnec-
essary to exchange information when the workload 
balance exists – an appropriate amount of workload 
is assigned to each CS. When the balance is disturbed, 
it is essential to run the algorithm to re-establish the 
balance. Therefore, the algorithm starts on the occur-
rence of the following events:
 _ When a CS receives a new computing task ( just 

arrived from CB), it considers that the existing 
workload balance is disturbed. The CS starts 
information exchange to find out if any other CS is 
less loaded.

 _ When a computing task (an amount of workload) is 
transferred from a CS to another, less loaded CS, the 
workload of the second CS has just increased. The 
CS which has received the workload, acknowledges 
the imbalance and searches for other CSs which 
are able to collect some of its workload.

 _ When a new CS is added to the computational 
engine, the remaining CSs examine how much of 
their workload may be taken over by the new CS.

A CS considers that balance is established when there 
is no need for further workload exchange between it 
and other CSs.
While exchanging workload information, the CSs si-
multaneously execute tasks. A CS chooses the most 
eligible computing task (according to the priority and 
algorithmic parameter) assigned to it to be complet-
ed first. Tasks which are currently executed on CSs 
cannot migrate during the run of the distributed algo-
rithm.

4.3. The Hierarchical Scheduling Concept
Hierarchical scheduling is applied on the Grid pre-
sented in Figure 6. This scheduling concept is much 
similar to the mixed scheduling, except that workload 

distribution is not done by cooperative work of CSs, 
but by a single CB. In this concept, CB receives inde-
pendent computing tasks, keeps records about work-
load and maps tasks to the CSs. As a consequence, the 
role of CB is dual:
 _ It hides multiplicity of CSs from the other 

computational resources, so the peer-to-peer 
communication with the CSs is disabled.

 _ It operates as an autonomous, low-level computing 
tasks scheduler. It uses the same rules explained in 
the section about the mixed scheduling concept.

The most eligible computing tasks have the advantage 
during assignment of tasks to the CSs. By supporting 
this behavior, the low-level scheduler of computing 
tasks takes into consideration influence of each in-
dependent computing task on the makespan of the 
whole workflow application.

5. The Experimental Study and 
Discussion
This section explains the conducted experiments 
whose results are further used to elaborate on com-
parison of presented scheduling concepts.

5.1. Experiments

A testing environment with four CSs [25] is devel-
oped to simulate operation of the DMS during a re-
al-time DN control. Computational resources used in 
test environment have the following characteristics:
 _ SDS: Intel(R) Core(TM) i3-3222 CPU 3.30 GHz, 16 

GB RAM, SQL Server 2012,
 _ DDS: Intel(R) Core(TM) i3-4130 CPU 3.40 GHz, 

24 GB RAM,
 _ GDS: Intel(R) Core(TM) i3-4150 CPU 3.50 GHz, 32 

GB RAM,
 _ Four CSs: Intel(R) Core(TM) i3-4160 CPU 3.60 

GHz, 24GB RAM.

Software components are implemented in .NET 4.5 
Framework. 
All experiments examine the effect of makespan 
changes which are used for comparison of the pre-
sented scheduling concepts. The workflow applica-
tion is composed of the all considered DMS workflow 
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types (Figure 2). DMS Function Execution is the 
most common and it makes more than 70%, while the 
Model Update workflow type represents about 20% 
of all workflows. The Graphical View Refresh type is 
the most infrequent (up to 10% of all workflows). Be-
tween a hundred and a thousand workflows arriving 
dynamically are used in experiments. To achieve the 
highest possible workload sharing between CSs, pa-
rameter α  is set to 2/1  ( 1/ 2),α =  in accordance with 
[12, 40].
The obtained results, total speeds of workflow execu-
tion, are presented in Table 1 and Figure 7. 

Table 1
The speeds of workflow execution

Number of 
workflows

Centralized 
scheduling 

[s]

Mixed 
scheduling [s]

Hierarchical 
scheduling 

[s]

100 155.65 147.66 146.17

250 381.38 361.30 357.52

500 757.65 717.59 710.04

750 1139.63 1076.75 1065.54

1000 1510.15 1430.09 1415.05

Table 2 
The comparative speeds of workflow execution

Number of 
workflows

Centralized 
v.s. Mixed 

[%]

Centralized v.s. 
Hierarchical 

[%]

Mixed v.s.
Hierarchical 

[%]

100 5.41 6.49 1.02

250 5.56 6.67 1.05

500 5.58 6.70 1.06

750 5.58 6.95 1.05

1000 5.60 6.72 1.06

Figure 7 
DMS real-time control – Workflow execution speeds

Figure 8 
DMS real-time control – Comparative speeds of workflow 
execution
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The experimental study leads to the following conclu-
sions:
 _ The mixed and the hierarchical scheduling exceed 

centralized concept.
 _ The scheduling brings more benefits if there are 

more workflows to coordinate.
 _ The hierarchical scheduling concept slightly 

outperforms the mixed solution.
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 _ The time savings increase by increasing the 
number of workflows.

5.2. Discussion
The presented scheduling concepts are compared by 
different parameters: performance, scalability and 
complexity of implementation.

5.2.1. Performance
The utilization of two schedulers, rather than one cen-
tralized, reduces the total execution time and boosts the 
performance of the whole system. The centralized sched-
uling pre-determines the mapping of computing tasks to 
CSs and that feature can be the main reason for the weak-
er performances. A computing task is always executed to 
a previously assigned resource regardless the current 
state of the unpredictable resource (e.g. the resource may 
have been occupied with some internal tasks). 
The hierarchical scheduling concept exceeds the mixed 
concept to a certain extent. This can be explained by 
the fact that CSs are not required to perform workload 
distribution during the hierarchical scheduling. They 
entirely devote time to execute computing tasks. 

5.2.2. Scalability
Since DMS Function is by far the most frequent DMS 
workflow type, scalability is considered in the context 
of computing tasks. For a large-scale DMS, it can be 
essential to include additional CSs in the advanced 
computing engine, so that execution of computing 
tasks would not be the bottleneck of the system. 
The centralized scheduling concept is the least scal-
able. An addition of a new CS requires changes in all 
system components: the DAG Manager and the Task 
Scheduler have to provide scheduling for the new CS, 
and all other computational Grid resources must ob-
tain the address of the CS. 
The implementation of the mixed scheduling gener-
ates the need that CB and all existing CSs have to in-
corporate the new CS into the distributed algorithm. 
The hierarchical scheduling concept is the most scal-
able. The new CS is introduced only by connecting to CB. 

5.2.3. The Complexity of Implementation
The centralized scheduling holds the complete set of in-
formation. It is typical for this scheduling concept that 
decision making is carried out in one fundamental place. 
Thus, easy implementation is an advantage of this con-
cept. The replacement of scheduling algorithm in the 
presented centralized scheduling is simply manageable 
by changing the definition of algorithmic parameter.
The hierarchical scheduling is composed of two 
schedulers, a centralized and a low-level. A benefit 
is that two schedulers may use different algorithms. 
Both implementations are straightforward, but sup-
porting this concept requires more effort than sup-
porting purely centralized scheduling.
The mixed scheduling concept is also composed of two 
schedulers, a centralized scheduler and a low-level dis-
tributed scheduler for computing tasks. This concept 
requires the most elaborate implementation. In addi-
tion to the mixed scheduler, each CS must provide dual 
features – task execution and workload exchanging.

6. Conclusion
The paper has discussed three scheduling concepts 
that take into account dynamic nature of DMS and 
specific characteristics of DMS workflows: central-
ized, mixed and hierarchical. DMS grid architecture 
and architecture-dependent implementation was 
explained for each of them. The experimental study 
was conducted to examine their effectiveness and 
benefit which they provide during DMS operation in 
control mode.
The workflow scheduling concepts are mutual-
ly compared based on the scheduling efficiency 
(makespan), scalability and complexity of imple-
mentation. Taking into consideration observations 
regarding these parameters the concept of hierar-
chical scheduling emerges as the finest choice since 
it ensures the greatest performance, it is the most 
scalable and completely suitable in terms of the 
complexity of implementation.
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