
93Information Technology and Control 2018/1/47

A Comparison of DMS
Workflows Scheduling
Concepts

ITC 1/47
Journal of Information Technology
and Control
Vol. 47 / No. 1 / 2018
pp. 93-106
DOI 10.5755/j01.itc.47.1.18062
© Kaunas University of Technology

A Comparison of DMS Workflows Scheduling Concepts

Received 2017/04/26 Accepted after revision 2018/01/08

 http://dx.doi.org/10.5755/j01.itc.47.1.18062

Nemanja Nedić
Schneider Electric DMS Novi Sad, Novi Sad, Serbia, e-mail: nemanja.nedic@schneider-electric-dms.com

Goran Švenda
Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia, e-mail: svenda@uns.ac.rs

Corresponding author: nemanja.nedic@schneider-electric-dms.com

The development of computational and communication technology enabled the introduction of a Distribution Man-
agement System (DMS) as a sophisticated approach to solve various problems regarding the power supply in mod-
ern society. These advanced systems execute a large number of workflows to meet the requirements and provide the
desirable functionalities. Very high demands for computational resources, during the DMS operation, imposed a ne-
cessity for an adequate DMS workflow management. Three DMS workflow scheduling concepts (architectures) are
presented in this paper: centralized, mixed and hierarchical. These scheduling concepts are compared by different
parameters, such as performance, scalability and complexity of implementation. The conducted experimental study
shows that the hierarchical scheduling concept not only provides the best performance, but is also the most scalable
and entirely eligible in terms of implementation complexity.
KEYWORDS: Workflow Scheduling, Workflow Management System, Grid Computing, Distribution Manage-
ment System.

Abbreviations:
CB – Computing Broker
CPU – Central Processing Unit
CS – Computing Service
DAG – Direct Acyclic Graph
DDS – Dynamic Data Service
DMS – Distribution Management System

DN – Distribution Network
GDS – Graphical Data Service
GIS – Geographical Information Service
SCADA – Supervisory Control and Data Acquisition
SDS – Static Data Service
WMS – Workflow Management System

Information Technology and Control 2018/1/4794

1. Introduction

1.1. Motivation
Distribution Management System (DMS) is developed
as an industry-grade product which manages the entire
distribution network (DN) [9]. Nowadays, distribution
systems are vast. Therefore, a specific data model (net-
work model) [7], used to represent a DN, may describe
several tens of millions of entities [6]. Additionally, the
complexity of DMS is reflected by an extensive num-
ber of main requirements that have to be met: control
and monitoring, smart operation, DN analysis, optimi-
zation and planning, demand-response management
and management of outages. To meet these expecta-
tions, DMS is tightly integrated with other systems
like Supervisory Control and Data Acquisition, Cus-
tomer Information System, Meter Data Management,
Weather Information System, Asset Management and
Geographical Information System.
Such DMS, integrated into the Smart Grid concept [3,
29], uses a Grid [2, 15, 20] to store and process afore-
mentioned large amounts of data so that required
functionalities are provided [25]. Each functionality
demands execution of different (most commonly de-
pendent) tasks on Grid resources. A set of tasks whose
execution completes a certain functionality deter-
mines a workflow [14].
DMS operates as a reactive system [17, 27]. This cat-
egory of computer system is characterized by an in-
teraction with computational environment during
which information exchanges occur. Their reaction to
the influences coming from the environment is an ini-
tiation of different activities (workflows) which can
result in a state modification. DMS receives various
stimulations for generating workflows: actions gen-
erated via a user interface, changes of topology and
measured values from a SCADA [3] or model changes
from a GIS [38]. The interaction can happen in any
random moment, so the full set of workflows that has
to be executed (workflow application) is not known
in advance, it evolves in time instead. Furthermore,
workflows may be mutually dependent [25] and pri-
oritized [21] (e.g. processing of an alarm event is more
important than execution of “what-if ” analyses [25]).
Consequently, the additional complexities are includ-
ed in the workflow management.
The Grid workflow management system provides

scheduling process to coordinate the execution of
workflows in order to assign a stream of tasks to avail-
able resources with a goal to optimize various perfor-
mance metrics [13, 22]: minimization of single work-
flow execution time, fairness of load distribution or
minimization of makespan (execution time of work-
flow application) [8, 19].
Behavior of Grid resources is not predictable in suffi-
ciently good measure [41]. For example, during work-
flow execution, some resources suddenly may get
busy with internal tasks, while a computer network
can be overloaded for some time period. For these rea-
sons, the estimated time when a task will be executed
often does not coincide with the time when the task
is really completed. Thus, unsteadiness of computa-
tional resources is another difficulty which a work-
flow management has to handle.
Based on the previous discussion, the scheduling pro-
cess has to deal with the following challenges:
 _ manipulation with large data workflows;
 _ examination of the dependency of workflows;
 _ consideration of priority of workflows;
 _ dynamic environment – unpredictable behavior of

Grid resources and dynamical arrival of workflows
to execution;

 _ optimal utilization of Grid resources.

1.2. Literature Review
Two types of scheduling algorithms are thoroughly
researched, namely, static [4, 32], which can be used
only when all workflows are known prior, and dynam-
ic [23, 32], which must be utilized when circumstanc-
es are unforeseeable. Dynamic algorithms are neces-
sary for adequate DMS operation, because workflows
are generated at random timestamps and fluctuation
of computing performance is constantly present [41].
Some papers propose solving similar problems by us-
ing artificial intelligence, like neural networks [39]
and genetic algorithms [26]. On the other hand, some
approaches are based on collecting information about
Grid, executing predefined algorithms and making
scheduling decisions [10, 11, 14].
The chosen concept (architecture) of workflow sched-

95Information Technology and Control 2018/1/47

uling may have a significant impact on the system
operation [16]. Different concepts may use different
scheduling algorithms to provide parallel and distrib-
uted task execution, better utilization of computation-
al resources which results in overall increased perfor-
mance – the speed of workflow execution.
The centralized scheduling concept implies existence
of one scheduling unit which coordinates the execu-
tion of all workflows [16]. Opposite of the centralized
concept, the distributed scheduling includes multiple
units which make decisions about workflow manage-
ment [14]. Therefore, one unit usually holds infor-
mation about a subset of workflows assigned to it (a
part of workflow application). If work of distributed
scheduling units is not coordinated [31], the best deci-
sions about a subset of workflows made by one sched-
uling unit may not ensure the best performance of the
whole workflow application [24]. Hierarchical sched-
uling is conducted with one central scheduling unit
and some low-level scheduling units [5]. The central
unit does the preliminary examination of workflow
application and sends workflows to low-level units
which are responsible for assigning common tasks to
Grid resources.

1.3. Aim and Contribution
This paper aims to compare qualities of different
workflow scheduling concepts, like performance,
scalability and complexity of implementation. Each
concept has to consider requirements listed in the
Motivation section.
Makespan is used to quantify performance which is
the main indicator of feasibility and successfulness of
a scheduling concept [41]. For these purposes, prac-
tical experiments, which simulate the DMS real-time
control, are developed.
By analyzing design, we will present the complexity of
implementation and explain scalability of each work-
flow scheduling concept.

1.4. The Organization of the Paper
After Introduction, the general architecture of a DMS
and its main workflows are presented in the second
section. Section 3 explains the model of the workflow
application, which is the starting point of the efficient
operation of the Workflow Management System that
is introduced in Section 4. Section 5 presents an ex-

perimental study, while Section 6 contains final re-
marks and conclusion.

2. DMS Grid Architecture and
Workflows
Diverse types of data are processed during DMS op-
eration [25]:
 _ static data (rarely changed after the initial import)

fully describe a DN, entities and their connectivity;
 _ dynamic data (frequently changed) represent

dynamic states of the devices within a DN, e.g.
voltage values;

 _ graphic data are used for visualization of a DN.

DMS is built as a collection of services adapted to
operate in a distributed computing environment. In
order for DMS to operate correctly, it is essential that
services cooperate and exchange information. Each
service implements a specific functionality while
preserving data to provide them an effective, secure
and continuous operation. Figure 1 presents the core
services of DMS [25]:
 _ Static Data Service (SDS) provides read/write

actions on the static data. Most commonly, SDS
relies on a relational database which is hosted on
the current computational resource.

 _ Dynamic Data Service (DDS) caches the
dynamic data. Since these data change frequently,
huge time-series data about process variables are
stored.

 _ Graphical Data Service (GDS) is responsible for
maintaining the graphical data. It enables each
user client application only to maintain its current
view of the DN in its memory.

 _ Computing Services (CSs) are numerous since
they provide means for execution of DMS functions
[35]. DMS functions are fairly burdensome and the
most frequent workflows [25]. They receive static
and correspondent dynamic data for a part of the
DN, and perform a requested set of calculations.
In respect to the requirements of complex
calculations, CSs are deployed on resources with
powerful CPUs. Tasks executed on this type of
DMS service are called computing tasks. Figure 1
shows a Grid with Nc computing services (CSs).

Information Technology and Control 2018/1/4796

The Grid uses a peer-to-peer communication model
which is convenient for large data transfers [30]. It
provides the least time losses while transferring data
between computational resources [33].
As a result of analyzing requirements and functional-
ities, the most common DMS workflows are the fol-
lowing:
 _ DMS Function Execution is triggered when a

change of the state of a device occurs. It includes four
tasks – a part of dynamic data and correspondent
static data are transferred to a CS, so that relevant
calculations may be done. Consequently, graphical
data are updated with results (Figure 2(a)).

 _ Model Update is a workflow which is executed
when static data have to be updated. It consists
of three tasks – based on the modification of
static data, it is necessary to update graphical and
dynamic data (Figure 2(b)).

Figure 1
DMS services deployed on a computational Grid

Figure 2
DMS workflows: a) DMS Function Execution, b) Model Update,
c) Graphical View Refresh

 _ Graphical View Refresh is initiated as a possible
GDS error recovery. Three tasks are executed
during this workflow – a part of static data and
correspondent dynamic data are transferred to
GDS, so that graphical data may be refreshed
(Figure 2(c)).

Each DMS workflow can be represented as a set of
tasks with dependencies between them [37] by a di-
rected acyclic graph (DAG) [28]. The vertices of the
DAG represent tasks, while the edges are data depen-
dencies between them. A task becomes executable
when all its dependencies are met: all predecessor
tasks are completed and input data required by the
task are available at a Grid resource.
Workflows which arrive for execution are ranked by
the priority. All tasks included in a workflow take over
the same priority as the workflow. Furthermore, de-
pendencies between workflows may occur, e.g. execu-
tion of DMS functions over a part of a DN is directly
dependent on the initial import of that DN part [25].
Since historical data can be used to evaluate the
workload of tasks [18], a task iT is characterized with
the following properties:

ip – priority;

it – estimated time to execute the task (which cor-
responds to the estimated task workload iw);

in – execution resource (DMS service,
);

iTP – set of predecessor tasks;

iTS – set of successor tasks.
Scheduling algorithms use these properties to choose
the optimal allocation of resources for task execution.
Optimization goal is to rearrange incoming workflow
tasks in order to support the priority and get maxi-
mum usage of all Grid resources, so that the makespan
is minimized.

3. The Workflow Application
This section provides a description of the workflow
application model [25] which is further used to define
optimization problem.

3.1. The Workflow Application Model
Workflow application is built by connecting tasks

 3

Figure 1. DMS services deployed on a computational Grid

The Grid uses a peer-to-peer communication model which is
convenient for large data transfers [30]. It provides the least
time losses while transferring data between computational
resources [33].
As a result of analyzing requirements and functionalities, the
most common DMS workflows are the following:
 DMS Function Execution is triggered when a change of

the state of a device occurs. It includes four tasks – a part
of dynamic data and correspondent static data are
transferred to a CS, so that relevant calculations may be
done. Consequently, graphical data are updated with
results (Figure 2(a)).

 Model Update is a workflow which is executed when
static data have to be updated. It consists of three tasks –
based on the modification of static data, it is necessary to
update graphical and dynamic data (Figure 2(b)).

 Graphical View Refresh is initiated as a possible GDS
error recovery. Three tasks are executed during this
workflow – a part of static data and correspondent
dynamic data are transferred to GDS, so that graphical
data may be refreshed (Figure 2(c)).

Figure 2. DMS workflows: a) DMS Function Execution, b)

Model Update, c) Graphical View Refresh

Each DMS workflow can be represented as a set of tasks with
dependencies between them [37] by a directed acyclic graph
(DAG) [28]. The vertices of the DAG represent tasks, while
the edges are data dependencies between them. A task
becomes executable when all its dependencies are met: all
predecessor tasks are completed and input data required by
the task are available at a Grid resource.
Workflows which arrive for execution are ranked by the
priority. All tasks included in a workflow take over the same
priority as the workflow. Furthermore, dependencies
between workflows may occur, e.g. execution of DMS
functions over a part of a DN is directly dependent on the
initial import of that DN part [25].

Since historical data can be used to evaluate the workload of
tasks [18], a task iT is characterized with the following
properties:

ip – priority;

it – estimated time to execute the task (which
corresponds to the estimated task workload iw);

in – execution resource (DMS service,
}CS,DDS,GDS,SDS{in);

iTP – set of predecessor tasks;

iTS – set of successor tasks.
Scheduling algorithms use these properties to choose the
optimal allocation of resources for task execution.
Optimization goal is to rearrange incoming workflow tasks
in order to support the priority and get maximum usage of all
Grid resources, so that the makespan is minimized.

3 The Workflow Application

This section provides a description of the workflow
application model [25] which is further used to define
optimization problem.

3.1 The Workflow Application Model

Workflow application is built by connecting tasks of
dependent workflows. Output tasks of a "parent" workflow
become predecessors for all input tasks of a "child"
workflow, therefore, the workflow application is also
represented as a DAG. Tasks without any predecessors are
input tasks, while tasks without any successors are output
tasks of a workflow application.
An efficient workflow scheduling requires quality
information about the managed workflow application. For
that reason, the workflow application model is enriched with
additional data. Every node and edge of the workflow
application DAG receive a weight. The weight of a node is
the estimated execution time of a task, while the weight of an
edge represents the time necessary to transfer data between
computational Grid resources on which the task and its
successor are executed.
Data transfer rates (the amount of data which can be
transferred via network) between computational resources
are well-known. The transfer rate between resources in and

jn is denoted by .
i jn nrate The amount of data that needs to

be transferred after the completion of task iT and before the

start of task jT , is denoted by .
i jT Tdata The communication

time cost of edge (i, j) is defined as:

ji

ji

jTiT
nn

TT

rate

data
c . (1)

If iTst and iTct are defined as the start time and the

completion time of a task iT , respectively, and innt as the

earliest available time of a resource in , then the task iT
becomes eligible for execution at the timestamp:

SDS DDS

GDS

UI SCADA Simulation

UI

Network

Data Import

… CSNc CS1

SDS – Static Data Service
DDS – Dynamic Data Service
GDS – Graphical Data Service
CS – Computing Services

SDS DDS

CS

GDS

a)

SDS DDS

GDS

c)

DDS GDS

SDS

b)

 3

Figure 1. DMS services deployed on a computational Grid

The Grid uses a peer-to-peer communication model which is
convenient for large data transfers [30]. It provides the least
time losses while transferring data between computational
resources [33].
As a result of analyzing requirements and functionalities, the
most common DMS workflows are the following:
 DMS Function Execution is triggered when a change of

the state of a device occurs. It includes four tasks – a part
of dynamic data and correspondent static data are
transferred to a CS, so that relevant calculations may be
done. Consequently, graphical data are updated with
results (Figure 2(a)).

 Model Update is a workflow which is executed when
static data have to be updated. It consists of three tasks –
based on the modification of static data, it is necessary to
update graphical and dynamic data (Figure 2(b)).

 Graphical View Refresh is initiated as a possible GDS
error recovery. Three tasks are executed during this
workflow – a part of static data and correspondent
dynamic data are transferred to GDS, so that graphical
data may be refreshed (Figure 2(c)).

Figure 2. DMS workflows: a) DMS Function Execution, b)

Model Update, c) Graphical View Refresh

Each DMS workflow can be represented as a set of tasks with
dependencies between them [37] by a directed acyclic graph
(DAG) [28]. The vertices of the DAG represent tasks, while
the edges are data dependencies between them. A task
becomes executable when all its dependencies are met: all
predecessor tasks are completed and input data required by
the task are available at a Grid resource.
Workflows which arrive for execution are ranked by the
priority. All tasks included in a workflow take over the same
priority as the workflow. Furthermore, dependencies
between workflows may occur, e.g. execution of DMS
functions over a part of a DN is directly dependent on the
initial import of that DN part [25].

Since historical data can be used to evaluate the workload of
tasks [18], a task iT is characterized with the following
properties:

ip – priority;

it – estimated time to execute the task (which
corresponds to the estimated task workload iw);

in – execution resource (DMS service,
}CS,DDS,GDS,SDS{in);

iTP – set of predecessor tasks;

iTS – set of successor tasks.
Scheduling algorithms use these properties to choose the
optimal allocation of resources for task execution.
Optimization goal is to rearrange incoming workflow tasks
in order to support the priority and get maximum usage of all
Grid resources, so that the makespan is minimized.

3 The Workflow Application

This section provides a description of the workflow
application model [25] which is further used to define
optimization problem.

3.1 The Workflow Application Model

Workflow application is built by connecting tasks of
dependent workflows. Output tasks of a "parent" workflow
become predecessors for all input tasks of a "child"
workflow, therefore, the workflow application is also
represented as a DAG. Tasks without any predecessors are
input tasks, while tasks without any successors are output
tasks of a workflow application.
An efficient workflow scheduling requires quality
information about the managed workflow application. For
that reason, the workflow application model is enriched with
additional data. Every node and edge of the workflow
application DAG receive a weight. The weight of a node is
the estimated execution time of a task, while the weight of an
edge represents the time necessary to transfer data between
computational Grid resources on which the task and its
successor are executed.
Data transfer rates (the amount of data which can be
transferred via network) between computational resources
are well-known. The transfer rate between resources in and

jn is denoted by .
i jn nrate The amount of data that needs to

be transferred after the completion of task iT and before the

start of task jT , is denoted by .
i jT Tdata The communication

time cost of edge (i, j) is defined as:

ji

ji

jTiT
nn

TT

rate

data
c . (1)

If iTst and iTct are defined as the start time and the

completion time of a task iT , respectively, and innt as the

earliest available time of a resource in , then the task iT
becomes eligible for execution at the timestamp:

SDS DDS

GDS

UI SCADA Simulation

UI

Network

Data Import

… CSNc CS1

SDS – Static Data Service
DDS – Dynamic Data Service
GDS – Graphical Data Service
CS – Computing Services

SDS DDS

CS

GDS

SDS DDS

GDSDDS GDS

SDS

a b b

97Information Technology and Control 2018/1/47

of dependent workflows. Output tasks of a “parent”
workflow become predecessors for all input tasks of
a “child” workflow, therefore, the workflow applica-
tion is also represented as a DAG. Tasks without any
predecessors are input tasks, while tasks without
any successors are output tasks of a workflow appli-
cation.
An efficient workflow scheduling requires quality in-
formation about the managed workflow application.
For that reason, the workflow application model is
enriched with additional data. Every node and edge of
the workflow application DAG receive a weight. The
weight of a node is the estimated execution time of a
task, while the weight of an edge represents the time
necessary to transfer data between computational
Grid resources on which the task and its successor
are executed.
Data transfer rates (the amount of data which can be
transferred via network) between computational re-
sources are well-known. The transfer rate between re-
sources in and jn is denoted by .

i jn nrate The amount
of data that needs to be transferred after the completion
of task iT and before the start of task jT , is denoted by

.
i jT Tdata The communication time cost of edge (i, j) is

defined as:

ji

ji

jTiT
nn

TT

rate

data
c = . (1)

IF and are defined as the start time and the
completion time of a task iT , respectively, and as
the earliest available time of a resource in , then the
task iT becomes eligible for execution at the time-
stamp

. (2)

he completion time is calculated as the sum of the
start time and the estimated execution time it :

. (3)

Finally, the model of workflow application acquires
its definite form which fully describes all workflows,
task dependences and their properties (see Figure 3).

3.2. The Optimization Problem
The makespan represents the objective function of
the addressed optimization problem. Information
held by the workflow application model is sufficient
to define it [8]:

.
(4)

Outputs is the set of output tasks.
The optimization goal is to assign tasks to resources
in order to minimize the makespan, respecting the ac-
tual constraints: dynamic environment, task depen-
dencies and priorities.

4. The Workflow Management System
A Workflow Management System (WMS) is the
backbone of the workflow manipulation within a
Grid. It does not execute tasks, but coordinates them
and ensures that tasks are carried out in a proper or-
der and that their execution is done simultaneously
whenever is possible [13, 22]. A WMS may support
different scheduling concepts, like centralized [16],
hierarchical [31], distributed [5], or some derived im-
plementations [14, 25].

Figure 3
The workflow application model

ti

tj tk

tm

tn

Information Technology and Control 2018/1/4798

4.1. The Centralized Scheduling Concept
The basic WMS developed for centralized schedul-
ing concept is presented in Figure 5. In the following
sections, while elaborating mixed and hierarchical
scheduling concepts, basic modifications related to
Figure 5 will be pointed out.
WMS (see Figure 5) consists of two major compo-
nents, DAG Manager and Task Scheduler. Moreover,
it implements a scheduling algorithm to provide sup-
port for the high-throughput scheduling process. The
algorithm searches for executable tasks whose com-
pletion will have the greatest impact on the overall
performance – makespan. To ensure this, during the
execution of the scheduling algorithm an algorithmic
parameter whose value corresponds to the influence
of a task on the makespan is calculated for every task.
Therefore, the value of the algorithmic parameter de-
termines which ready task (a task without predeces-
sors) has an advantage during the allocation of Grid
resources. It should be noticed that ready tasks are
mutually independent since they have no predeces-
sors.

4.1.1. The Algorithmic Parameter
The algorithmic parameter is determined based on
the Critical Path Algorithm [34, 36]. This approach
aims to determine the longest of all execution paths
for every task [25]. It answers the question on which
tasks have the most impact on the overall execution
time.
In accordance with this, the tasks are ordered de-
creasingly by their rank (the algorithmic parameter).
The rank of each output task corresponds to its exe-
cution time:

i
OutputsT

T trank
i

i =
∈

.
(5)

The ranks of other tasks are calculated recursively:

}{max jjTiT
iTj

i T
ST

iT rankctrank ++=
∈

. (6)

4.1.2. The DAG Manager
The workflow application is represented via a DAG
and it is continually evolving during the system oper-
ation. The DAG Manager manipulates the workflow

application and its main mission is to provide sorted
ready tasks (according to algorithmic parameter and
priority, at the time when a resource is available). The
priority has greater influence on assigning task to re-
sources than algorithmic parameter. If one task has
higher priority and lesser value of algorithmic param-
eter than another task, the first task will acquire an
advantage while mapping tasks to resources.
The DAG Manager monitors for a new workflow ar-
rival or a task completion. When any of the events oc-
cur, the DAG is updated: a new workflow is included,
while the completed task is removed from the work-
flow application.
As a consequence, the dependency information is up-
dated and an analysis of DAG is initiated. The result of
the analysis is a collection of ready and independent
tasks. Subsequently, the algorithmic parameter is cal-
culated. The collection of ready tasks is then classi-
fied according to priority, execution resource and al-
gorithmic parameter (Figure 4).

Figure 4
Ready tasks sorted according to priority, execution resource
and algorithmic parameter

 5

algorithmic parameter
(rank)

n4 n3 n2
n1

p (priority)

rank1

rank
2

rank
3

p
1
 p

2
 p

3

The basic idea is that when a Grid resource becomes
available, an utmost priority task with the greatest al-
gorithmic parameter is submitted to execution queue.
It should be noted that Grid uses peer-to-peer com-
munication model [30, 33] to save time in transferring
data. Peer-to-peer communication provides a means
to transfer output of an executed task directly (without
mediator) from the Grid resource on which the task is

99Information Technology and Control 2018/1/47

Figure 5
The Workflow Management System

MONITOR
FOR SUBMITED

WORKFLOW

MONITOR
FOR TASKS

TERMINATION

INCLUDE
WORKFLOW

TO DAG

REMOVE
TERMINATED
TASKS FROM

DAG

ANALYZE DAG

 ARE THERE
READY TASKS?

CALCULATE ALGORITHMIC PARAMETER

SEND TASKS
TO EXECUTION QUEUE

YES

DAG MANAGER TASK SCHEDULER

RECEIVING
SORTED,

READY TASKS
AND

MONITORING
TASKS

TERMINATION

SEND TASKS
TO EXECUTION

READY
TASKS

GRID
INFRASTRUCTURE

WORKFLOW
ARRIVAL

SORT READY TASK
ACCORDING TO PRIORITY,

COMPUTATIONAL RESOURCE AND
ALGORITHMIC PARAMETER

ESTIMATE WORKLOAD OF
COMPUTING SERVICES

 ARE THERE
AVAILABLE

RESOURCES?

NO

YES

 IS THERE A
WAITING TASK

FOR AVAILABLE
RESOURCE?

NO
SEND TASK

TO
EXECUTION

YES

NO

Information Technology and Control 2018/1/47100

completed to the Grid resource where the successor of
the task has to be executed. However, when a successor
task is a computing task which has to be executed on a
CS, and since this type of DMS service is hosted on mul-
tiply computational resources, the WMS has to resolve
to which CS should output data be transferred. Hence, if
any of the ready tasks which are sent to execution have
a computing task as a successor, the engineered WMS
determines the most appropriate CS for executing the
successor computing task. Therefore, the ready task
and the CS address are sent to Grid. Consequently, the
output of the ready task is directed to the submitted ad-
dress. To ensure this behavior and support beneficial
scheduling, the DAG Manager provides the following
estimation of CSs workloads:
1 After the classification, ready tasks with the high-

est priority and the greatest rank are extracted and
further analyzed (it is expected that these tasks
will be executed first). Computing ready tasks are
excluded from this step.

2 If any of the extracted tasks have computing tasks
as successors, appropriate CSs have to be deter-
mined for each computing successor, so that ad-
dresses of suitable CSs may be submitted together
with non-computing ready tasks. This approach
ensures that outputs of non-computing task
(which have computing tasks as successors) are
transferred to previously determined CSs.

3 The workload of CSs is examined (centralized
WMS is aware of computing tasks already assigned
to CSs). The successor computing tasks with the
highest priority and the largest rank are mapped to
the CSs with the lowest workload.

4 It is obvious that ready computing tasks are exclud-
ed from analysis in Step 1 since they are already
mapped to CSs (during Step 3 in one of the previ-
ous scheduling). During the previous scheduling,
they were successors of one or more ready tasks.

The estimation of CSs workload is executed only
for centralized scheduling, hence it is displayed as a
dashed square in Figure 5. When a CS becomes avail-
able, the DAG Manager chooses the most eligible com-
puting task (a computing task with the highest prior-
ity and the greatest rank). It is chosen from the set of
ready computing tasks previously mapped to the CS
during the estimation of CSs workload phase. The
outputs of the predecessor of this task are directly
transferred to the available CS.

4.1.3. The Task Scheduler
The Task Scheduler is responsible for submitting tasks
to the Grid resources and monitoring task completion.
The scheduler maintains the task queue which is con-
stantly read. The tasks are independent and already
mapped to appropriate computational resources.

4.2. The Mixed Scheduling Concept
By using the mixed scheduling concept, scheduling of
computing tasks is improved at the expense of losing
some transfer-time gaining achieved through peer-to-
peer communication. An additional distributed sched-
uling [1] is included and it exclusively manages ready
computing task. The aim of distributed scheduling is to
achieve parallelism through the workload distribution
and obtain better execution time. A more advanced
computing engine includes multiple CSs and estab-
lishes the Computing Broker (CB) (see Figure 6).

SDS DDS

GDS CB

UI SCADA Simulation

UI

Network

Data Import

… CSNc CS2 CS1

Network

Figure 6
Modification of the Grid for mixed scheduling

CB represents a mediator between multiple CSs and
the other parts of the system. The drawback of this
approach is that direct peer-to-peer communication
between the CSs and other resources (DMS services)
does not exist.
The CSs implement a distributed scheduling algo-
rithm, hence, the estimation of CSs workload as a

101Information Technology and Control 2018/1/47

part of centralized scheduler becomes redundant.
The CSs become more complex considering that in
addition to executing computing tasks, they are per-
forming workload balancing. Now WMS consists of
two schedulers, the main centralized scheduler and
the distributed scheduler for computing tasks.
The centralized scheduler continues to analyze DAG,
calculates algorithmic parameters and classifies
ready tasks. Non-computing tasks are scheduled in
the orderly manner – the most eligible task is sent to
the available resource. However, scheduling comput-
ing tasks is now a responsibility of the advanced com-
puting engine, and as soon as a computing task be-
comes ready, it is transferred to CB. CB receives ready
computing tasks from the Task Scheduler and input
data from other Grid resources. When a CS adopts a
task, it takes data contained by CB and executes ex-
pected calculation. After completing the task, the CS
transfers results to CB, which forwards them to the
appropriate Grid resource and notifies the central-
ized scheduler (more accurate, the Task Scheduler) of
the task completion.

4.2.1. The Distributed Algorithm
It is of the most significance that CSs share informa-
tion about their current workload, thus the coopera-
tive scheduling is provided [14, 31]. By ensuring co-
operative operation, a CS makes decisions regarding
the scheduling in line with other CSs. Hence, each CS
is responsible to carry out its own part of scheduling
work which will contribute to achieving the common
global goal – workload distribution according to the
capacity of computational resources.
NC is defined as the set of all CSs within a Grid. The
cardinality of NC is denoted by cN . If in indicates a
CS, and represent the current workload and
computational capacity of resource ,in respectively.
Accordingly, the desired workload distribution over
the CSs is determined:

. (7)

The aim of distributed scheduling is to make work-
load distribution converge towards the desired distri-
bution:

. (8)

The distributed algorithm is an iterative algorithm
and it is based on the physical phenomenon of diffu-
sion. As matter is moved from a region of high con-
centration to a region of low concentration, comput-
ing tasks similarly migrate from a more loaded CS to
a less loaded CS.
The algorithm makes decisions about workload dis-
tribution at the iteration h by using the workload in-
formation of the iteration h – 1 [12]. represents
the current workload of computing service in at iter-
ation h (sum of workloads (w) of all computing tasks
currently assigned to in). According to the diffusion
algorithm, the CS marked with in exchanges a share

of workload with another CS labeled

as jn at each iterative step, where parameter α deter-
mines how much of workload difference is exchanged
[12, 40].
Workload modification of in after the workload ex-
change with all CSs is described by the following
equation:

. (9)

By rearranging Equation (9), the following form is ob-
tained:

. (10)

Equation (10) is linear, therefore the iterative distri-
bution algorithm may be presented in matrix form:

, (11)

where is the workload distribution of CSs at it-
eration h:

 
, (12)

and DM is a diffusion matrix with the following en-
tries:

Information Technology and Control 2018/1/47102

 
. (13)

Completion of the algorithm is related to the possi-
bility to lead any initial workload distribution to the
workload balanced state.

4.2.2. The Implementation of the Distributed
Algorithm by CSs
CSs exchange messages about current workload so
that cooperative scheduling is achieved. It is unnec-
essary to exchange information when the workload
balance exists – an appropriate amount of workload
is assigned to each CS. When the balance is disturbed,
it is essential to run the algorithm to re-establish the
balance. Therefore, the algorithm starts on the occur-
rence of the following events:
 _ When a CS receives a new computing task (just

arrived from CB), it considers that the existing
workload balance is disturbed. The CS starts
information exchange to find out if any other CS is
less loaded.

 _ When a computing task (an amount of workload) is
transferred from a CS to another, less loaded CS, the
workload of the second CS has just increased. The
CS which has received the workload, acknowledges
the imbalance and searches for other CSs which
are able to collect some of its workload.

 _ When a new CS is added to the computational
engine, the remaining CSs examine how much of
their workload may be taken over by the new CS.

A CS considers that balance is established when there
is no need for further workload exchange between it
and other CSs.
While exchanging workload information, the CSs si-
multaneously execute tasks. A CS chooses the most
eligible computing task (according to the priority and
algorithmic parameter) assigned to it to be complet-
ed first. Tasks which are currently executed on CSs
cannot migrate during the run of the distributed algo-
rithm.

4.3. The Hierarchical Scheduling Concept
Hierarchical scheduling is applied on the Grid pre-
sented in Figure 6. This scheduling concept is much
similar to the mixed scheduling, except that workload

distribution is not done by cooperative work of CSs,
but by a single CB. In this concept, CB receives inde-
pendent computing tasks, keeps records about work-
load and maps tasks to the CSs. As a consequence, the
role of CB is dual:
 _ It hides multiplicity of CSs from the other

computational resources, so the peer-to-peer
communication with the CSs is disabled.

 _ It operates as an autonomous, low-level computing
tasks scheduler. It uses the same rules explained in
the section about the mixed scheduling concept.

The most eligible computing tasks have the advantage
during assignment of tasks to the CSs. By supporting
this behavior, the low-level scheduler of computing
tasks takes into consideration influence of each in-
dependent computing task on the makespan of the
whole workflow application.

5. The Experimental Study and
Discussion
This section explains the conducted experiments
whose results are further used to elaborate on com-
parison of presented scheduling concepts.

5.1. Experiments

A testing environment with four CSs [25] is devel-
oped to simulate operation of the DMS during a re-
al-time DN control. Computational resources used in
test environment have the following characteristics:
 _ SDS: Intel(R) Core(TM) i3-3222 CPU 3.30 GHz, 16

GB RAM, SQL Server 2012,
 _ DDS: Intel(R) Core(TM) i3-4130 CPU 3.40 GHz,

24 GB RAM,
 _ GDS: Intel(R) Core(TM) i3-4150 CPU 3.50 GHz, 32

GB RAM,
 _ Four CSs: Intel(R) Core(TM) i3-4160 CPU 3.60

GHz, 24GB RAM.

Software components are implemented in .NET 4.5
Framework.
All experiments examine the effect of makespan
changes which are used for comparison of the pre-
sented scheduling concepts. The workflow applica-
tion is composed of the all considered DMS workflow

103Information Technology and Control 2018/1/47

types (Figure 2). DMS Function Execution is the
most common and it makes more than 70%, while the
Model Update workflow type represents about 20%
of all workflows. The Graphical View Refresh type is
the most infrequent (up to 10% of all workflows). Be-
tween a hundred and a thousand workflows arriving
dynamically are used in experiments. To achieve the
highest possible workload sharing between CSs, pa-
rameter α is set to 2/1 (1/ 2),α = in accordance with
[12, 40].
The obtained results, total speeds of workflow execu-
tion, are presented in Table 1 and Figure 7.

Table 1
The speeds of workflow execution

Number of
workflows

Centralized
scheduling

[s]

Mixed
scheduling [s]

Hierarchical
scheduling

[s]

100 155.65 147.66 146.17

250 381.38 361.30 357.52

500 757.65 717.59 710.04

750 1139.63 1076.75 1065.54

1000 1510.15 1430.09 1415.05

Table 2
The comparative speeds of workflow execution

Number of
workflows

Centralized
v.s. Mixed

[%]

Centralized v.s.
Hierarchical

[%]

Mixed v.s.
Hierarchical

[%]

100 5.41 6.49 1.02

250 5.56 6.67 1.05

500 5.58 6.70 1.06

750 5.58 6.95 1.05

1000 5.60 6.72 1.06

Figure 7
DMS real-time control – Workflow execution speeds

Figure 8
DMS real-time control – Comparative speeds of workflow
execution

Figure 7. DMS real-time control – Workflow execution speeds

The comparative speeds of different workflow scheduling
concepts are shown in Table 2 and Figure 8.
Table 2. The comparative speeds of workflow execution

Number of
workflows

Centralized v.s.
Mixed [%]

Centralized v.s.
Hierarchical [%]

Mixed v.s.
Hierarchical [%]

100 5.41 6.49 1.02
250 5.56 6.67 1.05
500 5.58 6.70 1.06
750 5.58 6.95 1.05
1000 5.60 6.72 1.06

0

200

400

600

800

1000

1200

1400

1600

100 250 500 750 1000

Ex
ec

ut
io

n
tim

e
[s

]

Number of workflows

DMS real-time control - Speeds of workflow
execution

Centralized scheduling Mixed scheduling
Hierarchical scheduling

0

1

2

3

4

5

6

7

100 250 500 750 1000

Sp
ee

d
ra

tio
 [%

]

Number of workflows

DMS real-time control - Comparative speeds
of workflow execution

Centralized vs. Mixed Centralized vs. Hierarchical
Mixed vs. Hierarchical

The comparative speeds of different workflow sched-
uling concepts are shown in Table 2 and Figure 8.

Figure 7. DMS real-time control – Workflow execution speeds

The comparative speeds of different workflow scheduling
concepts are shown in Table 2 and Figure 8.
Table 2. The comparative speeds of workflow execution

Number of
workflows

Centralized v.s.
Mixed [%]

Centralized v.s.
Hierarchical [%]

Mixed v.s.
Hierarchical [%]

100 5.41 6.49 1.02
250 5.56 6.67 1.05
500 5.58 6.70 1.06
750 5.58 6.95 1.05
1000 5.60 6.72 1.06

0

200

400

600

800

1000

1200

1400

1600

100 250 500 750 1000

Ex
ec

ut
io

n
tim

e
[s

]

Number of workflows

DMS real-time control - Speeds of workflow
execution

Centralized scheduling Mixed scheduling
Hierarchical scheduling

0

1

2

3

4

5

6

7

100 250 500 750 1000

Sp
ee

d
ra

tio
 [%

]

Number of workflows

DMS real-time control - Comparative speeds
of workflow execution

Centralized vs. Mixed Centralized vs. Hierarchical
Mixed vs. Hierarchical

The experimental study leads to the following conclu-
sions:
 _ The mixed and the hierarchical scheduling exceed

centralized concept.
 _ The scheduling brings more benefits if there are

more workflows to coordinate.
 _ The hierarchical scheduling concept slightly

outperforms the mixed solution.

Information Technology and Control 2018/1/47104

 _ The time savings increase by increasing the
number of workflows.

5.2. Discussion
The presented scheduling concepts are compared by
different parameters: performance, scalability and
complexity of implementation.

5.2.1. Performance
The utilization of two schedulers, rather than one cen-
tralized, reduces the total execution time and boosts the
performance of the whole system. The centralized sched-
uling pre-determines the mapping of computing tasks to
CSs and that feature can be the main reason for the weak-
er performances. A computing task is always executed to
a previously assigned resource regardless the current
state of the unpredictable resource (e.g. the resource may
have been occupied with some internal tasks).
The hierarchical scheduling concept exceeds the mixed
concept to a certain extent. This can be explained by
the fact that CSs are not required to perform workload
distribution during the hierarchical scheduling. They
entirely devote time to execute computing tasks.

5.2.2. Scalability
Since DMS Function is by far the most frequent DMS
workflow type, scalability is considered in the context
of computing tasks. For a large-scale DMS, it can be
essential to include additional CSs in the advanced
computing engine, so that execution of computing
tasks would not be the bottleneck of the system.
The centralized scheduling concept is the least scal-
able. An addition of a new CS requires changes in all
system components: the DAG Manager and the Task
Scheduler have to provide scheduling for the new CS,
and all other computational Grid resources must ob-
tain the address of the CS.
The implementation of the mixed scheduling gener-
ates the need that CB and all existing CSs have to in-
corporate the new CS into the distributed algorithm.
The hierarchical scheduling concept is the most scal-
able. The new CS is introduced only by connecting to CB.

5.2.3. The Complexity of Implementation
The centralized scheduling holds the complete set of in-
formation. It is typical for this scheduling concept that
decision making is carried out in one fundamental place.
Thus, easy implementation is an advantage of this con-
cept. The replacement of scheduling algorithm in the
presented centralized scheduling is simply manageable
by changing the definition of algorithmic parameter.
The hierarchical scheduling is composed of two
schedulers, a centralized and a low-level. A benefit
is that two schedulers may use different algorithms.
Both implementations are straightforward, but sup-
porting this concept requires more effort than sup-
porting purely centralized scheduling.
The mixed scheduling concept is also composed of two
schedulers, a centralized scheduler and a low-level dis-
tributed scheduler for computing tasks. This concept
requires the most elaborate implementation. In addi-
tion to the mixed scheduler, each CS must provide dual
features – task execution and workload exchanging.

6. Conclusion
The paper has discussed three scheduling concepts
that take into account dynamic nature of DMS and
specific characteristics of DMS workflows: central-
ized, mixed and hierarchical. DMS grid architecture
and architecture-dependent implementation was
explained for each of them. The experimental study
was conducted to examine their effectiveness and
benefit which they provide during DMS operation in
control mode.
The workflow scheduling concepts are mutual-
ly compared based on the scheduling efficiency
(makespan), scalability and complexity of imple-
mentation. Taking into consideration observations
regarding these parameters the concept of hierar-
chical scheduling emerges as the finest choice since
it ensures the greatest performance, it is the most
scalable and completely suitable in terms of the
complexity of implementation.

References
1. Arora, M., Das, S. K., Biswas, R. A Decentralized

Scheduling and Load Balancing Algorithm for Het-
erogeneous Grid Environments. International Con-

ference on Parallel Processing Workshops, Vancouver,
Canada, 2002, 499-505. https://doi.org/10.1109/ICP-
PW.2002.1039771

105Information Technology and Control 2018/1/47

2. Baker, M., Buyya, R., Laforenza. D. Grids and Grid
Technologies for Wide-Area Distributed Computing.
Software: Practice and Experience, 2002, 32(15), 1437-
1466. https://doi.org/10.1002/spe.488

3. Bose, A. Smart Transmission Grid Applications and
Their Supporting Infrastructure. IEEE Transactions
on Smart Grid, 2010, 1(1), 11-19. https://doi.org/10.1109/
TSG.2010.2044899

4. Braun, T. D., Siegal, H. J., Beck, N., Boloni, L. L., Ma-
heswaran, M., Reuther, A. I., Robertson, J. P., Theys,
M. D., Yao, B., Hensgen, D., Freund, R. F. A Compari-
son Study of Static Mapping Heuristics for a Class of
Meta-Tasks on Heterogeneous Computing Systems.
Heterogeneous Computing Workshop, San Juan,
Puerto Rico, 1999, 15-29. https://doi.org/10.1109/
HCW.1999.765093

5. Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R. Grid Flow:
Workflow Management for Grid Computing. Proceed-
ings of International Symposium on Cluster Comput-
ing and the Grid, (CCGrid), Tokyo, Japan, 2003, 198-
205. https://doi.org/10.1109/CCGRID.2003.1199369

6. Capko, D., Erdeljan A., Popovic M., Svenda, G. An Op-
timal Initial Partitioning of Large Data Model in Util-
ity Management Systems. Advances in Electrical and
Computer Engineering, 2011, 11(4), 41-46. https://doi.
org/10.4316/AECE.2011.04007

7. Capko, D., Erdeljan A., Vukmirovic S., Lendak, I. A Hy-
brid Genetic Algorithm for Partitioning of Data Model
in Distribution Management Systems. Information
Technology and Control, 2011, 40(4), 316-322. https://
doi.org/10.5755/j01.itc.40.4.981

8. Casanova, H., Legrand, A., Zagorodnov, D., Berman,
F. Heuristics for Scheduling Parameter Sweep Ap-
plications in Grid Environments. The 9th Hetero-
geneous Computing Workshop, (HCW’00), Cancun,
Mexico, 2000, 349-363. https://doi.org/10.1109/
HCW.2000.843757

9. Cassel, W. R. Distribution Management Systems:
Functions and Payback. IEEE Transactions on
Power Systems, 1993, 8(3), 796-801. https://doi.
org/10.1109/59.260926

10. Chapin, S. J., Katramatos, D., Karpovich, J., Grimshaw,
A. S. The Legion Resource Management System. Pro-
ceedings of Job Scheduling Strategies for Parallel Pro-
cessing, (JSSPP’99), San Juan, Puerto Rico, 1999, 162-
178. https://doi.org/10.1007/3-540-47954-6_9

11. Chen, H., Maheswaran, M. Distributed Dynamic
Scheduling of Composite Tasks on Grid Comput-
ing Systems. Proceedings of Parallel and Distributed

Processing Symposium, (IPDPS 2002), Fort Lauder-
dale, USA, 2002, 88-97. https://doi.org/10.1109/IP-
DPS.2002.1015664

12. Cybenko, G. Dynamic Load Balancing for Distributed
Memory Multiprocessors. Journal of Parallel and Dis-
tributed Computing, 1989, 7(2), 279-301. https://doi.
org/10.1016/0743-7315(89)90021-X

13. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Meh-
ta, G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree,
A., Cavanaugh, R., Koranda, S. Mapping Abstract
Complex Workflows onto Grid Environments, Jour-
nal of Grid Computing, 2003, 1(1), 25-39. https://doi.
org/10.1023/A:1024000426962

14. Dong, F., Akl, S. G. Scheduling Algorithms for Grid Com-
puting: State of the Art and Open Problems. Technical
Report No. 2006-504, Kingston, Canada, 2006.

15. Foster, I., Kesselman, C., Tuecke, S. The Anatomy of
the Grid: Enabling Scalable Virtual Organization. The
International Journal of High Performance Comput-
ing Applications, 2001, 15(3), 200-222. https://doi.
org/10.1177/109434200101500302

16. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour,
R. Evaluation of Job-Scheduling Strategies for Grid
Computing. Proceedings of International Workshop
on Grid Computing, (Grid 2000), Heidelberg, Germany,
2000, 191-202. https://doi.org/10.1007/3-540-44444-
0_18

17. Harel, D., Pnueli, A. On the Development of Reactive
Systems, Logics and Models of Concurrent Systems.
Springer-Verlag New York, New York, USA, 1985, 477-
498. https://doi.org/10.1007/978-3-642-82453-1_17

18. Hotovy, S. Workload Evolution on the Cornell Theory
Center IBM SP2. Workshop on Job Scheduling Strat-
egies for Parallel Processing, Honolulu, Hawaii, USA,
1996, 27-40. https://doi.org/10.1007/BFb0022285

19. Iverson, M., Ozguner, F. Dynamic, Competitive Sched-
uling of Multiple DAGs in a Distributed Heteroge-
neous Environment. Heterogeneous Computing Work-
shop, Orlando, Florida, USA, 1998, 70-78. https://doi.
org/10.1109/HCW.1998.666546

20. Kaceniauskas, A. Solution and Analysis of CFD Ap-
plications by Using Grid Infrastructure. Information
Technology and Control, 2010, 39(4), 284-290.

21. Kumar, P., Anandarangan, V., Reshma, A. An Approach
to Workflow Scheduling using Priority in Cloud Com-
puting Environment, International Journal of Com-
puter Applications, 2015, 109(11), 32-38. https://doi.
org/10.5120/19236-1008

Information Technology and Control 2018/1/47106

22. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger,
E., Jones, M., Lee, E. A., Tao, J., Zhao, Y. Scientific Work-
flow Management and the Kepler System, Concurren-
cy and Computation: Practice and Experience, 2006,
18(10), 1039–1065. https://doi.org/10.1002/cpe.994

23. Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., Fre-
und, R. F. Dynamic Mapping of a Class of Independent
Tasks onto Heterogeneous Computing Systems. Jour-
nal of Parallel and Distributed Computing, 1999, 59(2),
107-131. https://doi.org/10.1006/jpdc.1999.1581

24. Mateescu, G. Quality of Service on the Grid via
Metascheduling with Resource Co-Scheduling and
Co-Reservation. International Journal of High Perfor-
mance Computing Applications, 2003, 17(3), 209-218.
https://doi.org/10.1177/1094342003173006

25. Nedić, N., Švenda, G. Workflow Management System for
DMS. Information Technology and Control, 2013, 42(4),
373-385. https://doi.org/10.5755/j01.itc.42.4.4546

26. Nedic, N., Vukmirovic, S., Erdeljan, A., Imre, L., Capko,
D. A Genetic Algorithm Approach for Utility Manage-
ment System Workflow Scheduling. Information Tech-
nology and Control, 2010, 39(4), 310-316.

27. Park, D. Concurrency and Automata on Infinite Se-
quences. Proceedings of GI-Conference on Theoretical
Computer Science, London, UK, 1981, 167-183. https://
doi.org/10.1007/BFb0017309

28. Sakellariou, R., Zhao, H. A Low-Cost Rescheduling Poli-
cy for Efficient Mapping of Workflows on Grid Systems.
Scientific Programming, 2004, 12(4), 253-262. https://
doi.org/10.1155/2004/930924

29. Santacana, E., Rackliffe, G., Tang, L., Feng, X. Getting
Smart. IEEE Power and Energy Magazine, 2010, 8(2),
41-48. https://doi.org/10.1109/MPE.2009.935557

30. Schollmeier, R. A Definition of Peer-to-peer Network-
ing for the Classification of Peer-to-Peer Architectures
and Applications. Proceedings of International Confer-
ence on Peer-to-Peer Computing, (P2P’01), Washing-
ton, DC, USA, 2001, 101-102. https://doi.org/10.1109/
P2P.2001.990434

31. Shan, H., Oliker, L., Biswas, R., Smith, W. Scheduling in
Heterogeneous Grid Environments: The Effects of Data
Migration. Proceedings of Advanced Computing and
Communication, (ADCOM 2004), Ahmedabad Gujarat,
India, 2004, 1-8. https://doi.org/10.2172/860301

32. Siegel, H. J., Ali, S. Techniques for Mapping Tasks to

Machines in Heterogeneous Computing Systems. Jour-
nal of Systems Architecture, 2000, 46, 627-639. https://
doi.org/10.1016/S1383-7621(99)00033-8

33. Singh, M. P. Peering at Peer-to-Peer Computing.
IEEE Internet Computing, 2001, 5(6), 4-5. https://doi.
org/10.1109/MIC.2001.968826

34. [34] Son, J. H., Kim, M. H. Analyzing the Critical
Path for the Well-Formed Workflow Schema. Data-
base Systems for Advanced Applications, Hong Kong,
China, 2001, 146-147. https://doi.org/10.1109/DAS-
FAA.2001.6044749

35. Švenda, G., Strezoski, V., Kanjuh, S. Real-Life Distri-
bution State Estimation Integrated in the Distribution
Management System. International Transactions on
Electrical Energy Systems, 2016, 27(5), 1-16. https://doi.
org/10.1002/etep.2296

36. Topcuoglu, H., Hariri, S., Wu, M. Y. Performance-Effec-
tive and Low-Complexity Task Scheduling for Hetero-
geneous Computing. IEEE Transactions on Parallel and
Distributed Systems, 2002, 13(3), 260-274. https://doi.
org/10.1109/71.993206

37. Van der Aalst, W. M. P., Ter Hofstede, A. H. M., Kie-
puszewski, B., Barros, A. P. Workflow Patterns. Techni-
cal Report, Eindhoven University of Technology, 2000.

38. Varga, E., Lendak, I., Gavric, M., Erdeljan, A. Applicabil-
ity of RESTful Web Services in Control Center Software
Integrations. International Conference on Innovations
in Information Technology – IIT, Abu Dhabi, United
Arab Emirates, 2011, 282-286. https://doi.org/10.1109/
INNOVATIONS.2011.5893833

39. Vukmirovic, S., Erdeljan, A., Lendak, I., Capko, D.,
Nedic, N. Optimization of Workflow Scheduling in
Utility Management System with Hierarchical Neu-
ral Network. International Journal of Computational
Intelligence Systems, 2011, 4(4), 672-679. https://doi.
org/10.2991/ijcis.2011.4.4.22

40. Xu, C., Lau, F. Optimal Parameters for Load Balancing
with the Diffusion Method in Mesh Networks. Paral-
lel Processing Letters, 1994, 4(2), 139-147. https://doi.
org/10.1142/S0129626494000156

41. Zhang, Y., Koelbel, C., Cooper, K. Hybrid Re-sched-
uling Mechanisms for Workflow Applications on
Multi-cluster Grid. Cluster Computing and the Grid,
(CCGRID’09), Shanghai, China, 2009, 116-123. https://
doi.org/10.1109/CCGRID.2009.60

