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In this paper the use of a novel feature extraction method oriented to convolutional neural networks (CNN) 
is discussed in order to solve four-class motor imagery classification problem. Analysis of viable CNN archi-
tectures and their influence on the obtained accuracy for the given task is argued. Furthermore, selection of 
optimal feature map image dimension, filter sizes and other CNN parameters used for network training is 
investigated. Methods for generating 2D feature maps from 1D feature vectors are presented for commonly 
used feature types. Initial results show that CNN can achieve high classification accuracy of 68% for the four-
class motor imagery problem with less complex feature extraction techniques. It is shown that optimal accu-
racy highly depends on feature map dimensions, filter sizes, epoch count and other tunable factors, therefore 
various fine-tuning techniques must be employed. Experiments show that simple FFT energy map generation 
techniques are enough to reach the state of the art classification accuracy for common CNN feature map sizes. 
This work also confirms that CNNs are able to learn a descriptive set of information needed for optimal elec-
troencephalogram (EEG) signal classification.
KEYWORDS: convolutional neural network, motor imagery, feature map, image classification, FFT energy map.

Introduction
Motor imagery classification is one of many wide-
spread machine-learning problems of brain-comput-
er interface (BCI) systems. With the need for human 
mind controlled applications the recording of elec-

troencephalograms (EEG) has emerged as an optimal 
solution for non-interventional brain activity analy-
sis. The ability to fully understand this brain induced 
electrical signal would greatly simplify the life for 
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people with disabilities or break the barrier for natu-
ral interaction in entertainment industry.
This work focuses on four-class motor imagery prob-
lem where the recorded EEG signal is classified into 
four different classes that correspond to four different 
human subject imagined motoric actions (left hand, 
right hand, feet and tongue movement). Even if a sim-
pler two-class (binary) problem achieves good classi-
fication performance, the four-class still struggles to 
reach the same results and requires more scientific 
investigation.
A relatively new and perspective approach to EEG 
data classification was found in deep learning branch 
of machine learning. Convolutional neural network 
(CNN) is a novel animal visual cortex inspired meth-
od for image based classification that has not been 
widely used with EEG, let alone motor-imagery task. 
With the abilities to generalize/pool and self-learn 
the needed features in non-linear ways it can benefit 
EEG classification. Since EEG motor imagery task 
lacks accurate solutions the CNN could be the new 
perspective way to look deeper into the same prob-
lem. Regarding its novelty and success in other fields 
it was chosen as the main tool for four-class EEG mo-
tor imagery problem analysis in this paper.
By using CNN for classification subtle fine tuning is 
required to receive best results. This involves select-
ing a proper neural network architecture, feature 
method and feature map size. These nuances and 
their effect on classification performance are further 
analyzed and discussed in this paper.
Furthermore, feature extraction and feature map 
(image) generation methods for classification are of 
great significance. In simplest cases, the EEG signal 
and feature vector can be treated as one-dimension-
al signal. In order to move to two-dimensional image 
classification, two dimensional features or feature 
transformation methods are required. Possible tech-
niques for such a task are presented and discussed in 
this work.

Related work
In recent years, an increasing number of papers that 
use CNN for EEG classification task have been pub-
lished. Multiple approaches have been proposed for 
solving motor imagery and other related problems. A 

short review of the common techniques is presented 
in the remainder of this section.
CNN was successfully used by Mirowski et al. [12] 
to predict epileptic seizures from EEG. The authors 
have proposed to use four types of bivariate statisti-
cal properties of the EEG signal as features for clas-
sification. They argue that commonly used univariate 
features (computed on each EEG channel separately) 
lack the required channel relationship information. 
Cross-correlation, non-linear interdependence, Lya-
punov exponent and wavelet synchrony feature infor-
mation was packed into 2D images for classification. 
Prediction accuracy of 70% was achieved. Another 
work in the field of EEG analysis was dedicated to 
solving the SSVEP (Steady State Visually Evoked Po-
tential) signal classification problem by Cecotti and 
Gräser [6], where a subject is introduced to visual 
stimulation at a specific frequency. A four layer CNN 
network topology with a Fourier transform filter in 
second layer was tested. Selected architecture proved 
to achieve up to 97% classification accuracy. It was 
noted that the switch from time domain to frequency 
domain gave a positive effect on the classification per-
formance. However, introduced reliability rejection 
criteria for each class made the final solution less ro-
bust, produced a lot of sample rejections and gave av-
erage generalization. Different application of CNN to 
the SSVEP is described in a paper by Bevilacqua et al. 
[2]. The authors used a four layer network architec-
ture with a hidden L2 Fast Fourier Transform (FFT) 
layer for frequency extraction. Due to the nature of 
the problem the signal analysis was done in frequency 
domain. Channels Pz, PO3, PO4, Oz (of 10-20 elec-
trode system) were used to record EEG samples at 
256Hz within 2 second windows. Images of 4x512 el-
ements were composed of filtered EEG data and used 
as input for the CNN classifier. Network was trained 
for 1000 epochs. Mean accuracy of 88% was obtained 
by this method.
CNN capability of detecting P300 events from EEG 
was showcased by Cecotti and Gräser [7] with accu-
racy of 95%. The signal analysis was conducted sep-
arately in time and space domains. Images of 64x64 
in size created from 64 channels of downsampled 
EEG data were used for classification. Seven differ-
ent CNN models were verified. Additionally, the work 
employed a strategy to use vector based CNN kernels 
instead of matrix kernels in order to prevent mixing 
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features related to space and time domains.  A tech-
nique based on trained network first layer weight 
analysis was used to extract 8 most relevant elec-
trodes for each subject. 
Recently, CNN has been used by Manor et al. [11] to 
solve RSVP (Rapid Serial Visual Presentation) task 
(where a subject has to detect a target image within 
five possible categories). The authors introduced, a 
spatio-temporal regularization penalty  for EEG clas-
sification to reduce network overfitting. Accuracy of 
75% was reached with CNN architecture of three lay-
ers having 64x1 convolutional, two pooling and two 
fully connected filters. Images of 64x64 (64 channels 
by 64 time samples) were used as input for the net-
work. Advantages of using neural network models 
against manually designed feature extraction algo-
rithms were presented along with criticism for the 
manual method for unclear and endless possibilities 
of combining different methods in an efficient way. 
Various techniques directly related to the current 
motor imagery problem have been proposed over the 
years in literature. Qin and He in [14] describe an 
analysis of a two-class motor imagery problem. Au-
thors proposed a technique to analyze the EEG in fre-
quency domain. A time-frequency distribution (TFD) 
images were constructed based on complex Morlet 
wavelet decomposition for electrode pairs. The TFDs 
were subtracted from symmetrical channels to form 
weight matrices that were used to compute in weight-
ed energy for classification. A Laplacian filter was 
used for signal preprocessing. Average classification 
rate of 78% was achieved for this method. Another 
approach based on energy entropy preprocessing 
and Fisher class separability criteria was proposed in 
[20] by Xiao et al. Authors analyzed a two-class motor 
imagery problem in time-frequency domain. Similar 
TFD distributions (spectrograms) were construct-
ed from EEG short-term Fourier transform (STFT) 
data. Three different classification methods were 
compared. Classification accuracy for the two class 
problem was 85%. A more complicated approach for 
3-class motor imagery analysis was done  by Zhou 
et al. in [22]. The study proposed a new method to 
extract the MRICs (movement related independent 
components) and utilized ICA (Independent Compo-
nent Analysis) spatial distribution patterns for such 
a task. Different ICA filter designs were tested. ICA 
filter design was confirmed to be subject invariant. 
Classification accuracy of 62% was received. 

A more recent study by Bai et al. [1] on 4-class motor 
imagery proposed a novel Wavelet-CSP (Common 
Spatial Patterns) with ICA-filter method. The EEG 
artifacts were removed using negative entropy-based 
ICA. Mean accuracy of 76% was achieved using SVM 
(Support Vector Machine) classifier. 
One of the latest works in the field of CNN and 
4-class motor imagery is the paper by Yang et al. 
[21]. The authors proposed a frequency complemen-
tary feature map selection (FCMS) method. ACSP 
(Augmented CSP) feature filtering was used in their 
work. Two other feature selection methods - random 
map selection (RMS) and selection of all feature 
maps (SFM) were analyzed. FCMS was the best per-
forming method due to its ability to limit the ACSP  
feature redundancy in different frequency bands. 
The CNN used 5 layer architecture with 5x5 filters 
(kernels). The work also demonstrated that CNNs 
are capable of learning discriminant, deep structure 
features for EEG classification without relying on 
the handcrafted features. Average classification ac-
curacy achieved was 69%.

Methods of analysis

Convolutional Neural Networks (CNN)
Convolutional neural networks are biologically-in-
spired variants of MLPs (multi-layer perceptrons). 
They have been successfully used for character recog-
nition in the past by LeCun et al. [9] and currently have 
gained interest from researchers due to performance 
capabilities. CNNs consist of one or more convolu-
tional layers, with weights of the layer shared across 
the input. Multiple of such layers form a non-linear 
“filter” chain. The convolution is designed to handle 
2D data, as opposed to other neural networks that op-
erate on 1D vectors. This ability makes the extracted 
features easier to view and interpret.

Feed-forward neural network 
A typical neural network function as presented by Ve-
daldi and Lenc [17] is defined as:
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where x = (x1,…,xk) is the network layer input (a M×N 
size image with K channels), w = (w1,…,wn) is the vec-
tor of learned parameters. 

Convolution 
A 3-dimensional convolution operation with k’ filter 
count can be expressed as:
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where y is the output of the convolution. 

Pooling
CNN concept of pooling is a form of non-linear 
down-sampling. Pooling partitions the input image 
into a set of non-overlapping rectangles and, for each 
such sub-region, outputs the maximum or average 
value. This way it is possible to reduce the feature size 
(and computation) as required and provide transla-
tion invariance. Pooling function is given by:
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where y is the output, p is padding. 

Non-linear gating
Typical CNN non-linear filters use linear functions 
with a  non-linear gating function, applied identical-
ly to each component of a feature map. The simplest 
such function is the  Rectified Linear Unit (ReLU). 
Such filter can be written as:
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Normalization
Another important CNN building block is chan-
nel-wise normalization. This operator normalizes 
the vector over feature channels at each spatial loca-
tion in the input map x. The form of the normaliza-
tion operator is:
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where y is the output; κ, α, β are normalization para- 

meters, 
  

G(k)=[k−⌊ρ2⌋,k+⌈ρ2⌉]∩{1,2,…,K} is a group of 
ρ consecutive feature channels in the input map.

Softmax
The operation computes the softmax operator across 
feature channels and, in a convolutional manner, at 
all spatial locations. It is a combination of an acti-
vation function (exponential) and a normalization 
operator:
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Common Spatial Patterns (CSP)
CSP is a widely adopted signal pre-processing meth-
od that decomposes the raw EEG into subcompo-
nents (spatial patterns) having maximum differences 
in variance as shown by Naeem et al. [13]. Wang et al. 
in [19] concluded that this technique allows better 
feature separation in feature space and thus more ac-
curate signal classification. Also, the property of CSP 
to decrease feature dimensionality is very suitable for 
EEG data complexity reduction. It has been shown by 
Uktveris and Jusas in [16] and other works that this 
method gives a substantial EEG signal classification 
performance increase, thus is a highly recommended 
filtering method.
The filter is a spatial coefficient matrix W:
S = WT E
where S is the filtered signal matrix, E is original 
EEG signal. Columns of W denote spatial filters, 
while inverse, i.e. W-1, are spatial patterns of EEG 
signal. The criterion of CSP for a two C1, C2 class 
problem is given by:
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where ∑1 and ∑2 are the class covariance matrices.
Solution can be acquired by solving a generalized ei-
genvalue problem. Since CSP was designed for a bi-
nary problem, multiclass solutions are combined of 
multiple spatial filters. 
Due to the broad and positive acknowledgement of 
CSP, the method was used in the current work to filter 
EEG data before commencing feature extraction.
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Feature extraction methods
A multitude of EEG feature extraction methods have 
been studied by Uktveris and Jusas in [16] and other lit-
erature. Their output usually is a one dimensional fea-
ture vector that can be used for classification. The abil-
ity to adapt the algorithms for two-dimensional CNN 
has not been thoroughly analyzed. It is also important 
to know if the adapted methods can give similar or bet-
ter results when applied in 2D for CNN. Thus, a review 
of the most common feature extraction techniques and 
their implementations for CNN is presented in this 
work. A short description of the EEG feature methods 
that were tested and analyzed in this paper is given next.

Mean channel energy (MCE)
The energy of each i-th EEG channel is computed as 
the mean of squared time domain samples (10). The 
result is then transformed using a Box-Cox [4] trans-
formation (i.e. logarithm) in order to make the fea-
tures more normally distributed, and finally, the re-
sulting values are combined into a feature vector:
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Channel variance (CV)
Variance for each i-th EEG channel is the second mo-
ment of the signal computed about its mean . The result 
is normalized using Box-Cox for final feature vector:
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An example of a feature map generated using this 
technique is given in Figure 1.
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Figure 1 
Feature map generated with CV method

Mean window energy (MWE)
This technique computes (12) the mean signal en-
ergy of N windows of size W=s/N for each i-th EEG 
channel (where s is EEG channel sample count). The 
resulting coefficients are Box-Cox transformed (12) to 
form final map:
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The maximum window count in experiments was se-
lected as p=n (where n is EEG channel count) in order 
to form rectangle feature maps.

Principal Component Analysis (PCA)
PCA is a filtering technique that decomposes input 
signal into main components by using orthogonal 
transformations (13). Wang et al. showed in [18] that 
it also can be used to suppress artifacts and noise in 
EEG signal. The decomposition (13) is carried out 
multiple times – initially to determine the principal 
components, secondly – to suppress noisy compo-
nents at decomposition levels 1-3: 
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The final feature vector consists of filtered EEG mean 
energy elements (14) that were normalized via Box-
Cox:
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Multi-resolution of 5 levels with Daubechies’ 
least-asymmetric wavelet (4 vanishing moments) 
was used for the decomposition in this work.

Mean band power (BP)
Algorithm calculates the power of three major fre-
quency bands: 8-14Hz, 19-24Hz and 24-30Hz (cor-
responding to Mu, Alfa and Beta brain waves) by first 
band-pass filtering the signal using the 4-th order 
Butterworth finite impulse response (FIR) filter.
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The resulting signal is then squared to obtain the 
power, and a w-sized smoothing window operation 
is performed to filter the signal as shown in (15). The 
mean power values (16):
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of each computed band are then used as feature vec-
tor components.

Channel FFT energy (CFFT)
As analyzed by Cecotti and Gräser in [7], this method 
employs the Fast Fourier Transform (FFT) for com-
puting i-th EEG channel signal energy estimation in 
the frequency domain. The FFT result is squared and 
the sum of all elements is computed: 
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Final feature vector components are formed after 
Box-Cox transformation  is applied.

Channel Discrete Cosine Transform (DCT)
Signal energy concentration can be estimated via 
DCT as shown by Birvinskas et al. in [3]. The sum of 
squared DCT coefficients of each i-th EEG channel 
forms the feature vector components of this method 
(18). Features are normalized using Box-Cox trans-
form: 
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Time Domain Parameters (TDP)
Time domain parameters compute time-varying en-
ergy of the first k derivatives of the i-th EEG channel. 
Obtained derivative values (19) are smoothed using 
exponential moving average and a logarithm is taken 
as given by (20). The resulting signal mean is used in 
feature vector generation.
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here u is the moving average parameter, u ∈ [0; 1].

Teager-Kaiser Energy Operator  (TKEO)
TKEO is a more accurate signal energy calculation 
method that allows to detect high frequency and low 
amplitude components. Approximation for discrete 
i-th EEG channel signals is given by (21).
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The components of the final feature vector are com-
puted by using (22).

FFT energy map (FFTEM)
This method generates a 2D feature map from EEG by 
using FFT. Each i-th EEG channel signal is transformed 
into frequency domain and forms a single row in the fea-
ture map as shown in (23). Full signal window was used 
to gain a global energy view as opposed to the work by Hu 
et al. [8], which used short-term FFT windows.
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The computed map H is scaled to required feature 
map size for CNN classification. Figure 2 shows an 
example result map generated with this method.

Figure 2 
FFT energy map example

 

5 

 
�� = l�� �� ���(��)�

�

���
� , � = 1, ������ . (18) 

 ��(�) = ���(�)
��� , � = �,1, � , � 

 
(19) 

 �� = 1
� � ln�� � ����� � (1 � �) � ���� � 1��

�

���
, � = 1, ������� (20) 

 
 ������� = ����� � ��� � 1���� + 1� (21) 
 

�� = l�� �1
� � Ψ���

�

���
� , � = 1, ������ 

 
(22) 

 

 �� = |���(��)|, � = 1, ����� (23) 

 
Figure 2. FFT energy map example 

 
��(�, �) = � �(�)

+∞

�∞
��,�(�)�� . (24) 

 
��,�(�) = ����2��(���)�� (���)2

2�2  (25) 

 
�� = 1

� ������, ����
�

�=1
, � = 1, ����� . (26) 

 
Figure 3. Feature map generated with CWT 

 
 �� = ��, � = 1, ����� . (27) 

 �� = l�� ��� , � = 1, ����� . (28) 



Information Technology and Control 2017/2/46266

Complex Morlet Wavelet Transform (CWT)
CWT is a time-frequency analysis method used by Le 
Van Quyen et al. in [10] for obtaining wavelet coeffi-
cient maps W (24) at specific frequencies, that were 
analyzed more by Qin and He in [6]:

 

5 

 
�� = l�� �� ���(��)�

�

���
� , � = 1, ������ . (18) 

 ��(�) = ���(�)
��� , � = �,1, � , � 

 
(19) 

 �� = 1
� � ln�� � ����� � (1 � �) � ���� � 1��

�

���
, � = 1, ������� (20) 

 
 ������� = ����� � ��� � 1���� + 1� (21) 
 

�� = l�� �1
� � Ψ���

�

���
� , � = 1, ������ 

 
(22) 

 

 �� = |���(��)|, � = 1, ����� (23) 

 
Figure 2. FFT energy map example 

 
��(�, �) = � �(�)

+∞

�∞
��,�(�)�� . (24) 

 
��,�(�) = ����2��(���)�� (���)2

2�2  (25) 

 
�� = 1

� ������, ����
�

�=1
, � = 1, ����� . (26) 

 
Figure 3. Feature map generated with CWT 

 
 �� = ��, � = 1, ����� . (27) 

 �� = l�� ��� , � = 1, ����� . (28) 

(24)

All EEG channel signals combined as one x(t) signal 
are convolved with a number of different frequency 
Morlet Wavelets (25), where σ = n/2πf and n is the 
number of wavelet cycles.
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Finally, the 
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 is decomposed back to initial 
EEG dimensions and the mean energy coefficients 
of each channel form a single row (26) in the feature 
map:
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In this work, 22 different frequencies were used from 
[0; 30] Hz range band along with wavelet cycles from 
range [0.5; 5]. An example output of this method is giv-
en in Figure 3.

Figure 3 
Feature map generated with CWT
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Raw signal features (RAW)
RAW is a baseline method that uses the initially 
pre-processed EEG signal as values for the feature 

map. Each i-th EEG signal channel directly maps to 
feature map H i-th row as shown in (27):
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If necessary, the resulting feature map is scaled to the 
required image size for CNN training.

Signal energy map (SEM)
This method is using raw EEG signal energy values 
for feature map generation. The Box-Cox normalized 
energy of each i-th EEG signal channel is computed 
and the resulting vector is directly mapped to feature 
map H i-th row as shown in (28):
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If necessary, the resulting feature map is scaled to the 
required image size for CNN training. An example 
map generated with this method is given in Figure 4.

Figure 4 
Feature map generated with SEM
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CNN architecture selection
Choosing the correct network architecture for the 
problem gives a greater probability of getting better 
classification results. CNN supports serially connect-
ed layers. Due to the large number of different lay-
er types it is not trivial to find an optimal chain that 
closely matches the given problem. 
Tests for 11 different CNN architectures were com-
pleted. Starting from simplest and ending with more 
complex ones. The architecture configurations in a 
simplified notation are given in Table 1. The used no-
tation is explained in Table 2.
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Evaluation results are shown in Figure 5. It can be 
noted that testing accuracy is around ~65% between 
most of the configurations. However, training accura-
cy displays a more dynamic profile from 50% to 80%. 
In this case, the CNN configuration with the least 
amount of computational-processing resources (i.e. 
simplest) should be selected as optimal – 1, 2, 4 or 10.

CNN parameter tuning
CNNs are more complex since they have more hy-
per-parameters than a standard MLP. However, the 
usual learning rates and regularization constants still 
apply. CNN training parameters, initial learning rate, 
momentum, batch size and the number of epochs, 
must be tuned for best performance. Since a 4D pa-
rameter grid based search is too resource intensive, a 

Table 1 
Different evaluated CNN architectures 

# CNN configuration Notes

1 IC(4)RPFSO 4 filters

2 IC(4)RP(4)FSO stride 4

3 IC(8)RPFSO 8 filters

4 ICRPFSO

5 IC(32)RPFSO 32 filters

6 IC(64)RPFSO 64 filters

7 ICRPCRPFSO

8 ICRFSO

9 ICFSO

10 IC(7x1)RC(1x7)RPFSO Non-rect filters

11 IC(1x7)RPC(7x1)RPFSO Non-rect filters

Table 2 
CNN layer symbolic notation

Notation Description (default parameters)

I input layer of size (44x44x1)

C convolutional layer (7x7, 16 filters)

R ReLU layer

P max pooling layer (2x2, stride 2)

F fully connected layer (4 classes)

S softmax layer

O classification (output) layer

parameter range scanning approach was carried out 
to find optimal values.
The momentum value denotes the contribution for 
the next gradient value from previous iteration in 
Stochastic Gradient Descent (SGD) method. Larger 
parameter values decrease the effectiveness of faster 
learning as shown in Figure 6. In tests, values above 
0.6 push the CNN to overfitting and thus decrease 
generalization and testing accuracy. Value of zero for 
momentum is not recommended since that invokes a 
loss of historical gradient learning information.

Figure 5 
CNN architecture evaluation
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Figure 6 
Momentum evaluation
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The optimal number of training epochs ensures that 
the network learns and generalizes the provided fea-
tures. Excessive epochs deteriorate the testing accu-
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racy since the network is overfitting. Figure 7 shows 
that the optimal count for training is 400-500 epochs.

Figure 7 
Epoch count evaluation 
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Batch size is the image count that is used for single 
epoch training. It has direct effect on the network 
learning quality as shown in Figure 8. The maximum 
batch size is the number of total images, e.g. N=288 in 
experiments. The values lower than N/4 prevent the 
network from fully maximizing learning efficiency, 
greater values only increase computational costs at 
the price of no change in testing accuracy.

Figure 8 
Batch size evaluation
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Initial learning rate must be adopted for each prob-
lem. Experiments show that the value should be no 

bigger than 0.1, while the network testing accuracy 
peak is achieved with values close to 0.01 as shown 
in Figure 9. Lower values allow to learn fine grained 
features, while large ones have the tendency to overfit 
the network.

Figure 9 
Initial learning rate evaluation
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Feature map generation
Feature duplication
Many feature extraction methods form a single 
one-dimensional vector of coefficients known as a 
feature vector. A problem arises since CNNs are de-
signed to process two-dimensional images. Two ap-
proaches for image generation form a viable solution. 
The first is to interpret the one-dimensional signal as 
a 2D single row image. However, the negative aspect 
of this approach is that only a single row CNN filters/
kernels will be usable.
The second method, exploiting the CNN translational 
nature, is to find such a transformation H that allows 
to convert a 1D signal into 2D:
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A simple example for such a transformation is to du-
plicate the feature vector y in both directions to fill 
the feature map space. Some additional filtering can 
be applied to new repeated copies. An example of such 
feature map is given in Figure 10.
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Feature map scaling
A baseline method and the simplest approach from 
all feature extraction techniques is to classify the raw 
EEG signal samples. The raw EEG data form factor of 
NxM, (where N is number of channels, M is number 
of samples, N<<M) restricts a direct use of it for CNN 
feature images due to large number of samples. Thus it 
must be scaled down. Generally, a feature map of WxH 
size (where W is width and H is height) can be formed 
by down/up-scaling the raw EEG signal or extracted 
feature data. The technique of resizing can use bilinear 
or other type of filtering in order to prevent sharp data 
transitions, limit noise and smooth out the final fea-
ture map. An example of filtering applied to raw EEG 
feature maps can be seen in Figure 11.

Figure 10 
Feature map generated via vector duplication
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niques are applied. It can be seen that for raw EEG 
signal analysis nearest filtering method should be 
used in order to retain original signal details as much 
as possible. For other feature types the effect could be 
the opposite.

Figure 11 
Example of 22x22 raw EEG feature maps (from left - 
nearest, bilinear, bicubic filtering)
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Initial testing results of the three different image fil-
tering techniques for raw EEG signal classification 
are given in Table 3. Results show ~10% difference in 
classification accuracy when various filtering tech-

Table 3 
Raw EEG feature map resize filtering accuracy

Filter method Training Testing

Nearest 0.47 ± 0.14 0.43 ± 0.11

Bilinear 0.35 ± 0.11 0.33 ± 0.12

Bicubic 0.33 ± 0.10 0.32 ± 0.11

Feature map and filter dimensions
The problem is to find the right level of granularity in 
order to create data abstractions at the proper scale, 
given a particular dataset. Different feature maps and 
filter sizes were analyzed for the motor imagery prob-
lem. Dimensions from 8x8 to 64x64 of feature maps 
were tested. Test results are given in Figure 12. 

Figure 12 
Feature map size evaluation
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The plot shows that the optimal feature map size is 
24x24 with accuracy of 65%, even though a more ac-
curate solution of 66% exists at size 44x44. Choosing 
a smaller size feature map ensures faster computation 
and processing speeds. Also note that the accuracy 
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convergence is reached when the feature map size is 
at least twice (15x15) the size as the convolution layer 
filter size (7x7 in the experiment). When the optimal 
size is reached, the further increase in dimension only 
introduces extra computational costs.
Convolution layer filter size limits the learning granu-
larity by encompassing fixed size feature map regions. 
Ten different filter sizes were tested in range [2; 11] 
for 22x22 feature maps. Test results are displayed in 
Figure 13.

Figure 13 
Convolution layer filter size evaluation

The optimal filter size, that gives highest accuracy, is 
7x7 and 11x11. Choosing the smaller filter size ensures 
faster processing speeds. Filters of size 2x2 and 3x3 
exhibit too few weights to fully learn the details of the 
provided data.

Experiments
The main purpose of the experimentation activities 
was to investigate the capabilities of CNN classifier 
for four-class motor imagery classification problem. 
Also, to analyze influence of various CNN architec-
tures, feature maps, filter sizes and other parameters 
to classification accuracy. Experiments were con-
ducted in the analysis step (tuning the CNN network 
parameters) and also in the main motor imagery clas-
sification step (for each subject).
The experiment results were measured and evaluated 
using normalized accuracy in range [0; 1]. The CNN 
network parameters were tuned and verified before 
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final classification step. Tests were carried out using 
ten-fold cross validation. Also, the ability of CNN to 
learn from feature data was validated visually by in-
specting the learned filter/weight images.
Final classification results for each subject are pro-
vided in the results section further.

Dataset
BCI signal Dataset 2a (contributed and described by 
Brunner et al. [5]) from the BCI IV competition held in 
2008 was used for classifier training and testing. The 
data consists of 22 channels of 250 Hz sample rate re-
corded EEG signal for 9 healthy test subjects (total 288 
motor imagery trials per subject). The EEG signal was 
bandpass-filtered between 0.5 Hz and 100 Hz and ad-
ditional 50 Hz notch filter was enabled to suppress line 
noise. For each subject, two sessions on different days 
were recorded. During each session and using a cue-
paced (synchronous) mode of operation, test subjects 
were asked to imagine movement of one out of four dif-
ferent motions (left hand, right hand, feet, tongue) for 
3 s. Each of the trials (Figure 14) in the dataset started 
with an audible signal (beep), followed by visual infor-
mation (cue) on screen to perform one of the mental 
tasks and a short break after the mental task. Before the 
experiments additional artifact correction of EEG data 
was done to discard invalid trials as described in [5] 
by Brunner et al. The corrected EEG data were band-
pass-filtered between 7 Hz and 30 Hz in order to cover 
mu and beta rhythm bands.

Figure 14 
Single trial timing scheme
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Implementation details
Software code for experiments was implemented in 
MATLAB 2016b/9.1 numerical computation environ-
ment. CNN is a new MATLAB functionality (starting 
from the 2016a/9.0 version), which uses GPU proces-
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sor for parallel computations. Other alternatives for 
convolutional neural networks exist such as the open 
source MatConvNet library created by Vedaldi and 
Lenc [17], however, the library was left as an option 
for future CNN evaluations. Parts of the open source 
BioSig library for biomedical signal processing and 
imaging were used in EEG signal analysis. 
CNN convolution layer initial filter weights in all 
tests were set to have a Gaussian distribution with a 
mean of 0 and standard deviation of 0.01. The default 
for the initial bias was 0.
All MATLAB source code used in this work with 
results are available at the Github Git repository: 
https://github.com/tomazas/itc2017.

Results
Final classification results were obtained after analy-
sis and CNN parameter fine-tuning step. A CNN with 
initial learning rate of 0.01, momentum of 0.1, batch 
size of 128, 200 epochs and architecture I(22x22)
C(4x4,16)RPFSO was trained and tested for final 
evaluation on all subjects. Results were verified by us-
ing 10-fold cross-validation scheme. The accuracies 
with their standard deviation values are displayed in 
Table 4. From the results, it can be seen that the best 
performing approach (70% in training) and (68% in 
testing) is the FFT energy map method. The second 
and third best methods in tests are the Channel vari-
ance (68%/61%) and Signal energy map (67%/61%) 
features. The lowest accuracy of (41%/31%) was 
achieved by the TDP feature method.

Conclusions
This work analyzed Convolutional Neural Networks 
and their application to four-class motor-imag-
ery based problem. After an in-depth CNN analysis 
and parameter fine-tuning, promising results were 

Table 4 
Classification results for feature methods

 Method Training Testing

MCE 0.66 ± 0.19 0.58 ± 0.20

CV 0.68 ± 0.18 0.61 ± 0.22

MWP 0.66 ± 0.19 0.58 ± 0.20

PCA 0.61 ± 0.16 0.55 ± 0.20

BP 0.52 ± 0.18 0.39 ± 0.11

CFFT 0.66 ± 0.19 0.58 ± 0.20

DCT 0.54 ± 0.17 0.42 ± 0.11

TDP 0.41 ± 0.11 0.31 ± 0.07

TKEO 0.43 ± 0.12 0.34 ± 0.05

FFTEM 0.70 ± 0.18 0.68 ± 0.20

CWT 0.46 ± 0.10 0.43 ± 0.13

RAW 0.48 ± 0.14 0.37 ± 0.11

SEM 0.67 ± 0.18 0.61 ± 0.20

achieved for the selected problem. The FFT energy 
map method demonstrated the best feature deter-
mination abilities and achieved 68% mean testing 
accuracy for all the BCI IV competition 2a dataset 
subjects. The gained accuracy is slightly better than 
in new techniques proposed by Tabar and Halici in 
[15] and similar to more complex state-of-the-art 
EEG analysis techniques by Yang et. al. [21]. The use 
of simpler feature extraction methods like FFT ener-
gy map shows a high CNN method potential for motor 
imagery EEG analysis.
Further work will continue in order to provide more 
efficient feature extraction methods favoring pro-
cessing speed and accuracy.
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Summary / Santrauka

In this paper the use of a novel feature extraction method oriented to convolutional neural networks (CNN) 
is discussed in order to solve four-class motor imagery classification problem. Analysis of viable CNN archi-
tectures and their influence on the obtained accuracy for the given task is argued. Furthermore, selection of 
optimal feature map image dimension, filter sizes and other CNN parameters used for network training is in-
vestigated. Methods for generating 2D feature maps from 1D feature vectors are presented for commonly used 
feature types. Initial results show that CNN can achieve high classification accuracy of 68% for the four-class 
motor imagery problem with less complex feature extraction techniques. It is shown that optimal accuracy 
highly depends on feature map dimensions, filter sizes, epoch count and other tunable factors, therefore various 
fine-tuning techniques must be employed. Experiments show that simple FFT energy map generation tech-
niques are enough to reach the state of the art classification accuracy for common CNN feature map sizes. This 
work also confirms that CNNs are able to learn a descriptive set of information needed for optimal electroen-
cephalogram (EEG) signal classification.

Straipsnyje analizuojamas naujas bruožų išskyrimo metodas, paremtas sąsukos neuroniniais tinklais (CNN) ir 
skirtas keturių klasių įsivaizduojamosios motorikos klasifikavimo problemai spręsti. Darbe analizuojamos ga-
limos CNN architektūros ir jų įtaka uždavinio tikslumui. Taip pat atliekamas optimalaus bruožų žemėlapio dy-
džio pasirinkimo, filtrų dydžio ir kitų CNN tinklui mokyti naudojamų parametrų tyrimas. Pristatomi metodai 
skirti generuoti 2D bruožų žemėlapius iš 1D bruožų vektorių dažniausiai naudojamiems bruožų tipams. Pirmi-
niai rezultatai parodė, jog CNN gali pasiekti 68 % klasifikavimo tikslumą sprendžiant keturių klasių įsivaizduo-
jamosios motorikos problemą, net kai taikomi mažiau sudėtingi bruožų išskyrimo metodai. Parodoma, kad op-
timalus klasifikavimo tikslumas labai priklauso nuo bruožų žemėlapio dydžio, filtro dydžio, mokymo iteracijų 
skaičiaus ir kitų faktorių, todėl turi būti taikomos įvairios derinimo metodikos. Atlikus eksperimentus matyti, 
kad nesudėtingas FFT energijos žemėlapio generavimo metodas yra pakankamas norint pasiekti moderniausių 
metodų klasifikavimo tikslumą su dažniausiai naudojamais CNN bruožų žemėlapių dydžiais. Straipsnyje taip 
pat akcentuojama, kad CNN gali išmokti aibę apibūdinančios informacijos, reikalingos elektroencefalogramos 
(EEG) signalui optimaliai klasifikuoti.




