
431Information Technology and Control 2018/3/47

Cryptanalysis and Improvement
of a Multi-Server Authenticated
Key Agreement by Chen and
Lee’s Scheme

ITC 3/47
Journal of Information Technology
and Control
Vol. 47 / No. 3 / 2018
pp. 431-446
DOI 10.5755/j01.itc.47.3.17361
© Kaunas University of Technology

Cryptanalysis and Improvement of a Multi-Server Authenticated
Key Agreement by Chen and Lee’s Scheme

Received 2016/12/30 Accepted after revision 2018/07/30

 http://dx.doi.org/10.5755/j01.itc.47.3.17361

Corresponding author: shahzad@iiu.edu.pk

Azeem Irshad, Husnain Naqvi, Shehzad Ashraf Chaudhry
Department of Computer Science & Software Engineering, International Islamic University, Islamabad
e-mail: irshadazeem2@gmail.com, husnain.naqvi@iiu.edu.pk, shahzad@iiu.edu.pk

Muhammad Usman
Department of Computer Science, Faculty of Natural Science, Quaid-I-Azam University, Islamabad, Pakistan
e-mail: musman@qau.edu.pk

Muhammad Shafiq
Department of Information Technology, University of Gujrat, Gujrat, Pakistan, e-mail: shafiq.pu@gmail.com

Omid Mir
The Institute of Networks and Security, Johannes Kepler University Linz, Austria, e-mail: mir@ins.jku.at

Ambrina Kanwal
Department of Computer Science, Bahria University, Islamabad, Pakistan, e-mail: ambrina_kanwal@yahoo.com

Multi-server authentication makes convenient to benefit from services of various service providers on the ba-
sis of one-time registration through a trusted third party. Since, the users are reluctant to register themselves
separately from all servers due to the hassle of remembering many passwords and other cost constraints. The
multi-server authentication enables the immediate provision of services by the real-time verification of users
on an insecure channel. The literature for multi-server oriented authenticated key agreement could be traced

Information Technology and Control 2018/3/47432

back to Li et al. and Lee et al., in 2000. Since then, numerous multi-server authentication techniques have been
put forth. Nonetheless, the research academia looks for more secure and efficient authentication protocols. Re-
cently, Chen and Lee’s scheme presented a two-factor multi-server key agreement protocol, which is found to be
prone to impersonation, stolen smart card, key-compromise impersonation attack, and trace attacks. Besides,
the scheme is also found to have the inefficient password modification procedure. We propose an improved pro-
tocol that counters the above limitations in almost an equivalent computation cost. Moreover, our protocol is
supplemented with formal security analysis using BAN logic along with performance analysis and evaluation.
KEYWORDS: Multi-server authentication, cryptanalysis, biometrics, remote authentication, attack.

1. Introduction
In peer-to-peer environment, Multi-Server Authen-
tication (MSA) permits the quick accessibility of nu-
merous online multimedia-based services to users on
the basis of a single registration. The architecture of
MSA [39, 29] is favorable for both sides, i.e. service
providers as well as users. This is because the users
need not remember more than one password due to
single registration of a trusted third party. Similarly,
the MSA architecture eases the service providers of
the maintenance of verifier database for each regis-
tered user, and the trouble of individualized regis-
trations. The users count on a single registration of a
trusted third party to benefit from services of differ-
ent service providers. The MSA setting would com-
prise numerous users (Ui), servers (Sj), and a regis-
tration centre (RC). The trust flows from RC towards
users and servers, as RC registers these entities in the
initialization setup on confidential channel. Then on-
wards, the users could benefit themselves of the ser-
vices offered by service providers.
Previously, numerous MSA-based schemes gearing
towards augmentation in security and efficiency
have been presented. Yet, it is believed on account
of frequent threats and weaknesses that more resil-
ient MSA protocols need to be demonstrated. Earlier
in 2000, Lee and Chang [34] presented a key agree-
ment protocol for MSA framework. The scheme was
found vulnerable to masquerading attack and com-
promised anonymity [51]. Thereafter, Tsaur [47] pre-
sented a remote subscriber-based MSA scheme em-
ploying RSA crypto-primitives as well as Lagrange
interpolating polynomials. The protocol was exposed
to password-guessing threat [47]. Then, Li et al. [35]
presented a password-based MSA protocol in an ar-
tificial neural network system, which requires high
training time and a bit higher cost. Thereafter, Lin
et al. [39] presented an ElGamal digital signature re-

lated MSA protocol. However, the scheme was found
too costly for the memory requirements to be applied
in smart card based applications. After that, Juang
[29] presented a symmetric cryptosystem-based
MSA protocol, however having scalability problems
due to maintaining users’ verifier-repository at serv-
er’s end for all users. Next, Chang and Lee [8] also
demonstrated a MSA protocol, which was discovered
to be susceptible for privileged-insider and server
masquerading threats [38, 18]. Liao and Wang [38],
subsequently introduced another dynamic ID-based
remote user authenticated key agreement for MSA
architecture. Hsiang and Shih [18] discovered the
protocol [38] as vulnerable to privileged insider and
spoofing threats, and also put forward an improved
protocol. Lee et al. [33] remarked that the scheme
[18] is unable to accomplish mutual authentication
agreement, and onwards demonstrated an enhanced
protocol. Nonetheless, Chen and Lee [11] analyzed
that the protocol [7] is incapable of providing the se-
curity feature of smart card security to comply with
two-factor authentication. Besides, [7] also could not
resist impersonation attack and bears an inefficient
password modification steps due to RC’s involve-
ment. After a deep analysis of Chen and Lee’s scheme
[11], we came to know that this protocol sustains
stolen smart card attack that leads to the disclosure
of session key and password. This protocol is prone
to spoofing and trace attack as well. In addition, the
scheme bears a defective password-alteration phase.
The current study work ascertains few weaknesses
in Chen and Lee’s scheme [11] and presents an en-
hanced protocol ensuring security with efficiency
as supported with formal analysis. Moreover, the
strength of session key establishment in our protocol
is ratified under BAN-logic and random oracle-based
formal analysis.

433Information Technology and Control 2018/3/47

Section 2 relates to a review of Chen and Lee’s pro-
tocol. Section 3 studies the cryptanalysis of Chen
and Lee’s protocol. Section 4 illustrates our proposed
work. Section 5 would demonstrate the security and
performance evaluation analysis. The last section
wraps up the presented work.

2. Preliminaries
This section briefly illustrates some salient features
of hash function, and bio-hashing process.

2.1. Hash Function
A hash function [9, 14, 26], defined as h:{0,1}* →{0, 1}τ

where τ denotes a safe length, generating γ string of
pre-determined length as output from inputting a
random string ω of any length, i.e., γ = h(ω), maintains
the following characteristics:
 _ To define the first characteristic, a one-way hash

function serves as a hard problem to alter the string
ω without updating the hash digest h(ω).

 _ For the second characteristic, it is hard to form a
string ω generating h(ω) as preimage resistance.

 _ For the third characteristic, it is hard to produce ω

and ω´ provided ω ≠ ω´where as h(ω)= h(ω´) holds
as well.

The advantage of attacker may be shown by the fol-
lowing formalization:

2

requirements to be applied in smart card based applications.
After that, Juang [29] presented a symmetric cryptosystem-
based MSA protocol, however having scalability problems
due to maintaining users’ verifier-repository at server’s end
for all users. Next, Chang and Lee [8] also demonstrated a
MSA protocol, which was discovered to be susceptible for
privileged-insider and server masquerading threats [38, 18].
Liao and Wang [38], subsequently introduced another
dynamic ID-based remote user authenticated key agreement
for MSA architecture. Hsiang and Shih [18] discovered the
protocol [38] as vulnerable to privileged insider and
spoofing threats, and also put forward an improved
protocol. Lee et al. [33] remarked that the scheme [18] is
unable to accomplish mutual authentication agreement, and
onwards demonstrated an enhanced protocol. Nonetheless,
Chen and Lee [11] analyzed that the protocol [7] is
incapable of providing the security feature of smart card
security to comply with two-factor authentication. Besides,
[7] also could not resist impersonation attack and bears an
inefficient password modification steps due to RC’s
involvement. After a deep analysis of Chen and Lee’s
scheme [11], we came to know that this protocol sustains
stolen smart card attack that leads to the disclosure of
session key and password. This protocol is prone to
spoofing and trace attack as well. In addition, the scheme
bears a defective password-alteration phase. The current
study work ascertains few weaknesses in Chen and Lee’s
scheme [11] and presents an enhanced protocol ensuring
security with efficiency as supported with formal analysis.
Moreover, the strength of session key establishment in our
protocol is ratified under BAN-logic and random oracle-
based formal analysis.

Section 2 relates to a review of Chen and Lee’s protocol.
Section 3 studies the cryptanalysis of Chen and Lee’s
protocol. Section 4 illustrates our proposed work. Section 5
would demonstrate the security and performance evaluation
analysis. The last section wraps up the presented work.

2. Preliminaries

This section briefly illustrates some salient features of hash
function, and bio-hashing process.

2.1 Hash Function
A hash function [9, 14, 26], defined as h:{0,1}* → {0,1}𝜏𝜏𝜏𝜏

where 𝜏𝜏𝜏𝜏 denotes a safe length, generating 𝛾𝛾𝛾𝛾 string of pre-
determined length as output from inputting a random string
𝜔𝜔𝜔𝜔 of any length, i.e., 𝛾𝛾𝛾𝛾 = h(𝜔𝜔𝜔𝜔), maintains the following
characteristics:
1. To define the first characteristic, a one-way hash

function serves as a hard problem to alter the string 𝜔𝜔𝜔𝜔
without updating the hash digest h(𝜔𝜔𝜔𝜔).

2. For the second characteristic, it is hard to form a string
𝜔𝜔𝜔𝜔 generating h(𝜔𝜔𝜔𝜔) as preimage resistance.

3. For the third characteristic, it is hard to produce 𝜔𝜔𝜔𝜔R and
𝜔𝜔𝜔𝜔' provided 𝜔𝜔𝜔𝜔R ≠ 𝜔𝜔𝜔𝜔' where as h(𝜔𝜔𝜔𝜔)= h(𝜔𝜔𝜔𝜔') holds as
well.

The advantage of attacker may be shown by the following
formalization:
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Ⱥ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔′) ⟸𝑅𝑅𝑅𝑅 Ⱥ:𝜔𝜔𝜔𝜔 ≠ 𝜔𝜔𝜔𝜔′𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴 ℎ(𝜔𝜔𝜔𝜔) = ℎ(𝜔𝜔𝜔𝜔′)], (1)

where Pro[Ete] stands for the event Ete’s probability of
conducting the random experiment, and (𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔′) ⟸𝑅𝑅𝑅𝑅 Ⱥ
depicts the selected random pair (𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔′) by the adversary.
In this set-up, Ⱥ is probabilistic, while the probability
related to advantage 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Ⱥ

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) can be calculated using
the random choices as given by Ⱥ in execution time te. The
hashing function h() is assumed to be resistant to collision,
in case 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Ⱥ

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) ≤ 𝜖𝜖𝜖𝜖 holds for adequately small 𝜖𝜖𝜖𝜖 > 0.

2.2 Bio-Hashing

The bio-hashing, being one of the mechanisms to ensure
three-factor authentication, complements the two-factor
authentication framework with another biometric factor to
boost the security. Many studies employing bio-hashing as
a three-factor authentication mechanism can be witnessed
lately [12, 41]. The sample from biometric scanning tends
to behave differently each time it is collected. The bio-
hashing function engenders a randomly generated,
compressed set of codes by converting the finger-
impression codes in so-called biocodes. The hamming
distance assists in differentiating the set of various
biocodes. Thus, the bio-hashing function is known for
countering the de-synchronization problem that might result
in capturing the biometric imprints [28].

3. A Review and Cryptanalysis of Chen and Lee’s
Scheme

We employed a few notations to make the protocol
comprehensible, as given in Table 1.

Table 1 Notation Guide

(1)

where Pro[Ete ] stands for the event Ete’s probability of
conducting the random experiment, and (ω, ω´)⇐ RȺ
depicts the selected random pair (ω, ω´) by the
adversary. In this set-up, Ⱥ is probabilistic, while the
probability related to advantage

2

requirements to be applied in smart card based applications.
After that, Juang [29] presented a symmetric cryptosystem-
based MSA protocol, however having scalability problems
due to maintaining users’ verifier-repository at server’s end
for all users. Next, Chang and Lee [8] also demonstrated a
MSA protocol, which was discovered to be susceptible for
privileged-insider and server masquerading threats [38, 18].
Liao and Wang [38], subsequently introduced another
dynamic ID-based remote user authenticated key agreement
for MSA architecture. Hsiang and Shih [18] discovered the
protocol [38] as vulnerable to privileged insider and
spoofing threats, and also put forward an improved
protocol. Lee et al. [33] remarked that the scheme [18] is
unable to accomplish mutual authentication agreement, and
onwards demonstrated an enhanced protocol. Nonetheless,
Chen and Lee [11] analyzed that the protocol [7] is
incapable of providing the security feature of smart card
security to comply with two-factor authentication. Besides,
[7] also could not resist impersonation attack and bears an
inefficient password modification steps due to RC’s
involvement. After a deep analysis of Chen and Lee’s
scheme [11], we came to know that this protocol sustains
stolen smart card attack that leads to the disclosure of
session key and password. This protocol is prone to
spoofing and trace attack as well. In addition, the scheme
bears a defective password-alteration phase. The current
study work ascertains few weaknesses in Chen and Lee’s
scheme [11] and presents an enhanced protocol ensuring
security with efficiency as supported with formal analysis.
Moreover, the strength of session key establishment in our
protocol is ratified under BAN-logic and random oracle-
based formal analysis.

Section 2 relates to a review of Chen and Lee’s protocol.
Section 3 studies the cryptanalysis of Chen and Lee’s
protocol. Section 4 illustrates our proposed work. Section 5
would demonstrate the security and performance evaluation
analysis. The last section wraps up the presented work.

2. Preliminaries

This section briefly illustrates some salient features of hash
function, and bio-hashing process.

2.1 Hash Function
A hash function [9, 14, 26], defined as h:{0,1}* → {0,1}𝜏𝜏𝜏𝜏

where 𝜏𝜏𝜏𝜏 denotes a safe length, generating 𝛾𝛾𝛾𝛾 string of pre-
determined length as output from inputting a random string
𝜔𝜔𝜔𝜔 of any length, i.e., 𝛾𝛾𝛾𝛾 = h(𝜔𝜔𝜔𝜔), maintains the following
characteristics:
1. To define the first characteristic, a one-way hash

function serves as a hard problem to alter the string 𝜔𝜔𝜔𝜔
without updating the hash digest h(𝜔𝜔𝜔𝜔).

2. For the second characteristic, it is hard to form a string
𝜔𝜔𝜔𝜔 generating h(𝜔𝜔𝜔𝜔) as preimage resistance.

3. For the third characteristic, it is hard to produce 𝜔𝜔𝜔𝜔R and
𝜔𝜔𝜔𝜔' provided 𝜔𝜔𝜔𝜔R ≠ 𝜔𝜔𝜔𝜔' where as h(𝜔𝜔𝜔𝜔)= h(𝜔𝜔𝜔𝜔') holds as
well.

The advantage of attacker may be shown by the following
formalization:
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Ⱥ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔′) ⟸𝑅𝑅𝑅𝑅 Ⱥ:𝜔𝜔𝜔𝜔 ≠ 𝜔𝜔𝜔𝜔′𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴 ℎ(𝜔𝜔𝜔𝜔) = ℎ(𝜔𝜔𝜔𝜔′)], (1)

where Pro[Ete] stands for the event Ete’s probability of
conducting the random experiment, and (𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔′) ⟸𝑅𝑅𝑅𝑅 Ⱥ
depicts the selected random pair (𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔′) by the adversary.
In this set-up, Ⱥ is probabilistic, while the probability
related to advantage 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Ⱥ

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) can be calculated using
the random choices as given by Ⱥ in execution time te. The
hashing function h() is assumed to be resistant to collision,
in case 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Ⱥ

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) ≤ 𝜖𝜖𝜖𝜖 holds for adequately small 𝜖𝜖𝜖𝜖 > 0.

2.2 Bio-Hashing

The bio-hashing, being one of the mechanisms to ensure
three-factor authentication, complements the two-factor
authentication framework with another biometric factor to
boost the security. Many studies employing bio-hashing as
a three-factor authentication mechanism can be witnessed
lately [12, 41]. The sample from biometric scanning tends
to behave differently each time it is collected. The bio-
hashing function engenders a randomly generated,
compressed set of codes by converting the finger-
impression codes in so-called biocodes. The hamming
distance assists in differentiating the set of various
biocodes. Thus, the bio-hashing function is known for
countering the de-synchronization problem that might result
in capturing the biometric imprints [28].

3. A Review and Cryptanalysis of Chen and Lee’s
Scheme

We employed a few notations to make the protocol
comprehensible, as given in Table 1.

Table 1 Notation Guide

 can be
calculated using the random choices as given by Ⱥ in
execution time te. The hashing function h() is assumed
to be resistant to collision, in case 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Ⱥ

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) ≤ 𝜖𝜖𝜖𝜖
holds for adequately small 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Ⱥ

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒) ≤ 𝜖𝜖𝜖𝜖 > 0.

2.2. Bio-Hashing
The bio-hashing, being one of the mechanisms to en-
sure three-factor authentication, complements the

two-factor authentication framework with another
biometric factor to boost the security. Many studies
employing bio-hashing as a three-factor authenti-
cation mechanism can be witnessed lately [12, 41].
The sample from biometric scanning tends to behave
differently each time it is collected. The bio-hash-
ing function engenders a randomly generated, com-
pressed set of codes by converting the finger-im-
pression codes in so-called biocodes. The hamming
distance assists in differentiating the set of various
biocodes. Thus, the bio-hashing function is known
for countering the de-synchronization problem that
might result in capturing the biometric imprints [28].

3. A Review and Cryptanalysis of
Chen and Lee’s Scheme
We employed a few notations to make the protocol
comprehensible, as given in Table 1.
The Chen and Lee’s protocol includes a few of partici-
pating entities, particularly a trusted RC, users Ui and
numerous servers Sj. Both users and servers get reg-
istered before hand of mutual authentication phase.
For this purpose, Sj shares the secret PIDr with on
confidential channel. The working of Chen and Lee’s
protocol [11] is outlined next.

Table 1
Notation Guide

Notations Narration

RC/Ui/Sj Registration Centre/User/Service provider

IDi/ SID Users’ identity/ Service provider’s identity

PWi: User’s password

PIDr: One-time pre-shared secret between RC/Sj and Ui

x: RC’s master secret key

y: RC’s long term secret key

BIOi Biometric Identity of Ui

H(.) Bio-hash function

h(.): A secure hash digest function

SC: Smart Card

||/⊕ Concatenation/ XOR function

Information Technology and Control 2018/3/47434

Figure 1
Chen and Lee’s protocol’s registration and mutual authentication phases

 3

Figure 1 Chen and Lee’s protocol’s registration and mutual authentication phases

The Chen and Lee’s protocol includes a few of
participating entities, particularly a trusted RC,
users Ui and numerous servers Sj. Both users and
servers get registered before hand of mutual
authentication phase. For this purpose, Sj shares the
secret PIDr with on confidential channel. The
working of Chen and Lee’s protocol [11] is
outlined next.

3.1 Design of Chen and Lee’s protocol

The Chen and Lee’s protocol involves two
procedures, i.e. 1) registration procedure and 2)

login and authentication procedure as exhibited in
Figure 1.

3.1.1 User Registration Process
The user completes its registration process by
employing the succeeding steps with RC:
1. Initially, Ui selects its identity IDi, password

PWi, and engenders a random number 𝜛𝜛.
Thereafter, it calculates h(𝜛𝜛 PWi) and sends
{IDi, h(𝜛𝜛 PWi)} to registration centre.

2. Next, the registration centre calculates
Ri=h(h(𝜛𝜛 PWi)), Vi=h(Ri||h(x||y)), Pi=Vi
h(𝜛𝜛PWi), Xi=h(IDi ||x), Wi = Xi h(IDi||

Smart card {Wi, Pi, h(y), Fi, h()}

{IDi, h(𝜛𝜛 PWi)}
Ri = h(h(𝜛𝜛PWi))
Vi = h(Ri||h (x||y))
Pi = Vi h(𝜛𝜛 PWi)
Xi = h(IDi|| x)
Wi = Xi h(IDi || h(𝜛𝜛 PWi))
Fi = h(Xi)

1. Ui inputs IDi, PWi
Xi= Wi h(IDi || h(𝜛𝜛 PWi))
Fi*= h(Xi), Verifies F* ?= Fi
Engenders a random integer 𝛽𝛽i
Vi = Pi h(𝜛𝜛 PWi)
Ri = h(h(𝜛𝜛 PWi))
Bij = Ri h(h(y) || 𝛽𝛽i || SID)
TIDi = h(𝜛𝜛 PWi) h(Xi || Vi || 𝛽𝛽i)
Dij = Xi h(Vi || 𝛽𝛽i || SID)
Ci =h(Ei || Vi || 𝛽𝛽i)

REGISTRATION STEPS:

m1= { TIDi, Bij, Dij, Ci, 𝛽𝛽i }
2. Ri = Bij h(h(y)|| 𝛽𝛽i ||SID)
Vi = h(Ri || h(x || y))
Xi = Dij h(Vi || 𝛽𝛽i || SID)
h(𝜛𝜛PWi)= TIDi h(Xi || Vi || 𝛽𝛽i)
Ei = Vi h(𝜛𝜛 PWi)
h(Ei || Vi || 𝛽𝛽i) ?= Ci
Engenders a random integer 𝛽𝛽j
Qij = h(Ei || 𝛽𝛽i || Vi || SID)

Ui gets SC and inserts 𝜛𝜛
additionally

Ui Sj

Ui RC

MUTUAL AUHTHENTICATION STEPS:

3. h(Ei || 𝛽𝛽i || Vi || SID) ?=Qij
 Qij' = h(Ei || 𝛽𝛽j || Vi || SID)

SK= h(Ei || 𝛽𝛽i || 𝛽𝛽j || Vi || SID)

m3 = {Qij'} 4. Check
h(Ei || 𝛽𝛽j || Vi || SID) ?= Qij'

SK= h(Ei || 𝛽𝛽i || 𝛽𝛽j || Vi || SID)

m2 = {Qij, 𝛽𝛽j }

Selects IDi, PWi, 𝜛𝜛
Computes h(𝜛𝜛PWi)

3.1. Design of Chen and Lee’s Protocol
The Chen and Lee’s protocol involves two procedures,
i.e. 1) registration procedure and 2) login and authen-
tication procedure as exhibited in Figure 1.

3.1.1. User Registration Process
The user completes its registration process by em-
ploying the succeeding steps with RC:

1 Initially, Ui selects its identity IDi, password PWi,
and engenders a random number ϖ. Thereafter,
it calculates h(ϖ ⊕ PWi) and sends {IDi, h(ϖ ⊕
PWi)} to registration centre.

2 Next, the registration centre calculates Ri=h(h(ϖ
⊕ PWi)), Vi=h(Ri||h(x||y)), Pi=Vi⊕ h(ϖ ⊕ PWi),
Xi=h(IDi || x), Wi = Xi ⊕ h(IDi||h(ϖ ⊕ PWi)) and
Fi=h(Xi). Subsequently, RC stores these contents
in SC {Wi, Pi, Fi, h(), h(y)} and submits to Ui.

435Information Technology and Control 2018/3/47

3 Next, Ui receives smart card and adds the factor ϖ
in it to finalize the registration

3.1.3. Login and Authentication Procedure
We illustrate login and authentication procedure in
this sub-section.
1 In login process, Ui is approved from the smart

card to initiate the authentication process. For the
said objective, Ui inserts its identity and password,
i.e. (IDi and PWi). This is followed by the smart
card computation of Xi= Wi ⊕ h(IDi || h(ϖ ⊕ PWi)),
Fi*= h(Xi) parameters. Then, the user compares
the equation, i.e. F* ?= Fi. If it holds valid, then the
user engenders a random number βi, and calculates
Vi = Pi ⊕ h(ϖ ⊕ PWi), Ri=h(h(ϖ ⊕PWi)), Bij = Ri ⊕
h(h(y) || βi || SID), TIDi=h(ϖ ⊕PWi) ⊕ h(Xi || Vi ||
βi), Dij = Xi⊕ h(Vi ||βi || SID) and Ci =h(Ei || Vi || βi).
Thereafter, Ui submits the parameters m1= {TIDi,
Bij, Dij, Ci, βi } to service provider.

2 The service provider receives m1= { TIDi, Bij, Dij,
Ci, βi} and calculates Ri=Bij ⊕ h(h(y) || βi ||SID),
Vi = h(Ri || h(x || y)), Xi = Dij ⊕ h(Vi || βi || SID),
h(ϖ ⊕PWi)= TIDi ⊕ h(Xi || Vi || βi) and Pi = Vi ⊕
h(ϖ ⊕ PWi). Thereafter, it compares the equation,
i.e. h(Pi || Vi || βi) ?= Ci. If valid, it creates a random
number βi, calculates Qij = h(Pi || βi || Vi || SID) and
sends m2 = {Qij, βj} towards user for the purpose of
verification.

3 Then, Ui calculates h(Pi || βi || Vi || SID) and also
verifies the equation, i.e. h(Pi || βi || Vi || SID) ?=Qij.
If this equality is valid, Ui calculates Qij’ = h(Pi ||
βj || Vi || SID) and submits the message m3 = {Qij’}
to service provider for further confirmation with βj
challenge.

4 The service provider receives m3 and computes
h(Pi || βj || Vi || SID). Next, the service provider ver-
ifies the equation, i.e. h(Pi || βj || Vi || SID) ?= Qij’.
If this equality holds true, the service provider fur-
ther computes the agreed session key with Ui as
SK= h(Pi || βi || βj || Vi || SID).

3.2. Pitfalls in Chen and Lee’s Protocol
The Chen and Lee’s protocol has been found prone to
stolen smart card threat, user masquerading threat,
trace threat, key compromise impersonation threat.
At the same time, the protocol bears an expensive
password alteration process. Before recounting those
pitfalls, we describe an attack model.

3.2.1. Attack Model
In this study, an adversary Ⱥ is assumed to be profi-
cient [4, 40, 42] in the following skills:
1 Ⱥ could apply reverse engineering procedures on

the stolen smart card contents and attempt to guess
low-entropy secrets, like password or identity.

2 Ⱥ could intercept the messages on insecure chan-
nel and manipulate by modifying or replaying the
same contents.

3 Ⱥ could be any legal user (insider) behaving mali-
ciously.

3.2.2. Cryptanalysis and Drawbacks
The details of reported attacks and other limitations
in Chen and Lee’s scheme are given below:
a Stolen smart card threat
An adversary Ⱥ may trigger this attack if he/she could
access the smart card contents which are not proper-
ly encrypted before storage. In our protocol, the smart
card contains the parameters {Wi, Pi, Fi,ϖ , h(), h(y)}
while the messages that may be intercepted on public
channel are m1= {TIDi, Bij, Dij, Ci, βi }, m2 = {Qij, βj }
and m3 = {Qij’}. Given that βi and SID could be accessed
on public channel, and h(y) could be approached from
stolen card, the attacker may produce h(h(y) || βi||SID)
and approach Ri’ factor by calculating Ri’ = Bij ⊕
h(h(y) || βi || SID). Subsequently, owing to the acces-
sibility of ’ϖ’ random integer in smart card, Ⱥ may ini-
tiate an offline-dictionary attack to guess the original
password of Ui. Now, the adversary attempts all dic-
tionary strings as password (PWi*) in computing Ri*=
h(h(ϖ ⊕ PWi*) and verifying the equation, i.e. Ri’ ?=
Ri*. Whenever the adversary finds the matching equa-
tion, the former will come to know the right password.
After having the password PWi guessed, the adversary
may compute Vi’= h(ϖ ⊕ PWi) ⊕ Pi. Onwards, Ⱥ may
comfortably establish the legal session key on execut-
ing the hash function as h(Pi || βi || βj || Vi’ || SID). In
this manner, the attacker may easily guess the identi-
cal (valid) session key SK after stealing the smart card,
as constructed by the legitimate members. Hence the
protocol is prone to stolen smart card threat.
b User impersonation threat
The Chen and Lee’s protocol is prone to user spoofing
attack, provided the smart card contents are available
to adversary. By employing these contents, Ⱥ may
compute the legitimate password PWi after follow-
ing the steps as mentioned in sub-section 3.2.2(a).

Information Technology and Control 2018/3/47436

The attacker may compute Vi = Pi ⊕ h(ϖ ⊕ PWi) and
Ri=h(h(ϖ ⊕PWi)). Subsequently, Ⱥ makes a guess of
the IDi string after checking the entire set of potential
strings IDi* by verifying the equations, i.e., Xi*= Wi ⊕
h(IDi* || h(ϖ ⊕PWi)) and Fi ?= h(Xi*), frequently. On
positive matching, the legal identity (IDi) and Xi* are
exposed. Thereafter, Ⱥ engenders a random number
βi and calculates Bij = Ri⊕h (h(y) || βi || SID), TIDi =
h(ϖ ⊕ PWi) h(Xi || Vi || βi), Dij = Xi⊕ h(Vi || βi || SID)
and Ci =h(Pi || Vi || βi). Ultimately, Ⱥ designs authenti-
cation request as m1= {TIDi, Bij, Dij, Ci, βi } effectively.
c Trace attack
In this threat, the attacker could discover the session
participants on the basis of distinguishing and com-
paring known parameters between different sessions
of the same participants. In scheme [11], a privileged
insider with known h(y), could eavesdrop the request
m1={ TIDi, Bij, Dij, Ci, βi} acting maliciously and try to
trace the similarity between different sessions through
Ri after calculating Ri = Bij ⊕ h (h(y) || βi ||SID). The Ri
parameter is not changed among various sessions con-
structed between user and server, in case the user does
not update his/her PWi or ϖ parameters in SC. Thus,
the scheme [11] is vulnerable to trace threat.
d Key-compromise impersonation threat (KCI)
In KCI attack, the attacker may use the guessed or sto-
len factor of some user to spoof as a service provider.
The Chen and Lee’s protocol is vulnerable to KCI
threat, if the data contents in user’s smart card are
accessed by attacker. After accessing the password
of Ui, as shown in Section 3.2.2(a), the attacker could
impersonate as a service provider by designing a mes-
sage m2 = {Qij, βj} after generating a random integer
βj, and constructing Qij* as Qij* = h(Pi || βi || Vi || SID).
This is because Pi and Vi factors could be produced
by maneuvering the smart card factors as depicted
in Section 3.2.2(b). The message m2 is submitted to
user, and will be duly verified by user, though fake.
In this manner, a successful spoofing attack could be
launched towards user in scheme [11].
e No session key security
In case the parameters Pi and Vi are recovered by the
attacker out of data stolen from smart card, the adver-
sary might calculate past session keys through eaves-
dropping βi, βj and computing session key, i.e. SK=
h(Pi || βi || βj || Vi || SID).
f No direct password alteration
The Chen and Lee’s scheme claims that user does not

consult RC to modify the password; nonetheless, the
scheme [11] does not provide any procedure for alter-
ing PWi without the involvement of RC. The alteration
of the password needs updating Pi=Vi ⊕ h(ϖ ⊕PWi),
whenever the password PWi is modified. Here, Ri is
employed for computing Vi, as Vi = h(Ri || h (x||y)).
Moreover, Ri is a parameter that cannot be construct-
ed without password, i.e. Ri = h(h(ϖ ⊕ PWi)). Con-
sequently, Ui will need to consult Sj every instant
to update Ri since it does not possess the parameter
h(x||y). The above proof negates the claim of Chen
and Lee’s scheme for the capability of password alter-
ation without engaging RC.

4. The Proposed Model
The multi-server architecture involves three partici-
pating entities namely; registration centre (RC), user
(Ui), and server or service provider (Sj). RC enables
to register users and provide services from servers
onwards. In initialization, the RC chooses its master
secret key as x and another long term secret integer as
y. These two parameters are utilized in registering all
users. RC calculates h(x || y) and h(y) and then shares
these parameters with all legal service providers Sj,
using a confidential channel. The contributed model
also includes three sub-procedures, i.e., user registra-
tion procedure, login and authentication procedure,
and password alteration method as illustrated below:

4.1. User Registration Procedure

To become a legal subscriber of the network, the user
performs the succeeding steps with RC:
1 The user chooses the parameters as identity IDi,

biometric BIOi, password PWi, and creates a
random integer ϖ. Then, user further calculates
Y=H(IDi || BIOi), TPW=h(ϖ ⊕ H(BIOi || PWi)), and
sends {IDi, Y, TPW } to RC to complete registration.

2 Next RC calculates Ri = h(Y || x), Vi = h(Ri || h(x || y)),
Ei = Vi ⊕ h(Y ||TPW), Qi = Ri ⊕ h(x || y) ⊕ h(y) ⊕ TPW
and Fi= h(h(IDi || TPW)). Subsequently, it creates
random integer t, and calculates PIDr =(h(IDi||x)
|| h(t)) ⊕ h(x || y) and Di = h(IDi || x) ⊕ h(IDi ||TPW).
Later, the registration centre stores {PIDr, Di, Ei, Fi,
Qi, h(s), h()}in smart card and sends towards Ui.

3 Ui adds the parameter ϖ in smart card finally.

437Information Technology and Control 2018/3/47

Figure 2
The proposed protocol (Registration and mutual authentication)

 7

Figure 2 The proposed protocol (Registration and mutual authentication)

{IDi, Y, TPW }

Vi = h(Ri || h(x || y)),
Ei = Vi h(Y||TPW)

Fi=h(h(IDi ||TPW))

1. Ui inputs IDi, PWi, and imprints BIOi in SC.
Then calculates

Checks Fi* ?= h(h(IDi ||TPW))

REGISTRATION STEPS:

m1= { PIDr, ZIDi, Bij, 𝛽𝛽i }

 Ri = Bij h(h(SID || h(y))|| 𝛽𝛽i) h(PIDr
 ||h(IDi || x)) h(x || y),
 Vi = h(Ri || h(x || y))
 ZIDi ?= h(PIDr || Vi || 𝛽𝛽i)

3. Ui picks the smart card
and inserts 𝜛𝜛 as well in SC.

Ui Sj

Ui RC

MUTUAL AUHTHENTICATION STEPS:

3. h(h(IDi || x)|| Ti || 𝛽𝛽i || 𝛽𝛽j || Vi || SID)) ?=Qij
SKij= h(h(IDi || x)|| 𝛽𝛽i || 𝛽𝛽j || Vi || SID),
Qij ' = h(SKij || h(IDi || x)|| 𝛽𝛽j || Vi || SID)

m3 = {Qij '} 4. Verifies
SKij= h(h(IDi || x)|| 𝛽𝛽i || 𝛽𝛽j || Vi || SID),
h(SKij || h(IDi || x)|| 𝛽𝛽j || Vi || SID) ?= Qij '

m2 = {Qij , Ti, 𝛽𝛽j

Imrprints BIOi,
Computes Y=H(IDi || BIOi),
TPW=h(𝜛𝜛 H(BIOi ||PWi))

Agreed session key =SKij= h(h(IDi || x)|| 𝛽𝛽i || 𝛽𝛽j || Vi || SID)

1. Chooses IDi, PWi, 𝜛𝜛
Ri = h(Y || x) 2.

Generates random number t
PIDr =(h(IDi || x) || h(t)) h(x || y),
Di=h(IDi|| x) h(IDi ||TPW)

Qi = Ri h(x || y) h(y) TPW

Y=H(IDi || BIOi), Engenders 𝛽𝛽i
and calculates
h(IDi || x)=Dih(IDi ||TPW),
Bij =Qi h(h(SID || h(y))|| 𝛽𝛽i) TPW
h(y)) h(PIDr ||h(IDi || x)),
Vi = Ei h(Y||TPW),
ZIDi = h(PIDr || Vi || 𝛽𝛽i)

PIDr' =Ti h(PIDr || h(IDi || x)|| Vi)
Replaces PIDr with PIDr' in SC

Engenders t', 𝛽𝛽j
PIDr' =(h(IDi||x) ||h(t')) h(x || y),
Ti = PIDr' h(PIDr || h(IDi|| x)|| Vi),
Qij = h(h (IDi || x)|| Ti || 𝛽𝛽i || 𝛽𝛽j || Vi || SID)

2. (h(IDi || x) || h(t))= PIDr h(x || y)

TPW=h(𝜛𝜛 H(BIOi ||PWi))

SC {PIDr, Di, Ei, Fi, Qi, h(y), h()}

Information Technology and Control 2018/3/47438

4.2. Login and Authentication Procedure
The mutual authentication phase between Ui and Sj
is given below:
1 In this procedure, the user seeks authenticated

access of services from server on account of RC.
To serve the purpose, Ui inputs the identity IDi
and password PWi into smart card while inputs
biometric BIOi into the scanner. Then smart card
computes TPW=h(ϖ ⊕ H(BIOi || PWi)) and checks
whether Fi* ?= h(h(IDi || TPW)). If true, then Ui
creates a random integer βi, and calculates Y=
H(IDi || BIOi), h(IDi || x) = Di ⊕ h(IDi || TPW), Bij =
Qi ⊕ h(h(SID || h(y)) || βi) ⊕TPW ⊕ h(y)) ⊕ h(PIDr

|| h(IDi || x)), Vi = Ei ⊕ h(Y || TPW), and TIDi =
h(PIDr || Vi || βi). Next, Ui sends the message m1=
{PIDr, TIDi, Bij, βi} to Sj for verification.

2 RC , after receiving m1= { PIDr, TIDi, Bij, βi} com-
putes (h(IDi || x) || h(t))=PIDr ⊕ h(x || y), Ri = Bij ⊕
h(h(SID || h(y)) || βi) ⊕ h(PIDr || h(IDi || x)) ⊕h(x ||
y) and Vi = h(Ri || h(x || y)). Next, RC further com-
putes h(PIDr || Vi || βi) and compares TIDi ?= h(PIDr
|| Vi || βi). If the equation is verified, RC will create
a random integer t’ and calculate PIDr’ =(h(IDi || x)
|| h(t’)) ⊕ h(x || y), Ti = PIDr’ ⊕ h(PIDr || h(IDi || x) ||
Vi) and Qij = h(h(IDi || x) || Ti || βi || βj || Vi || SID)
after generating a random number βj. Ultimately,
RC sends the message m2 = {Qij , Ti, βj } to Ui.

3 After receiving m2, Ui computes h(h(IDi || x) || βi ||
βj || Vi || SID)) and compares the equation h(h(IDi
|| x) || Ti || βi || βj || Vi || SID)) ?=Qij .

4 If the equation is verified, Ui further calculates
SKij= h(h(IDi || x) || βi || βj || Vi || SID), Qij ‘ = h(SKij
|| h(IDi || x) || βj || Vi || SID) and forwards m3 =
{Qij ‘} towards server so that it may verify the βj-
based challenge. At the same time, Ui calculates
PIDr’=Ti⊕h(PIDr || h(IDi || x) || Vi) and replaces the
parameter PID with PIDr’ in SC.

5 The server (Sj), after receiving m3, calculates SKij=
h(h(IDi || x)|| βi || βj || Vi || SID). Afterwards, it ver-
ifies the equation, i.e. h(SKij || h(IDi || x) || βj || Vi
|| SID) ?= Qij ‘. On successful verification, it con-
structs session key with user as h(h(IDi || x) || βi ||
βj || Vi || SID), finally. The details of the contributed
protocol can be witnessed from Figure 2.

4.3. Password Alteration Mechanism
Ui may alter his/her password through initiating the
password alteration steps, into another password

(PWinew) without getting any assistance out of
registration centre. These steps are illustrated below.
1 Initially, the user shall insert its SC into the read-

er for inputting identity (IDi*), password (PWi*)
and imprinting its biometric factor BIOi* into the
scanner device. Thereafter, the SC calculates TP-
W=h(ϖ ⊕ H(BIOi ||PWi)) and checks Fi* ?=h(h(IDi
||TPW)). If this equality holds, then user proceeds
to the next step.

2 Afterwards, the smart card calculates TPW=h(ϖ ⊕
H(BIOi || PWi)) and computes Vi = Ei ⊕ h(H(IDi
|| BIOi)||TPW), Qi* = Qi ⊕ TPW, h(IDi || x) = Di ⊕
h(IDi || TPW).

3 Subsequently, the user shall insert a new pass-
word (PWinew). The smart card then calculates
TPW’=h(ϖ ⊕ H(BIOi||PWinew)), Einew = Vi ⊕h(H(I-
Di || BIOi) || TPW’), Qinew = Qi*⊕ TPW’, Dinew= h(IDi
|| x)⊕h(IDi || TPW’) and Finew = h(h(IDi || TPW’)).

4 Next, the values Di, Ei, Fi, and Qi are replaced by
Dinew, Einew, Finew, and Qinew in the smart card.

5. Security Analysis
A comprehensive discussion on the security anal-
ysis of proposed model is provided in the following
sub-sections.

5.1. Replay Attacks

In replay attacks, the intercepted messages are re-
played without undergoing modifications to betray
any legal member [1, 3, 17, 19, 44].
An attacker Ⱥ, having access to factors {PIDr, ZIDi,
Bij, βi, Qij , Ti, βj, Qij ‘} could try for replaying these
contents in order to forge the legitimate participant.
Nonetheless, the use of temporary novel parameters,
such as βi and βj, by the legitimate members, for ev-
ery session, discourage the attacker for initiating an
attack. In case the adversary attempts to replay m1=
{PIDr, ZIDi, Bij, βi } towards server, the server could
confirm the legitimacy of user in m3, in response to
the βj -based challenge. Simultaneously, the user au-
thenticates Sj in m2 to respond the m1-based βi chal-
lenge. Thus, the above discussion indicates towards
a defense capability of the proposed model against
replay attack.

439Information Technology and Control 2018/3/47

5.2. Modification Attacks
The attacker could alter the intercepted parameters
to resubmit to the intended party, in case a protocol
is designed with least focus on resisting the modifica-
tion attack.
If any adversary tries to alter the public parameters
{PIDr, ZIDi, Bij, βi, Qij , Ti, βj, Qij ‘}, Ⱥ will be unable
to reconstruct these contents {ZIDi, Bij, Qij , Qij ‘} by
creating fresh session variables, since the construc-
tion of these messages requires the knowledge of Vi
and h(IDi || x) which are only known to the legitimate
participants. Hence, the legitimate participant will be
able to detect any malicious participant. Therefore,
the contributed scheme may easily thwart this threat.

5.3. Password or Secret Guessing Threat
The guessing attack is possible if the adversary tries to
guess the password of user or some Sj’s long term se-
cret on account of intercepted parameters. In the pro-
posed scheme, Ⱥ can approach the factors {PIDr, ZIDi,
Bij, βi, Qij , Ti, βj, Qij ‘} on little inspection of any public
channel. Nevertheless, an attacker could not derive
the password, since it is not utilized as a factor for the
calculation of any parameter; hence it minimizes the
chances of guessing the corresponding parameters.

5.4. Stolen-Verifier Threats
The adversary could embezzle with valuable data
which are stored at server’s end; and the database of
Ui’s secrets like passwords or other parameters, could
be utilized to impersonate as the legitimate users. The
proposed scheme provides mutual authentication
without depending on database maintenance on Sj or
RC’s end. This suggests that the stolen verifier attack
is defeated in our scheme.

5.5. Offline-Dictionary Attack Based on
Stolen Smart Card Contents
In this attack, the attacker attempts various combi-
nations of dictionary contents after having the stolen
smart card information [23, 46].
Using SC, an attacker might try to manipulate with
its available contents of smart card i.e., {PIDr, Di, Ei,
Fi, Li, Qi, h()}. For guessing the password from Ei, Fi
and Qi parameters, Ⱥ needs to know IDi, r and BIOi
to guess PWi from TPW, where TPW= h(r ⊕ H(BIOi
||PWi)). Consequently, the offline-dictionary attack
using SC cannot be launched in polynomial time.

5.6. Session Key Security
This security feature warrants the knowledge of ses-
sion key only to the known legitimate parties, such as
user and service provider.
In the contributed protocol, the established session
key is designed as SK= h(h(IDi || x)|| βi || βj || Vi || SID).
For constructing a valid session key, an attacker shall
require h(IDi || x) and Vi contents. If the user’s identi-
ty is stolen or guessed by adversary, the latter may not
be able to assemble h(IDi || x) as the adversary does
not possess the parameter x. This stops the adversary
from establishing a valid SK, contrary to scheme [11].
Furthermore, Ⱥ shall require Vi for creating a val-
id SK, nonetheless, an attacker is not able to recover
Vi as Ⱥ does not possess TPW, BIOi, and Ei factors.
Therefore, there is much less of a chance for attacker
to initiate this attack.

5.7. Known-Key Security
This feature ensures the confidentiality of private
keys even if session key for a specific session gets re-
vealed [2, 30].
Given that the agreed session key SK= h(h(IDi|| x)||βi
|| βj ||Vi || SID) does not include Ui’s password PWi as
a factor, though it bears h(IDi || x), again the attacker
may not derive x which is the high entropy master se-
cret key of RC. Owing to this, the attacker might not
recover the factors or parameters from an exposed
session key. Thus, the contributed protocol is immune
and fully complies with known-key security.

5.8. Mutual Authentication
The compliance to this feature lets the involved par-
ticipants verify one another in the proposed scheme.
In this scheme, both of the participants verify one
another on account of h(IDi || x) and Vi. These both
parameters are only accessible to adversary if the
secrets of both RC and Sj are exposed, and not other-
wise. The attacker cannot recover h(IDi || x) from PIDr
by computing (h(IDi || x)||h(t)) = PIDr⊕ h(x||y), since it
does not possess h(x||y). At the same time, the acces-
sibility to Vi requires the information of either PWi
and BIOi, or h(x || y).

5.9. Anonymous Authentication
This feature lets the user communicate without ex-
posing his/her identity [10, 32, 45]. The user submits
the messages for authentication and gets verified

Information Technology and Control 2018/3/47440

without declaring its true identity.
In the proposed protocol, the user sends his/her iden-
tity in the form of PIDr =(h(IDi || x) || h(t)) ⊕ h(x || y),
that is masked by using t, as assumed by server. The
server recovers h(IDi || x) by taking XOR of h(x || y)
with PIDr, and then computing h(IDi || x) as a dynamic
identity for additional calculation. This manner, our
scheme fosters the element of anonymity to a partic-
ular user.

5.10. Immune from Key-Compromise
Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some key
of another participant of the same session. The con-
tributed protocol is immune of KCI threat in contrary
to scheme [11], as the contents of stolen card will not
help the attacker to get other constructive parame-
ters, such as, Vi and (IDi || x). Hence, the adversary
cannot construct up-to-date Qij parameter, and ulti-
mately no KCI attack may be initiated.

5.11. Alteration of Password Without RC
Involvement

The password could be comfortably updated without
engaging RC, as contrary to Lee et al. and Chen and
Lee, by adopting the procedure described in Section
3.4. Both of the schemes [11, 33] do not modify the
password without RC engagement. As in scheme [11],
the design of Ri involves the password as a compo-
nent, which is reused in the design of Vi, while Vi is
again used in the construction of Ei for storing in SC
[13, 49, 52]. The proposed protocol employs BIOi for
the construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis
We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual authentica-
tion related features by using formal security analy-
sis through Burrows-Abadi-Needham (BAN) logic
[6] and random-oracle model (ROM). In this logic, we
utilize few terms quite frequently, known as princi-
pals, keys and nonces which are described below.

The principals are the participating agents in an au-
thentication protocol.
The Keys (symmetric) are utilized for encrypting the
messages.
Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

|≡ 𝜉: believes the statement 𝜉.
 ⊲ 𝜉: sees 𝜉. receives a message 𝜉 and could ei-

ther read or replay it.
 | ~ ξ: once said 𝜉. Earlier the agent had sent a

message 𝜉 and also believed 𝜉 when sent.
 ⇒ 𝜉: has jurisdiction over 𝜉; or enjoys authority

over 𝜉 or it could be trusted.
♯ (𝜉): The message 𝜉 is freshly created.
(𝜉)Θ: The formulae 𝜉 is used in combination with for-

mulae Θ.
(𝜉, Θ): 𝜉 or Θ being the part of message (𝜉, Θ).
{𝜉, Θ}K: 𝜉 or Θ is encrypted with key K.
𝝍𝝍 𝐊𝐊 �⎯⎯⎯� 𝝍𝝍𝝍: and ´ can securely contact using he

shared key K.
⟨𝜉, Θ⟩K: 𝜉 or Θ is hashed using the key K.
Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2, jurisdiction
rule as Rule 3, freshness conjuncatenation rule as
Rule 4, belief rule as Rule 5, and session keys rule as
Rule 6) employed in BAN logic are stated below:

Rule 1:

 10

 In the proposed protocol, the user sends his/her
identity in the form of PIDr =(h(IDi || x) ||h(t))
h(x || y), that is masked by using t, as assumed by
server. The server recovers h(IDi || x) by taking
XOR of h(x || y) with PIDr, and then computing
h(IDi || x) as a dynamic identity for additional
calculation. This manner, our scheme fosters the
element of anonymity to a particular user.

5.10 Immune from Key-Compromise

Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some
key of another participant of the same session. The
contributed protocol is immune of KCI threat in
contrary to scheme [11], as the contents of stolen
card will not help the attacker to get other
constructive parameters, such as, Vi and (IDi || x).
Hence, the adversary cannot construct up-to-date
Qij parameter, and ultimately no KCI attack may
be initiated.

5.11 Alteration of Password Without RC

Involvement

The password could be comfortably updated
without engaging RC, as contrary to Lee et al. and
Chen and Lee, by adopting the procedure described
in Section 3.4. Both of the schemes [11, 33] do not
modify the password without RC engagement. As
in scheme [11], the design of Ri involves the
password as a component, which is reused in the
design of Vi, while Vi is again used in the
construction of Ei for storing in SC [13, 49, 52].
The proposed protocol employs BIOi for the
construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis

We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual
authentication related features by using formal
security analysis through Burrows-Abadi-Needham
(BAN) logic [6] and random-oracle model (ROM).
In this logic, we utilize few terms quite frequently,
known as principals, keys and nonces which are
described below.

The principals are the participating agents in an
authentication protocol.
The Keys (symmetric) are utilized for encrypting
the messages.

Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

𝝍𝝍𝝍 |≡ 𝜉𝜉: 𝝍𝝍 believes the statement 𝜉𝜉.
𝝍𝝍 ⊲ 𝜉𝜉: 𝝍𝝍 sees 𝜉𝜉. 𝝍𝝍 receives a message 𝜉𝜉 and
 could either read or replay it.
𝝍𝝍 | ~ 𝜉𝜉: 𝝍𝝍 once said 𝜉𝜉. Earlier the agent 𝝍𝝍 had sent
 a message 𝜉𝜉 and 𝝍𝝍 also believed 𝜉𝜉 when
 sent.
𝝍𝝍 ⇒ 𝜉𝜉: 𝝍𝝍 has jurisdiction over 𝜉𝜉; or 𝝍𝝍 enjoys
 authority over 𝜉𝜉 or it could be trusted.
♯ (𝜉𝜉): The message 𝜉𝜉 is freshly created.
(𝜉𝜉)Θ: The formulae 𝜉𝜉 is used in combination with
 formulae Θ.
(𝜉𝜉, Θ): 𝜉𝜉 or Θ being the part of message (𝜉𝜉, Θ).
{𝜉𝜉, Θ}K: 𝜉𝜉 or Θ is encrypted with key K.

𝝍𝝍 𝝍𝝍𝝍𝝍𝝍𝐊𝐊𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯� 𝝍𝝍𝝍𝝍: 𝝍𝝍 and 𝝍𝝍𝝍 can securely contact using
 the shared key K.
 ⟨𝜉𝜉, Θ⟩K: 𝜉𝜉 or Θ is hashed using the key K.

Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2,
jurisdiction rule as Rule 3, freshness
conjuncatenation rule as Rule 4, belief rule as Rule
5, and session keys rule as Rule 6) employed in
BAN logic are stated below:

Rule 1: 𝝍𝝍|≡𝝍𝝍𝝍
�↔𝝍𝝍𝝍�,𝝍𝝍𝝍𝝍𝝍⊲⟨𝛏𝛏⟩𝚯𝚯

𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝛏𝛏

Rule 2: 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏

Rule 3:𝝍𝝍𝝍|≡𝝍𝝍�𝝍⇒𝛏𝛏,𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝛏𝛏

Rule 4:𝝍 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏)

𝝍𝝍|≡𝝍 𝝍(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)

Rule 5: 𝝍𝝍|≡(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡(𝚯𝚯)𝝍𝝍𝝍𝝍|≡(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)𝝍

Rule 6: 𝝍𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝛏𝛏

𝝍𝝍|≡𝝍𝝍𝝍 �↔𝝍𝝍𝝍�
.

The contributed work should meet the following
targets for ensuring the security using BAN logic,
under the indicated postulates:

Target 1: S |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 2: S |≡ Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 3: Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Rule 2:

 10

 In the proposed protocol, the user sends his/her
identity in the form of PIDr =(h(IDi || x) ||h(t))
h(x || y), that is masked by using t, as assumed by
server. The server recovers h(IDi || x) by taking
XOR of h(x || y) with PIDr, and then computing
h(IDi || x) as a dynamic identity for additional
calculation. This manner, our scheme fosters the
element of anonymity to a particular user.

5.10 Immune from Key-Compromise

Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some
key of another participant of the same session. The
contributed protocol is immune of KCI threat in
contrary to scheme [11], as the contents of stolen
card will not help the attacker to get other
constructive parameters, such as, Vi and (IDi || x).
Hence, the adversary cannot construct up-to-date
Qij parameter, and ultimately no KCI attack may
be initiated.

5.11 Alteration of Password Without RC

Involvement

The password could be comfortably updated
without engaging RC, as contrary to Lee et al. and
Chen and Lee, by adopting the procedure described
in Section 3.4. Both of the schemes [11, 33] do not
modify the password without RC engagement. As
in scheme [11], the design of Ri involves the
password as a component, which is reused in the
design of Vi, while Vi is again used in the
construction of Ei for storing in SC [13, 49, 52].
The proposed protocol employs BIOi for the
construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis

We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual
authentication related features by using formal
security analysis through Burrows-Abadi-Needham
(BAN) logic [6] and random-oracle model (ROM).
In this logic, we utilize few terms quite frequently,
known as principals, keys and nonces which are
described below.

The principals are the participating agents in an
authentication protocol.
The Keys (symmetric) are utilized for encrypting
the messages.

Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

𝝍𝝍𝝍 |≡ 𝜉𝜉: 𝝍𝝍 believes the statement 𝜉𝜉.
𝝍𝝍 ⊲ 𝜉𝜉: 𝝍𝝍 sees 𝜉𝜉. 𝝍𝝍 receives a message 𝜉𝜉 and
 could either read or replay it.
𝝍𝝍 | ~ 𝜉𝜉: 𝝍𝝍 once said 𝜉𝜉. Earlier the agent 𝝍𝝍 had sent
 a message 𝜉𝜉 and 𝝍𝝍 also believed 𝜉𝜉 when
 sent.
𝝍𝝍 ⇒ 𝜉𝜉: 𝝍𝝍 has jurisdiction over 𝜉𝜉; or 𝝍𝝍 enjoys
 authority over 𝜉𝜉 or it could be trusted.
♯ (𝜉𝜉): The message 𝜉𝜉 is freshly created.
(𝜉𝜉)Θ: The formulae 𝜉𝜉 is used in combination with
 formulae Θ.
(𝜉𝜉, Θ): 𝜉𝜉 or Θ being the part of message (𝜉𝜉, Θ).
{𝜉𝜉, Θ}K: 𝜉𝜉 or Θ is encrypted with key K.

𝝍𝝍 𝝍𝝍𝝍𝝍𝝍𝐊𝐊𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯� 𝝍𝝍𝝍𝝍: 𝝍𝝍 and 𝝍𝝍𝝍 can securely contact using
 the shared key K.
 ⟨𝜉𝜉, Θ⟩K: 𝜉𝜉 or Θ is hashed using the key K.

Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2,
jurisdiction rule as Rule 3, freshness
conjuncatenation rule as Rule 4, belief rule as Rule
5, and session keys rule as Rule 6) employed in
BAN logic are stated below:

Rule 1: 𝝍𝝍|≡𝝍𝝍𝝍
�↔𝝍𝝍𝝍�,𝝍𝝍𝝍𝝍𝝍⊲⟨𝛏𝛏⟩𝚯𝚯

𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝛏𝛏

Rule 2: 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏

Rule 3:𝝍𝝍𝝍|≡𝝍𝝍�𝝍⇒𝛏𝛏,𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝛏𝛏

Rule 4:𝝍 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏)

𝝍𝝍|≡𝝍 𝝍(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)

Rule 5: 𝝍𝝍|≡(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡(𝚯𝚯)𝝍𝝍𝝍𝝍|≡(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)𝝍

Rule 6: 𝝍𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝛏𝛏

𝝍𝝍|≡𝝍𝝍𝝍 �↔𝝍𝝍𝝍�
.

The contributed work should meet the following
targets for ensuring the security using BAN logic,
under the indicated postulates:

Target 1: S |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 2: S |≡ Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 3: Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Rule 3:

 10

 In the proposed protocol, the user sends his/her
identity in the form of PIDr =(h(IDi || x) ||h(t))
h(x || y), that is masked by using t, as assumed by
server. The server recovers h(IDi || x) by taking
XOR of h(x || y) with PIDr, and then computing
h(IDi || x) as a dynamic identity for additional
calculation. This manner, our scheme fosters the
element of anonymity to a particular user.

5.10 Immune from Key-Compromise

Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some
key of another participant of the same session. The
contributed protocol is immune of KCI threat in
contrary to scheme [11], as the contents of stolen
card will not help the attacker to get other
constructive parameters, such as, Vi and (IDi || x).
Hence, the adversary cannot construct up-to-date
Qij parameter, and ultimately no KCI attack may
be initiated.

5.11 Alteration of Password Without RC

Involvement

The password could be comfortably updated
without engaging RC, as contrary to Lee et al. and
Chen and Lee, by adopting the procedure described
in Section 3.4. Both of the schemes [11, 33] do not
modify the password without RC engagement. As
in scheme [11], the design of Ri involves the
password as a component, which is reused in the
design of Vi, while Vi is again used in the
construction of Ei for storing in SC [13, 49, 52].
The proposed protocol employs BIOi for the
construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis

We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual
authentication related features by using formal
security analysis through Burrows-Abadi-Needham
(BAN) logic [6] and random-oracle model (ROM).
In this logic, we utilize few terms quite frequently,
known as principals, keys and nonces which are
described below.

The principals are the participating agents in an
authentication protocol.
The Keys (symmetric) are utilized for encrypting
the messages.

Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

𝝍𝝍𝝍 |≡ 𝜉𝜉: 𝝍𝝍 believes the statement 𝜉𝜉.
𝝍𝝍 ⊲ 𝜉𝜉: 𝝍𝝍 sees 𝜉𝜉. 𝝍𝝍 receives a message 𝜉𝜉 and
 could either read or replay it.
𝝍𝝍 | ~ 𝜉𝜉: 𝝍𝝍 once said 𝜉𝜉. Earlier the agent 𝝍𝝍 had sent
 a message 𝜉𝜉 and 𝝍𝝍 also believed 𝜉𝜉 when
 sent.
𝝍𝝍 ⇒ 𝜉𝜉: 𝝍𝝍 has jurisdiction over 𝜉𝜉; or 𝝍𝝍 enjoys
 authority over 𝜉𝜉 or it could be trusted.
♯ (𝜉𝜉): The message 𝜉𝜉 is freshly created.
(𝜉𝜉)Θ: The formulae 𝜉𝜉 is used in combination with
 formulae Θ.
(𝜉𝜉, Θ): 𝜉𝜉 or Θ being the part of message (𝜉𝜉, Θ).
{𝜉𝜉, Θ}K: 𝜉𝜉 or Θ is encrypted with key K.

𝝍𝝍 𝝍𝝍𝝍𝝍𝝍𝐊𝐊𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯� 𝝍𝝍𝝍𝝍: 𝝍𝝍 and 𝝍𝝍𝝍 can securely contact using
 the shared key K.
 ⟨𝜉𝜉, Θ⟩K: 𝜉𝜉 or Θ is hashed using the key K.

Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2,
jurisdiction rule as Rule 3, freshness
conjuncatenation rule as Rule 4, belief rule as Rule
5, and session keys rule as Rule 6) employed in
BAN logic are stated below:

Rule 1: 𝝍𝝍|≡𝝍𝝍𝝍
�↔𝝍𝝍𝝍�,𝝍𝝍𝝍𝝍𝝍⊲⟨𝛏𝛏⟩𝚯𝚯

𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝛏𝛏

Rule 2: 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏

Rule 3:𝝍𝝍𝝍|≡𝝍𝝍�𝝍⇒𝛏𝛏,𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝛏𝛏

Rule 4:𝝍 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏)

𝝍𝝍|≡𝝍 𝝍(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)

Rule 5: 𝝍𝝍|≡(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡(𝚯𝚯)𝝍𝝍𝝍𝝍|≡(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)𝝍

Rule 6: 𝝍𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝛏𝛏

𝝍𝝍|≡𝝍𝝍𝝍 �↔𝝍𝝍𝝍�
.

The contributed work should meet the following
targets for ensuring the security using BAN logic,
under the indicated postulates:

Target 1: S |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 2: S |≡ Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 3: Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Rule 4:

 10

 In the proposed protocol, the user sends his/her
identity in the form of PIDr =(h(IDi || x) ||h(t))
h(x || y), that is masked by using t, as assumed by
server. The server recovers h(IDi || x) by taking
XOR of h(x || y) with PIDr, and then computing
h(IDi || x) as a dynamic identity for additional
calculation. This manner, our scheme fosters the
element of anonymity to a particular user.

5.10 Immune from Key-Compromise

Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some
key of another participant of the same session. The
contributed protocol is immune of KCI threat in
contrary to scheme [11], as the contents of stolen
card will not help the attacker to get other
constructive parameters, such as, Vi and (IDi || x).
Hence, the adversary cannot construct up-to-date
Qij parameter, and ultimately no KCI attack may
be initiated.

5.11 Alteration of Password Without RC

Involvement

The password could be comfortably updated
without engaging RC, as contrary to Lee et al. and
Chen and Lee, by adopting the procedure described
in Section 3.4. Both of the schemes [11, 33] do not
modify the password without RC engagement. As
in scheme [11], the design of Ri involves the
password as a component, which is reused in the
design of Vi, while Vi is again used in the
construction of Ei for storing in SC [13, 49, 52].
The proposed protocol employs BIOi for the
construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis

We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual
authentication related features by using formal
security analysis through Burrows-Abadi-Needham
(BAN) logic [6] and random-oracle model (ROM).
In this logic, we utilize few terms quite frequently,
known as principals, keys and nonces which are
described below.

The principals are the participating agents in an
authentication protocol.
The Keys (symmetric) are utilized for encrypting
the messages.

Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

𝝍𝝍𝝍 |≡ 𝜉𝜉: 𝝍𝝍 believes the statement 𝜉𝜉.
𝝍𝝍 ⊲ 𝜉𝜉: 𝝍𝝍 sees 𝜉𝜉. 𝝍𝝍 receives a message 𝜉𝜉 and
 could either read or replay it.
𝝍𝝍 | ~ 𝜉𝜉: 𝝍𝝍 once said 𝜉𝜉. Earlier the agent 𝝍𝝍 had sent
 a message 𝜉𝜉 and 𝝍𝝍 also believed 𝜉𝜉 when
 sent.
𝝍𝝍 ⇒ 𝜉𝜉: 𝝍𝝍 has jurisdiction over 𝜉𝜉; or 𝝍𝝍 enjoys
 authority over 𝜉𝜉 or it could be trusted.
♯ (𝜉𝜉): The message 𝜉𝜉 is freshly created.
(𝜉𝜉)Θ: The formulae 𝜉𝜉 is used in combination with
 formulae Θ.
(𝜉𝜉, Θ): 𝜉𝜉 or Θ being the part of message (𝜉𝜉, Θ).
{𝜉𝜉, Θ}K: 𝜉𝜉 or Θ is encrypted with key K.

𝝍𝝍 𝝍𝝍𝝍𝝍𝝍𝐊𝐊𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯� 𝝍𝝍𝝍𝝍: 𝝍𝝍 and 𝝍𝝍𝝍 can securely contact using
 the shared key K.
 ⟨𝜉𝜉, Θ⟩K: 𝜉𝜉 or Θ is hashed using the key K.

Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2,
jurisdiction rule as Rule 3, freshness
conjuncatenation rule as Rule 4, belief rule as Rule
5, and session keys rule as Rule 6) employed in
BAN logic are stated below:

Rule 1: 𝝍𝝍|≡𝝍𝝍𝝍
�↔𝝍𝝍𝝍�,𝝍𝝍𝝍𝝍𝝍⊲⟨𝛏𝛏⟩𝚯𝚯

𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝛏𝛏

Rule 2: 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏

Rule 3:𝝍𝝍𝝍|≡𝝍𝝍�𝝍⇒𝛏𝛏,𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝛏𝛏

Rule 4:𝝍 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏)

𝝍𝝍|≡𝝍 𝝍(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)

Rule 5: 𝝍𝝍|≡(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡(𝚯𝚯)𝝍𝝍𝝍𝝍|≡(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)𝝍

Rule 6: 𝝍𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝛏𝛏

𝝍𝝍|≡𝝍𝝍𝝍 �↔𝝍𝝍𝝍�
.

The contributed work should meet the following
targets for ensuring the security using BAN logic,
under the indicated postulates:

Target 1: S |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 2: S |≡ Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 3: Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Rule 5:

 10

 In the proposed protocol, the user sends his/her
identity in the form of PIDr =(h(IDi || x) ||h(t))
h(x || y), that is masked by using t, as assumed by
server. The server recovers h(IDi || x) by taking
XOR of h(x || y) with PIDr, and then computing
h(IDi || x) as a dynamic identity for additional
calculation. This manner, our scheme fosters the
element of anonymity to a particular user.

5.10 Immune from Key-Compromise

Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some
key of another participant of the same session. The
contributed protocol is immune of KCI threat in
contrary to scheme [11], as the contents of stolen
card will not help the attacker to get other
constructive parameters, such as, Vi and (IDi || x).
Hence, the adversary cannot construct up-to-date
Qij parameter, and ultimately no KCI attack may
be initiated.

5.11 Alteration of Password Without RC

Involvement

The password could be comfortably updated
without engaging RC, as contrary to Lee et al. and
Chen and Lee, by adopting the procedure described
in Section 3.4. Both of the schemes [11, 33] do not
modify the password without RC engagement. As
in scheme [11], the design of Ri involves the
password as a component, which is reused in the
design of Vi, while Vi is again used in the
construction of Ei for storing in SC [13, 49, 52].
The proposed protocol employs BIOi for the
construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis

We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual
authentication related features by using formal
security analysis through Burrows-Abadi-Needham
(BAN) logic [6] and random-oracle model (ROM).
In this logic, we utilize few terms quite frequently,
known as principals, keys and nonces which are
described below.

The principals are the participating agents in an
authentication protocol.
The Keys (symmetric) are utilized for encrypting
the messages.

Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

𝝍𝝍𝝍 |≡ 𝜉𝜉: 𝝍𝝍 believes the statement 𝜉𝜉.
𝝍𝝍 ⊲ 𝜉𝜉: 𝝍𝝍 sees 𝜉𝜉. 𝝍𝝍 receives a message 𝜉𝜉 and
 could either read or replay it.
𝝍𝝍 | ~ 𝜉𝜉: 𝝍𝝍 once said 𝜉𝜉. Earlier the agent 𝝍𝝍 had sent
 a message 𝜉𝜉 and 𝝍𝝍 also believed 𝜉𝜉 when
 sent.
𝝍𝝍 ⇒ 𝜉𝜉: 𝝍𝝍 has jurisdiction over 𝜉𝜉; or 𝝍𝝍 enjoys
 authority over 𝜉𝜉 or it could be trusted.
♯ (𝜉𝜉): The message 𝜉𝜉 is freshly created.
(𝜉𝜉)Θ: The formulae 𝜉𝜉 is used in combination with
 formulae Θ.
(𝜉𝜉, Θ): 𝜉𝜉 or Θ being the part of message (𝜉𝜉, Θ).
{𝜉𝜉, Θ}K: 𝜉𝜉 or Θ is encrypted with key K.

𝝍𝝍 𝝍𝝍𝝍𝝍𝝍𝐊𝐊𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯� 𝝍𝝍𝝍𝝍: 𝝍𝝍 and 𝝍𝝍𝝍 can securely contact using
 the shared key K.
 ⟨𝜉𝜉, Θ⟩K: 𝜉𝜉 or Θ is hashed using the key K.

Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2,
jurisdiction rule as Rule 3, freshness
conjuncatenation rule as Rule 4, belief rule as Rule
5, and session keys rule as Rule 6) employed in
BAN logic are stated below:

Rule 1: 𝝍𝝍|≡𝝍𝝍𝝍
�↔𝝍𝝍𝝍�,𝝍𝝍𝝍𝝍𝝍⊲⟨𝛏𝛏⟩𝚯𝚯

𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝛏𝛏

Rule 2: 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏

Rule 3:𝝍𝝍𝝍|≡𝝍𝝍�𝝍⇒𝛏𝛏,𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝛏𝛏

Rule 4:𝝍 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏)

𝝍𝝍|≡𝝍 𝝍(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)

Rule 5: 𝝍𝝍|≡(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡(𝚯𝚯)𝝍𝝍𝝍𝝍|≡(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)𝝍

Rule 6: 𝝍𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝛏𝛏

𝝍𝝍|≡𝝍𝝍𝝍 �↔𝝍𝝍𝝍�
.

The contributed work should meet the following
targets for ensuring the security using BAN logic,
under the indicated postulates:

Target 1: S |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 2: S |≡ Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 3: Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Rule 6:

 10

 In the proposed protocol, the user sends his/her
identity in the form of PIDr =(h(IDi || x) ||h(t))
h(x || y), that is masked by using t, as assumed by
server. The server recovers h(IDi || x) by taking
XOR of h(x || y) with PIDr, and then computing
h(IDi || x) as a dynamic identity for additional
calculation. This manner, our scheme fosters the
element of anonymity to a particular user.

5.10 Immune from Key-Compromise

Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some
key of another participant of the same session. The
contributed protocol is immune of KCI threat in
contrary to scheme [11], as the contents of stolen
card will not help the attacker to get other
constructive parameters, such as, Vi and (IDi || x).
Hence, the adversary cannot construct up-to-date
Qij parameter, and ultimately no KCI attack may
be initiated.

5.11 Alteration of Password Without RC

Involvement

The password could be comfortably updated
without engaging RC, as contrary to Lee et al. and
Chen and Lee, by adopting the procedure described
in Section 3.4. Both of the schemes [11, 33] do not
modify the password without RC engagement. As
in scheme [11], the design of Ri involves the
password as a component, which is reused in the
design of Vi, while Vi is again used in the
construction of Ei for storing in SC [13, 49, 52].
The proposed protocol employs BIOi for the
construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis

We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual
authentication related features by using formal
security analysis through Burrows-Abadi-Needham
(BAN) logic [6] and random-oracle model (ROM).
In this logic, we utilize few terms quite frequently,
known as principals, keys and nonces which are
described below.

The principals are the participating agents in an
authentication protocol.
The Keys (symmetric) are utilized for encrypting
the messages.

Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

𝝍𝝍𝝍 |≡ 𝜉𝜉: 𝝍𝝍 believes the statement 𝜉𝜉.
𝝍𝝍 ⊲ 𝜉𝜉: 𝝍𝝍 sees 𝜉𝜉. 𝝍𝝍 receives a message 𝜉𝜉 and
 could either read or replay it.
𝝍𝝍 | ~ 𝜉𝜉: 𝝍𝝍 once said 𝜉𝜉. Earlier the agent 𝝍𝝍 had sent
 a message 𝜉𝜉 and 𝝍𝝍 also believed 𝜉𝜉 when
 sent.
𝝍𝝍 ⇒ 𝜉𝜉: 𝝍𝝍 has jurisdiction over 𝜉𝜉; or 𝝍𝝍 enjoys
 authority over 𝜉𝜉 or it could be trusted.
♯ (𝜉𝜉): The message 𝜉𝜉 is freshly created.
(𝜉𝜉)Θ: The formulae 𝜉𝜉 is used in combination with
 formulae Θ.
(𝜉𝜉, Θ): 𝜉𝜉 or Θ being the part of message (𝜉𝜉, Θ).
{𝜉𝜉, Θ}K: 𝜉𝜉 or Θ is encrypted with key K.

𝝍𝝍 𝝍𝝍𝝍𝝍𝝍𝐊𝐊𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯� 𝝍𝝍𝝍𝝍: 𝝍𝝍 and 𝝍𝝍𝝍 can securely contact using
 the shared key K.
 ⟨𝜉𝜉, Θ⟩K: 𝜉𝜉 or Θ is hashed using the key K.

Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2,
jurisdiction rule as Rule 3, freshness
conjuncatenation rule as Rule 4, belief rule as Rule
5, and session keys rule as Rule 6) employed in
BAN logic are stated below:

Rule 1: 𝝍𝝍|≡𝝍𝝍𝝍
�↔𝝍𝝍𝝍�,𝝍𝝍𝝍𝝍𝝍⊲⟨𝛏𝛏⟩𝚯𝚯

𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝛏𝛏

Rule 2: 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏

Rule 3:𝝍𝝍𝝍|≡𝝍𝝍�𝝍⇒𝛏𝛏,𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝛏𝛏

Rule 4:𝝍 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏)

𝝍𝝍|≡𝝍 𝝍(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)

Rule 5: 𝝍𝝍|≡(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡(𝚯𝚯)𝝍𝝍𝝍𝝍|≡(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)𝝍

Rule 6: 𝝍𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝛏𝛏

𝝍𝝍|≡𝝍𝝍𝝍 �↔𝝍𝝍𝝍�
.

The contributed work should meet the following
targets for ensuring the security using BAN logic,
under the indicated postulates:

Target 1: S |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 2: S |≡ Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 3: Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

.

The contributed work should meet the following tar-
gets for ensuring the security using BAN logic, under
the indicated postulates:

441Information Technology and Control 2018/3/47

Target 1: S |≡ Ui �� �⎯⎯⎯⎯� S
Target 2:

 10

 In the proposed protocol, the user sends his/her
identity in the form of PIDr =(h(IDi || x) ||h(t))
h(x || y), that is masked by using t, as assumed by
server. The server recovers h(IDi || x) by taking
XOR of h(x || y) with PIDr, and then computing
h(IDi || x) as a dynamic identity for additional
calculation. This manner, our scheme fosters the
element of anonymity to a particular user.

5.10 Immune from Key-Compromise

Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some
key of another participant of the same session. The
contributed protocol is immune of KCI threat in
contrary to scheme [11], as the contents of stolen
card will not help the attacker to get other
constructive parameters, such as, Vi and (IDi || x).
Hence, the adversary cannot construct up-to-date
Qij parameter, and ultimately no KCI attack may
be initiated.

5.11 Alteration of Password Without RC

Involvement

The password could be comfortably updated
without engaging RC, as contrary to Lee et al. and
Chen and Lee, by adopting the procedure described
in Section 3.4. Both of the schemes [11, 33] do not
modify the password without RC engagement. As
in scheme [11], the design of Ri involves the
password as a component, which is reused in the
design of Vi, while Vi is again used in the
construction of Ei for storing in SC [13, 49, 52].
The proposed protocol employs BIOi for the
construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis

We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual
authentication related features by using formal
security analysis through Burrows-Abadi-Needham
(BAN) logic [6] and random-oracle model (ROM).
In this logic, we utilize few terms quite frequently,
known as principals, keys and nonces which are
described below.

The principals are the participating agents in an
authentication protocol.
The Keys (symmetric) are utilized for encrypting
the messages.

Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

𝝍𝝍𝝍 |≡ 𝜉𝜉: 𝝍𝝍 believes the statement 𝜉𝜉.
𝝍𝝍 ⊲ 𝜉𝜉: 𝝍𝝍 sees 𝜉𝜉. 𝝍𝝍 receives a message 𝜉𝜉 and
 could either read or replay it.
𝝍𝝍 | ~ 𝜉𝜉: 𝝍𝝍 once said 𝜉𝜉. Earlier the agent 𝝍𝝍 had sent
 a message 𝜉𝜉 and 𝝍𝝍 also believed 𝜉𝜉 when
 sent.
𝝍𝝍 ⇒ 𝜉𝜉: 𝝍𝝍 has jurisdiction over 𝜉𝜉; or 𝝍𝝍 enjoys
 authority over 𝜉𝜉 or it could be trusted.
♯ (𝜉𝜉): The message 𝜉𝜉 is freshly created.
(𝜉𝜉)Θ: The formulae 𝜉𝜉 is used in combination with
 formulae Θ.
(𝜉𝜉, Θ): 𝜉𝜉 or Θ being the part of message (𝜉𝜉, Θ).
{𝜉𝜉, Θ}K: 𝜉𝜉 or Θ is encrypted with key K.

𝝍𝝍 𝝍𝝍𝝍𝝍𝝍𝐊𝐊𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯� 𝝍𝝍𝝍𝝍: 𝝍𝝍 and 𝝍𝝍𝝍 can securely contact using
 the shared key K.
 ⟨𝜉𝜉, Θ⟩K: 𝜉𝜉 or Θ is hashed using the key K.

Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2,
jurisdiction rule as Rule 3, freshness
conjuncatenation rule as Rule 4, belief rule as Rule
5, and session keys rule as Rule 6) employed in
BAN logic are stated below:

Rule 1: 𝝍𝝍|≡𝝍𝝍𝝍
�↔𝝍𝝍𝝍�,𝝍𝝍𝝍𝝍𝝍⊲⟨𝛏𝛏⟩𝚯𝚯

𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝛏𝛏

Rule 2: 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏

Rule 3:𝝍𝝍𝝍|≡𝝍𝝍�𝝍⇒𝛏𝛏,𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝛏𝛏

Rule 4:𝝍 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏)

𝝍𝝍|≡𝝍 𝝍(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)

Rule 5: 𝝍𝝍|≡(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡(𝚯𝚯)𝝍𝝍𝝍𝝍|≡(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)𝝍

Rule 6: 𝝍𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝛏𝛏

𝝍𝝍|≡𝝍𝝍𝝍 �↔𝝍𝝍𝝍�
.

The contributed work should meet the following
targets for ensuring the security using BAN logic,
under the indicated postulates:

Target 1: S |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 2: S |≡ Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 3: Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S
Target 3:

 10

 In the proposed protocol, the user sends his/her
identity in the form of PIDr =(h(IDi || x) ||h(t))
h(x || y), that is masked by using t, as assumed by
server. The server recovers h(IDi || x) by taking
XOR of h(x || y) with PIDr, and then computing
h(IDi || x) as a dynamic identity for additional
calculation. This manner, our scheme fosters the
element of anonymity to a particular user.

5.10 Immune from Key-Compromise

Impersonation Threat

In such attack, an adversary could impersonate one
participant of a particular session if it steals some
key of another participant of the same session. The
contributed protocol is immune of KCI threat in
contrary to scheme [11], as the contents of stolen
card will not help the attacker to get other
constructive parameters, such as, Vi and (IDi || x).
Hence, the adversary cannot construct up-to-date
Qij parameter, and ultimately no KCI attack may
be initiated.

5.11 Alteration of Password Without RC

Involvement

The password could be comfortably updated
without engaging RC, as contrary to Lee et al. and
Chen and Lee, by adopting the procedure described
in Section 3.4. Both of the schemes [11, 33] do not
modify the password without RC engagement. As
in scheme [11], the design of Ri involves the
password as a component, which is reused in the
design of Vi, while Vi is again used in the
construction of Ei for storing in SC [13, 49, 52].
The proposed protocol employs BIOi for the
construction of Ri parameter, rather than PWi,
which enables the proposed scheme to update the
password without RC involvement.

6. Formal Security Analysis

We demonstrate the robustness of key agreement,
session key’s confidentiality and mutual
authentication related features by using formal
security analysis through Burrows-Abadi-Needham
(BAN) logic [6] and random-oracle model (ROM).
In this logic, we utilize few terms quite frequently,
known as principals, keys and nonces which are
described below.

The principals are the participating agents in an
authentication protocol.
The Keys (symmetric) are utilized for encrypting
the messages.

Nonces are the type of random secrets that are used
only once.
Some notations related to BAN logic are defined as
follows:

𝝍𝝍𝝍 |≡ 𝜉𝜉: 𝝍𝝍 believes the statement 𝜉𝜉.
𝝍𝝍 ⊲ 𝜉𝜉: 𝝍𝝍 sees 𝜉𝜉. 𝝍𝝍 receives a message 𝜉𝜉 and
 could either read or replay it.
𝝍𝝍 | ~ 𝜉𝜉: 𝝍𝝍 once said 𝜉𝜉. Earlier the agent 𝝍𝝍 had sent
 a message 𝜉𝜉 and 𝝍𝝍 also believed 𝜉𝜉 when
 sent.
𝝍𝝍 ⇒ 𝜉𝜉: 𝝍𝝍 has jurisdiction over 𝜉𝜉; or 𝝍𝝍 enjoys
 authority over 𝜉𝜉 or it could be trusted.
♯ (𝜉𝜉): The message 𝜉𝜉 is freshly created.
(𝜉𝜉)Θ: The formulae 𝜉𝜉 is used in combination with
 formulae Θ.
(𝜉𝜉, Θ): 𝜉𝜉 or Θ being the part of message (𝜉𝜉, Θ).
{𝜉𝜉, Θ}K: 𝜉𝜉 or Θ is encrypted with key K.

𝝍𝝍 𝝍𝝍𝝍𝝍𝝍𝐊𝐊𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯� 𝝍𝝍𝝍𝝍: 𝝍𝝍 and 𝝍𝝍𝝍 can securely contact using
 the shared key K.
 ⟨𝜉𝜉, Θ⟩K: 𝜉𝜉 or Θ is hashed using the key K.

Some rules particularly (Message meaning rule as
Rule 1, nonce verification rule as Rule 2,
jurisdiction rule as Rule 3, freshness
conjuncatenation rule as Rule 4, belief rule as Rule
5, and session keys rule as Rule 6) employed in
BAN logic are stated below:

Rule 1: 𝝍𝝍|≡𝝍𝝍𝝍
�↔𝝍𝝍𝝍�,𝝍𝝍𝝍𝝍𝝍⊲⟨𝛏𝛏⟩𝚯𝚯

𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝛏𝛏

Rule 2: 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|~𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏

Rule 3:𝝍𝝍𝝍|≡𝝍𝝍�𝝍⇒𝛏𝛏,𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝝍𝛏𝛏𝝍𝝍|≡𝝍𝛏𝛏

Rule 4:𝝍 𝝍𝝍|≡𝝍 𝝍(𝛏𝛏)

𝝍𝝍|≡𝝍 𝝍(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)

Rule 5: 𝝍𝝍|≡(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡(𝚯𝚯)𝝍𝝍𝝍𝝍|≡(𝛏𝛏,𝝍𝝍𝝍𝚯𝚯)𝝍

Rule 6: 𝝍𝝍𝝍|≡𝝍 𝝍(𝛏𝛏),𝝍𝝍𝝍𝝍𝝍|≡𝝍𝝍�𝝍|≡𝝍𝛏𝛏

𝝍𝝍|≡𝝍𝝍𝝍 �↔𝝍𝝍𝝍�
.

The contributed work should meet the following
targets for ensuring the security using BAN logic,
under the indicated postulates:

Target 1: S |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 2: S |≡ Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S

Target 3: Ui |≡ Ui𝝍𝝍𝝍𝝍𝝍𝝍𝝍𝝍��𝝍𝝍𝝍𝝍𝝍𝝍𝝍�⎯⎯⎯⎯� S
Target 4:

 11

Target 4: Ui |≡ SPj |≡ Ui �� �⎯⎯⎯⎯� S.

To proceed, we first transform the communication
messages into idealized form as given below :

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽i }

IM2: S →Ui: Qij , Ti, 𝛽𝛽j: {⟨Ti, 𝛽𝛽i, 𝛽𝛽j, SID⟩h(IDi, x), Vi,
Ti, 𝛽𝛽j }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽j, SID ⟩ h(IDi, x), Vi}.

Further, the following premises could be drafted to
verify the strength of the proposed scheme:

Ẑ1 : Ui |≡ ♯ 𝛽𝛽i

Ẑ2 : S |≡ ♯ 𝛽𝛽j

Ẑ3 : Ui |≡ S
(�(�), �(���, �), ��) �⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ4 : S |≡ S (�(�), �(���, �), ��) �⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ5 : Ui |≡ S |≡ Ui (�(�), �(���, �), ��) �⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ6 : S |≡ Ui |≡ Ui
(�(�), �(���, �), ��) �⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ7 : Ui |≡ S ⇒ Qij

Ẑ8 : S |≡ Ui ⇒ Qij '.

Next, the established idealized forms of the
contributed protocol could be evaluated and tested
in view of postulates as listed above.

Employing these notations, idealizations and rules,
we derive the following results:

Using the idealized forms, IM1 and IM3, we get:

 IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽i }

 IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

After implementing Seeing Rule [36], we have
Ҝ1: S ⊲ PIDr, ZIDi, Bij, 𝛽𝛽i: {⟨h(IDi||x)||h(t) ⟩h(x || y) ,
⟨PIDr, 𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽i }

Ҝ2: S ⊲ Qij ':{⟨ SKij , 𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ1, Ҝ2, Ẑ3 and Rule 1, we get

Ҝ3: S |≡ Ui ~ PIDr, ZIDi, Bij, 𝛽𝛽i: {⟨h(IDi ||x) ||

h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽i }

Ҝ4: S |≡ Ui ~ {⟨ SKij , 𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ3, Ҝ4, Ẑ1, Rule 4 and Rule 2, we have

Ҝ5: S |≡ Ui |≡ {⟨h(IDi||x)||h(t)⟩h(x || y), ⟨PIDr, 𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽i }

Ҝ6: S |≡ Ui |≡ {⟨ SKij , 𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ5, Ҝ6, Ẑ4, Ẑ8 and Rule 3, we have

Ҝ7: S |≡ {⟨h(IDi ||x) || h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽i }

Ҝ8: S |≡ {⟨ SKij , 𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

On applying Ҝ7, Ҝ8, Ẑ4, (SK= h(h(IDi || x)|| 𝛽𝛽i ||
𝛽𝛽j || Vi || SID)) and Rule 6, we have

Ҝ9: S |≡ Ui �� �⎯⎯⎯⎯� S (Target 1)
Considering Ҝ9, Ẑ6, we implement Rule 6 as
Ҝ10: S |≡ Ui |≡ Ui �� �⎯⎯⎯⎯� S (Target 2)

Next using the idealized form IM2, we get:

IM2: S → Ui: Qij , Ti, 𝛽𝛽j: {⟨Ti, 𝛽𝛽i, 𝛽𝛽j, SID⟩h(IDi, x),

Vi, Ti, 𝛽𝛽j }
Again using the Seeing Rule, we have

Ҝ11: Ui ⊲ Qij ': {⟨Ti, 𝛽𝛽i, 𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽j }

On applying Ҝ11, Ẑ4 and Rule 1, we have

Ҝ12: Ui |≡ S ~ {⟨Ti, 𝛽𝛽i, 𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽j }

Using Ҝ12, Ẑ2, Rule 4 and Rule 2, we have

Ҝ13: Ui |≡ S |≡ {⟨Ti, 𝛽𝛽i, 𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽j }

Using Ҝ13, Ẑ3, Ẑ7 and Rule 3, we have

Ҝ14: Ui|≡ {⟨Ti, 𝛽𝛽i, 𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽j }

Using Ҝ14, Ẑ3, (SK= h(h(IDi || x)|| 𝛽𝛽i || 𝛽𝛽j || Vi ||

SID)), and Rule 6, we have

Ҝ15: Ui |≡ Ui �� �⎯⎯⎯⎯� S (Target 3)
On applying Ҝ15, Ẑ5, and Rule 6, we have
Ҝ16: Ui |≡ S |≡ Ui �� �⎯⎯⎯⎯� S (Target 4)

We can witness from this analysis that the
contributed protocol ensures mutual authentication
and established mutually agreed session key (SK)
between user and server.
 By employing random oracle model [5], a formal
security analysis is implemented to verify that the
contributed protocol has been resilient to session
key-related threats. To meet this purpose, we use
an oracle Reveal1 in the subsequent algorithms.

To proceed, we first transform the communication
messages into idealized form as given below:
IM1: Ui → S: PIDr, ZIDi, Bij, βi: {⟨h(IDi || x) || h(t) ⟩h(x || y),
⟨PIDr, βi ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), βi }
IM2: S →Ui: Qij , Ti, βj: {⟨Ti, βi, βj, SID⟩h(IDi, x), Vi, Ti, βj }
IM3: Ui → S: Qij ‘: {⟨ SKij, βj, SID ⟩ h(IDi, x), Vi}.
Further, the following premises could be drafted to
verify the strength of the proposed scheme:
Ẑ1 : Ui |≡ ♯ βi

Ẑ2 : S |≡ ♯ βj

Ẑ3 : Ui |≡ S

11

Target 4: Ui |≡ SPj |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� S.

To proceed, we first transform the communication
messages into idealized form as given below:

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

IM2: S →Ui: Qij , Ti, 𝛽𝛽𝛽𝛽j: {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi,
Ti, 𝛽𝛽𝛽𝛽j }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}.

Further, the following premises could be drafted to
verify the strength of the proposed scheme:

Ẑ1 : Ui |≡ ♯ 𝛽𝛽𝛽𝛽i

Ẑ2 : S |≡ ♯ 𝛽𝛽𝛽𝛽j

Ẑ3 : Ui |≡ S
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ4 : S |≡ S
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ5 : Ui |≡ S |≡ Ui
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ6 : S |≡ Ui |≡ Ui
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ7 : Ui |≡ S ⇒ Qij

Ẑ8 : S |≡ Ui ⇒ Qij '.

Next, the established idealized forms of the
contributed protocol could be evaluated and tested
in view of postulates as listed above.

Employing these notations, idealizations and rules,
we derive the following results:

Using the idealized forms, IM1 and IM3, we get:

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

After implementing Seeing Rule [36], we have
Ҝ1: S ⊲ PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi||x)||h(t) ⟩h(x || y) ,
⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ2: S ⊲ Qij ':{⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ1, Ҝ2, Ẑ3 and Rule 1, we get

Ҝ3: S |≡ Ui ~ PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||

h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ4: S |≡ Ui ~ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ3, Ҝ4, Ẑ1, Rule 4 and Rule 2, we have

Ҝ5: S |≡ Ui |≡ {⟨h(IDi||x)||h(t)⟩h(x || y), ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ6: S |≡ Ui |≡ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ5, Ҝ6, Ẑ4, Ẑ8 and Rule 3, we have

Ҝ7: S |≡ {⟨h(IDi ||x) || h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ8: S |≡ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

On applying Ҝ7, Ҝ8, Ẑ4, (SK= h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i ||
𝛽𝛽𝛽𝛽j || Vi || SID)) and Rule 6, we have

Ҝ9: S |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 1)

Considering Ҝ9, Ẑ6, we implement Rule 6 as
Ҝ10: S |≡ Ui |≡ Ui

 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 2)

Next using the idealized form IM2, we get:

IM2: S → Ui: Qij , Ti, 𝛽𝛽𝛽𝛽j: {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x),

Vi, Ti, 𝛽𝛽𝛽𝛽j }
Again using the Seeing Rule, we have

Ҝ11: Ui ⊲ Qij ': {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

On applying Ҝ11, Ẑ4 and Rule 1, we have

Ҝ12: Ui |≡ S ~ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ12, Ẑ2, Rule 4 and Rule 2, we have

Ҝ13: Ui |≡ S |≡ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ13, Ẑ3, Ẑ7 and Rule 3, we have

Ҝ14: Ui|≡ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ14, Ẑ3, (SK= h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi ||

SID)), and Rule 6, we have

Ҝ15: Ui |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 3)

On applying Ҝ15, Ẑ5, and Rule 6, we have
Ҝ16: Ui |≡ S |≡ Ui

 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 4)

We can witness from this analysis that the
contributed protocol ensures mutual authentication
and established mutually agreed session key (SK)
between user and server.

By employing random oracle model [5], a formal
security analysis is implemented to verify that the
contributed protocol has been resilient to session
key-related threats. To meet this purpose, we use
an oracle Reveal1 in the subsequent algorithms.

 Ui
Ẑ4 : S |≡ S

11

Target 4: Ui |≡ SPj |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� S.

To proceed, we first transform the communication
messages into idealized form as given below:

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

IM2: S →Ui: Qij , Ti, 𝛽𝛽𝛽𝛽j: {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi,
Ti, 𝛽𝛽𝛽𝛽j }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}.

Further, the following premises could be drafted to
verify the strength of the proposed scheme:

Ẑ1 : Ui |≡ ♯ 𝛽𝛽𝛽𝛽i

Ẑ2 : S |≡ ♯ 𝛽𝛽𝛽𝛽j

Ẑ3 : Ui |≡ S
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ4 : S |≡ S
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ5 : Ui |≡ S |≡ Ui
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ6 : S |≡ Ui |≡ Ui
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ7 : Ui |≡ S ⇒ Qij

Ẑ8 : S |≡ Ui ⇒ Qij '.

Next, the established idealized forms of the
contributed protocol could be evaluated and tested
in view of postulates as listed above.

Employing these notations, idealizations and rules,
we derive the following results:

Using the idealized forms, IM1 and IM3, we get:

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

After implementing Seeing Rule [36], we have
Ҝ1: S ⊲ PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi||x)||h(t) ⟩h(x || y) ,
⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ2: S ⊲ Qij ':{⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ1, Ҝ2, Ẑ3 and Rule 1, we get

Ҝ3: S |≡ Ui ~ PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||

h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ4: S |≡ Ui ~ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ3, Ҝ4, Ẑ1, Rule 4 and Rule 2, we have

Ҝ5: S |≡ Ui |≡ {⟨h(IDi||x)||h(t)⟩h(x || y), ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ6: S |≡ Ui |≡ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ5, Ҝ6, Ẑ4, Ẑ8 and Rule 3, we have

Ҝ7: S |≡ {⟨h(IDi ||x) || h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ8: S |≡ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

On applying Ҝ7, Ҝ8, Ẑ4, (SK= h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i ||
𝛽𝛽𝛽𝛽j || Vi || SID)) and Rule 6, we have

Ҝ9: S |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 1)

Considering Ҝ9, Ẑ6, we implement Rule 6 as
Ҝ10: S |≡ Ui |≡ Ui

 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 2)

Next using the idealized form IM2, we get:

IM2: S → Ui: Qij , Ti, 𝛽𝛽𝛽𝛽j: {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x),

Vi, Ti, 𝛽𝛽𝛽𝛽j }
Again using the Seeing Rule, we have

Ҝ11: Ui ⊲ Qij ': {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

On applying Ҝ11, Ẑ4 and Rule 1, we have

Ҝ12: Ui |≡ S ~ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ12, Ẑ2, Rule 4 and Rule 2, we have

Ҝ13: Ui |≡ S |≡ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ13, Ẑ3, Ẑ7 and Rule 3, we have

Ҝ14: Ui|≡ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ14, Ẑ3, (SK= h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi ||

SID)), and Rule 6, we have

Ҝ15: Ui |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 3)

On applying Ҝ15, Ẑ5, and Rule 6, we have
Ҝ16: Ui |≡ S |≡ Ui

 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 4)

We can witness from this analysis that the
contributed protocol ensures mutual authentication
and established mutually agreed session key (SK)
between user and server.

By employing random oracle model [5], a formal
security analysis is implemented to verify that the
contributed protocol has been resilient to session
key-related threats. To meet this purpose, we use
an oracle Reveal1 in the subsequent algorithms.

 Ui
Ẑ5 : Ui |≡ S |≡ Ui

11

Target 4: Ui |≡ SPj |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� S.

To proceed, we first transform the communication
messages into idealized form as given below:

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

IM2: S →Ui: Qij , Ti, 𝛽𝛽𝛽𝛽j: {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi,
Ti, 𝛽𝛽𝛽𝛽j }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}.

Further, the following premises could be drafted to
verify the strength of the proposed scheme:

Ẑ1 : Ui |≡ ♯ 𝛽𝛽𝛽𝛽i

Ẑ2 : S |≡ ♯ 𝛽𝛽𝛽𝛽j

Ẑ3 : Ui |≡ S
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ4 : S |≡ S
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ5 : Ui |≡ S |≡ Ui
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ6 : S |≡ Ui |≡ Ui
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ7 : Ui |≡ S ⇒ Qij

Ẑ8 : S |≡ Ui ⇒ Qij '.

Next, the established idealized forms of the
contributed protocol could be evaluated and tested
in view of postulates as listed above.

Employing these notations, idealizations and rules,
we derive the following results:

Using the idealized forms, IM1 and IM3, we get:

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

After implementing Seeing Rule [36], we have
Ҝ1: S ⊲ PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi||x)||h(t) ⟩h(x || y) ,
⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ2: S ⊲ Qij ':{⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ1, Ҝ2, Ẑ3 and Rule 1, we get

Ҝ3: S |≡ Ui ~ PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||

h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ4: S |≡ Ui ~ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ3, Ҝ4, Ẑ1, Rule 4 and Rule 2, we have

Ҝ5: S |≡ Ui |≡ {⟨h(IDi||x)||h(t)⟩h(x || y), ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ6: S |≡ Ui |≡ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ5, Ҝ6, Ẑ4, Ẑ8 and Rule 3, we have

Ҝ7: S |≡ {⟨h(IDi ||x) || h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ8: S |≡ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

On applying Ҝ7, Ҝ8, Ẑ4, (SK= h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i ||
𝛽𝛽𝛽𝛽j || Vi || SID)) and Rule 6, we have

Ҝ9: S |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 1)

Considering Ҝ9, Ẑ6, we implement Rule 6 as
Ҝ10: S |≡ Ui |≡ Ui

 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 2)

Next using the idealized form IM2, we get:

IM2: S → Ui: Qij , Ti, 𝛽𝛽𝛽𝛽j: {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x),

Vi, Ti, 𝛽𝛽𝛽𝛽j }
Again using the Seeing Rule, we have

Ҝ11: Ui ⊲ Qij ': {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

On applying Ҝ11, Ẑ4 and Rule 1, we have

Ҝ12: Ui |≡ S ~ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ12, Ẑ2, Rule 4 and Rule 2, we have

Ҝ13: Ui |≡ S |≡ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ13, Ẑ3, Ẑ7 and Rule 3, we have

Ҝ14: Ui|≡ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ14, Ẑ3, (SK= h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi ||

SID)), and Rule 6, we have

Ҝ15: Ui |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 3)

On applying Ҝ15, Ẑ5, and Rule 6, we have
Ҝ16: Ui |≡ S |≡ Ui

 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 4)

We can witness from this analysis that the
contributed protocol ensures mutual authentication
and established mutually agreed session key (SK)
between user and server.

By employing random oracle model [5], a formal
security analysis is implemented to verify that the
contributed protocol has been resilient to session
key-related threats. To meet this purpose, we use
an oracle Reveal1 in the subsequent algorithms.

 S
Ẑ6 : S |≡ Ui |≡ Ui

11

Target 4: Ui |≡ SPj |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� S.

To proceed, we first transform the communication
messages into idealized form as given below:

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

IM2: S →Ui: Qij , Ti, 𝛽𝛽𝛽𝛽j: {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi,
Ti, 𝛽𝛽𝛽𝛽j }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}.

Further, the following premises could be drafted to
verify the strength of the proposed scheme:

Ẑ1 : Ui |≡ ♯ 𝛽𝛽𝛽𝛽i

Ẑ2 : S |≡ ♯ 𝛽𝛽𝛽𝛽j

Ẑ3 : Ui |≡ S
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ4 : S |≡ S
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Ui

Ẑ5 : Ui |≡ S |≡ Ui
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ6 : S |≡ Ui |≡ Ui
(ℎ(𝑦𝑦𝑦𝑦), ℎ(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑥𝑥𝑥𝑥), 𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� S

Ẑ7 : Ui |≡ S ⇒ Qij

Ẑ8 : S |≡ Ui ⇒ Qij '.

Next, the established idealized forms of the
contributed protocol could be evaluated and tested
in view of postulates as listed above.

Employing these notations, idealizations and rules,
we derive the following results:

Using the idealized forms, IM1 and IM3, we get:

IM1: Ui → S: PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||
h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

IM3: Ui → S: Qij ': {⟨ SKij, 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

After implementing Seeing Rule [36], we have
Ҝ1: S ⊲ PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi||x)||h(t) ⟩h(x || y) ,
⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ2: S ⊲ Qij ':{⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ1, Ҝ2, Ẑ3 and Rule 1, we get

Ҝ3: S |≡ Ui ~ PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i: {⟨h(IDi ||x) ||

h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ4: S |≡ Ui ~ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ3, Ҝ4, Ẑ1, Rule 4 and Rule 2, we have

Ҝ5: S |≡ Ui |≡ {⟨h(IDi||x)||h(t)⟩h(x || y), ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ6: S |≡ Ui |≡ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

Using Ҝ5, Ҝ6, Ẑ4, Ẑ8 and Rule 3, we have

Ҝ7: S |≡ {⟨h(IDi ||x) || h(t) ⟩h(x || y) , ⟨PIDr, 𝛽𝛽𝛽𝛽i ⟩Vi ,
⟨Ri ⟩ h(x || y), h(y), h(IDi, x), 𝛽𝛽𝛽𝛽i }

Ҝ8: S |≡ {⟨ SKij , 𝛽𝛽𝛽𝛽j, SID ⟩ h(IDi, x), Vi}

On applying Ҝ7, Ҝ8, Ẑ4, (SK= h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i ||
𝛽𝛽𝛽𝛽j || Vi || SID)) and Rule 6, we have

Ҝ9: S |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 1)

Considering Ҝ9, Ẑ6, we implement Rule 6 as
Ҝ10: S |≡ Ui |≡ Ui

 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 2)

Next using the idealized form IM2, we get:

IM2: S → Ui: Qij , Ti, 𝛽𝛽𝛽𝛽j: {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x),

Vi, Ti, 𝛽𝛽𝛽𝛽j }
Again using the Seeing Rule, we have

Ҝ11: Ui ⊲ Qij ': {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

On applying Ҝ11, Ẑ4 and Rule 1, we have

Ҝ12: Ui |≡ S ~ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ12, Ẑ2, Rule 4 and Rule 2, we have

Ҝ13: Ui |≡ S |≡ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ13, Ẑ3, Ẑ7 and Rule 3, we have

Ҝ14: Ui|≡ {⟨Ti, 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, SID⟩h(IDi, x), Vi, Ti, 𝛽𝛽𝛽𝛽j }

Using Ҝ14, Ẑ3, (SK= h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi ||

SID)), and Rule 6, we have

Ҝ15: Ui |≡ Ui
 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 3)

On applying Ҝ15, Ẑ5, and Rule 6, we have
Ҝ16: Ui |≡ S |≡ Ui

 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆
�⎯⎯⎯⎯� 42T S (Target 4)

We can witness from this analysis that the
contributed protocol ensures mutual authentication
and established mutually agreed session key (SK)
between user and server.

By employing random oracle model [5], a formal
security analysis is implemented to verify that the
contributed protocol has been resilient to session
key-related threats. To meet this purpose, we use
an oracle Reveal1 in the subsequent algorithms.

 S
Ẑ7 : Ui |≡ S ⇒ Qij
Ẑ8 : S |≡ Ui ⇒ Qij ‘.
Next, the established idealized forms of the contrib-
uted protocol could be evaluated and tested in view of
postulates as listed above.
Employing these notations, idealizations and rules,
we derive the following results:
Using the idealized forms, IM1 and IM3, we get:
IM1: Ui → S: PIDr, ZIDi, Bij, βi: {⟨h(IDi ||x) || h(t) ⟩h(x || y),
⟨PIDr, βi ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), βi }
IM3: Ui → S: Qij ‘: {⟨ SKij, βj, SID ⟩ h(IDi, x), Vi}
After implementing Seeing Rule [36], we have
Ҝ1: S ⊲ PIDr, ZIDi, Bij, βi: {⟨h(IDi||x)||h(t) ⟩h(x || y) , ⟨PIDr,
βi ⟩Vi, ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), βi }
Ҝ2: S ⊲ Qij ‘:{⟨ SKij, βj, SID ⟩ h(IDi, x), Vi}
Using Ҝ1, Ҝ2, Ẑ3 and Rule 1, we get
Ҝ3: S |≡ Ui ~ PIDr, ZIDi, Bij, βi: {⟨h(IDi ||x) || h(t)⟩h(x || y),
⟨PIDr, βi ⟩Vi , ⟨Ri ⟩ h(x || y), h(y), h(IDi, x), βi }
Ҝ4: S |≡ Ui ~ {⟨ SKij, βj, SID ⟩h(IDi, x), Vi}
Using Ҝ3, Ҝ4, Ẑ1, Rule 4 and Rule 2, we have
Ҝ5: S |≡ Ui |≡ {⟨h(IDi||x)||h(t)⟩h(x || y), ⟨PIDr, βi ⟩Vi,
⟨Ri⟩ h(x || y), h(y), h(IDi, x), βi }
Ҝ6: S |≡ Ui |≡ {⟨ SKij, βj, SID ⟩h(IDi, x), Vi}

Using Ҝ5, Ҝ6, Ẑ4, Ẑ8 and Rule 3, we have
Ҝ7: S |≡ {⟨h(IDi || x) || h(t) ⟩h(x || y), ⟨PIDr, βi ⟩Vi,
 ⟨Ri⟩h(x || y), h(y), h(IDi, x), βi }
Ҝ8: S |≡ {⟨ SKij, βj, SID ⟩h(IDi, x), Vi}
On applying Ҝ7, Ҝ8, Ẑ4, (SK= h(h(IDi || x) || βi || βj || Vi
|| SID)) and Rule 6, we have
Ҝ9: S |≡ Ui S (Target 1)
Considering Ҝ9, Ẑ6, we implement Rule 6 as
Ҝ10: S |≡ Ui |≡ Ui S |≡ Ui �� �⎯⎯⎯⎯� S S (Target 2)
Next using the idealized form IM2, we get:
IM2: S → Ui: Qij , Ti, βj: {⟨Ti, βi, βj, SID⟩h(IDi, x), Vi, Ti, βj }
Again using the Seeing Rule, we have
Ҝ11: Ui ⊲ Qij ‘: {⟨Ti, βi, βj, SID⟩h(IDi, x), Vi, Ti, βj }
On applying Ҝ11, Ẑ4 and Rule 1, we have
Ҝ12: Ui |≡ S ~ {⟨Ti, βi, βj, SID⟩h(IDi, x), Vi, Ti, βj }
Using Ҝ12, Ẑ2, Rule 4 and Rule 2, we have
Ҝ13: Ui |≡ S |≡ {⟨Ti, βi, βj, SID⟩h(IDi, x), Vi, Ti, βj }
Using Ҝ13, Ẑ3, Ẑ7 and Rule 3, we have
Ҝ14: Ui|≡ {⟨Ti, βi, βj, SID⟩h(IDi, x), Vi, Ti, βj }
Using Ҝ14, Ẑ3, (SK= h(h(IDi || x) || βi || βj || Vi || SID)), and
Rule 6, we have
Ҝ15: Ui |≡ Ui S |≡ Ui �� �⎯⎯⎯⎯� S S (Target 3)
On applying Ҝ15, Ẑ5, and Rule 6, we have
Ҝ16: Ui |≡ S |≡ Ui S |≡ Ui �� �⎯⎯⎯⎯� S S (Target 4)
We can witness from this analysis that the contribut-
ed protocol ensures mutual authentication and estab-
lished mutually agreed session key (SK) between user
and server.
By employing random oracle model [5], a formal se-
curity analysis is implemented to verify that the con-
tributed protocol has been resilient to session key-re-
lated threats. To meet this purpose, we use an oracle
Reveal1 in the subsequent algorithms.
Reveal1: This oracle produces

12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1]-1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

 out of the resultant
hash value σ=h(

12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1]-1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

), unconditionally.

Algorithm 1.

12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1]-1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

1 Attacker recovers information from smart card using
power analysis [31], i.e. SC {PIDr, Di, Ei, Fi, h(s), Qi, h()}.

2 Attacker intercepts m2 = {Qij , Ti, βj } in the authenti-
cation phase, where Qij = h(h(IDi || x)|| βi || βj || Vi || SID),
Ti = PIDr´ ⊕ h(PIDr || IDi || Vi).

Information Technology and Control 2018/3/47442

3 Calls Reveal oracle on input Qij to produce (h(IDi || x),
βi, βj, Vi , SID) as (h(IDi || x) || βi || βj || Vi || SID)← reveal1
(Qij)

4 Calls Reveal oracle on input h(IDi ||x) to produce (IDi´,
x´) as (IDi’||x´) ← reveal1(h (IDi||x))

5 Calls Reveal oracle on input Fi to produce (IDi, TPW’)
as (IDi ||TPW’)← reveal1(reveal1 (Fi))

6 Computes K´ = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW´

7 Eavesdrops the login request message m1= { PIDr, ZIDi,
Bij, βi, where PIDr =(h(IDi || x), t)⊕h(x || y), ZIDi = h(PIDr
|| Vi || βi), Bij = Ri ⊕ h(x || y)⊕ h(h(SID || h(y))|| βi) ⊕ h(PIDr
|| h(IDi || x)).

8 Computes ZIDi’= K’⊕ h(h(SID || h(y))||βi)⊕h(PIDr || h(IDi’
|| x´))

9 If (ZIDi’==ZIDi) Then

10 Accept IDi as the true identity of the user Ui.

11 Return 1 (True)

12 Else
13 Return 0 (False)
14 End if

Theorem 1. If a one-sided hash function acts closely
to some randomly behaving oracle, the contributed
protocol shall remain protected of malicious adver-
sary in case the latter attempts to capture the user’s
identity.
Proof. In this proof, any shrewd attacker Ⱥ, who ap-
proaches the publicly available message parameters
as {PIDr, ZIDi, Bij, βi, Qij, Ti, βj, Qij´}, might use the ora-
cle Reveal1 to implement algorithm

 12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 -1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯
1. Attacker recovers information from smart card

using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

 key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

. The
probability for the success of

 12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 -1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯
1. Attacker recovers information from smart card

using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

 key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

 amounts to
Sussp1=Pr.2 [

 12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 -1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯
1. Attacker recovers information from smart card

using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

 key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

=1]-1, where Pr[Evt1] rep-
resents the probability of an event Evt1. The advan-
tage function for algorithm (experiment)

 12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 -1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯
1. Attacker recovers information from smart card

using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

 key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

is referred to as

12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1]-1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

(te1, qRy1) =
maxȺ [

12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1]-1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

], with execution time te1 and the
corresponding random query qRy1 as maximized on
adversary (Ⱥ) [15-16, 27]. We could safely refer to the
contributed protocol as secure against the attacker
Ⱥ so it may not recover the true identity IDi´, provid-
ed

12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1]-1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

(te1, qRy1) ≤ ρ for any adequately
small ρ > 0. According to the above testing algorithm,
if the attacker Ⱥ is capable enough of inverting a
one-sided hash function h(.), and deciphering the ora-
cle, it might recover the valid legal IDi’ and eventually

wins the game. Nonetheless, keeping in view the above
definition, this would be computationally impractical
to reverse the hash function, as

12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1]-1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

(te1) ≤ ρ for any adequately small ρ > 0.

Algorithm 2.

12

Reveal1: This oracle produces 𝜕𝜕𝜕𝜕 out of the resultant
hash value 𝜎𝜎𝜎𝜎=h(𝜕𝜕𝜕𝜕), unconditionally.

Algorithm 1. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis [31], i.e. SC {PIDr, Di, Ei,
Fi, h(s), Qi, h()}.

2. Attacker intercepts m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j } in the
authentication phase, where Qij = h(h(IDi || x)||
𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi || SID), Ti = PIDr' ⊕ h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as (h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j
||Vi || SID)← reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi ||x) to
produce (IDi', x') as (IDi'||x') ← reveal1(h
(IDi||x))

5. Calls Reveal oracle on input Fi to produce (IDi,
TPW') as (IDi ||TPW')← reveal1(reveal1 (Fi))

6. Computes K' = Ri ⊕ h(x || y) = Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the login request message m1= {

PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕ h(x || y)⊕
h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi || x)).

8. Computes ZIDi'= K'⊕ h(h(SID ||
h(y))|| 𝛽𝛽𝛽𝛽i)⊕h(PIDr ||h(IDi' || x'))

9. If (ZIDi'==ZIDi) Then
10. Accept IDi as the true identity of

the user Ui.
11. Return 1 (True)
12. Else
13. Return 0 (False)
14. End if

Theorem 1
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to capture the
user’s identity.

Proof.
In this proof, any shrewd attacker Ⱥ, who
approaches the publicly available message
parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i, Qij, Ti,
𝛽𝛽𝛽𝛽j, Qij'}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The
probability for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts
to Sussp1=Pr.2 [𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1]-1, where Pr[Evt1]
represents the probability of an event Evt1. The
advantage function for algorithm (experiment)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1,
qRy1)=maxȺ [Sussp1SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with execution time te1
and the corresponding random query qRy1 as
maximized on adversary (Ⱥ) [15-16, 27]. We could
safely refer to the contributed protocol as secure
against the attacker Ⱥ so it may not recover the true

identity IDi', provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1, qRy1)
≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0. According to
the above testing algorithm, if the attacker Ⱥ is
capable enough of inverting a one-sided hash
function h(.), and deciphering the oracle, it might
recover the valid legal IDi' and eventually wins the
game. Nonetheless, keeping in view the above
definition, this would be computationally
impractical to reverse the hash function, as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_1 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te1) ≤ 𝜌𝜌𝜌𝜌 for any adequately
small 𝜌𝜌𝜌𝜌> 0.

Algorithm 2. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝑯𝑯𝑯𝑯𝑨𝑨𝑨𝑨𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

1. Attacker recovers information from smart card
using power analysis as SC {PIDr, Di, Ei, Fi, Qi,
h()}.

2. Attacker intercepts message m2 = {Qij , Ti, 𝛽𝛽𝛽𝛽j }
in the authentication phase, where Qij =
h(h(IDi || x)|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j ||Vi || SID), Ti=PIDr' ⊕
h(PIDr || IDi || Vi).

3. Calls Reveal oracle on input Qij to produce
(h(IDi || x), 𝛽𝛽𝛽𝛽i, 𝛽𝛽𝛽𝛽j, Vi , SID) as
(h(IDi||x)|| 𝛽𝛽𝛽𝛽i|| 𝛽𝛽𝛽𝛽j||Vi||SID)←reveal1 (Qij)

4. Calls Reveal oracle on input h(IDi|| x) to
produce (IDi', x') as (IDi'||x')← reveal1 (h(IDi
||x))

5. Calls Reveal oracle on input Fi to produce (IDi
,TPW') as (IDi ||TPW')← (reveal1 (Fi))

6. Computes K'=Ri⊕h(x||y)=Qi⊕ h(y)⊕ TPW'
7. Eavesdrops the message m1= { PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i

} in authentication phase, where PIDr =(h(IDi ||
x), t)⊕h(x || y), ZIDi = h(PIDr || Vi || 𝛽𝛽𝛽𝛽i), Bij = Ri ⊕
h(x || y)⊕h(h(SID || h(y))|| 𝛽𝛽𝛽𝛽i) ⊕ h(PIDr || h(IDi ||
x)).

8. Computes Y=H(IDi || BIOi)
9. Calls Reveal oracle on inputting H(IDi || BIOi)

to produce (IDi, BIOi') as (IDi || BIOi')← reveal1
(H(IDi || BIOi))

10. Computes Ri' = h(H(IDi' || BIOi') || x'), h(x || y) =
Ri' ⊕K', Vi' = h(Ri' || h(x || y))

11. Calculates session key as
SKij*= h(h(IDi' || x')|| 𝛽𝛽𝛽𝛽i || 𝛽𝛽𝛽𝛽j || Vi' || SID)

12. Compute ZIDi'' = h(PIDr || Vi' || 𝛽𝛽𝛽𝛽i)
13. If (ZIDi'== ZIDi) Then
14. Accept SKij* as the validated session

key SKij among participants Ui and Sj.
15. Return 1 (True)
16. Else

Return 0 (False)
17. End if

Theorem 2
If a one-sided hash function acts closely to some
randomly behaving oracle, the contributed
protocol shall remain protected of malicious
adversary in case the latter attempts to intercept
the parameters on insecure channel and compute a
valid session key SKij.

1 Attacker recovers information from smart card us-
ing power analysis as SC {PIDr, Di, Ei, Fi, Qi, h()}.

2 Attacker intercepts message m2 = {Qij , Ti, βj } in the
authentication phase, where Qij = h(h(IDi || x)|| βi || βj
||Vi || SID), Ti=PIDr´ ⊕ h(PIDr || IDi || Vi).

3 Calls Reveal oracle on input Qij to produce (h(IDi || x),
βi, βj, Vi , SID) as (h(IDi || x) || βi || βj || Vi || SID)←reveal1
(Qij)

4 Calls Reveal oracle on input h(IDi || x) to produce
(IDi´, x´) as (IDi´|| x´)← reveal1 (h(IDi || x))

5 Calls Reveal oracle on input Fi to produce (IDi ,TPW’)
as (IDi || TPW´) ← (reveal1 (Fi))

6 Computes K´=Ri ⊕ h(x||y)=Qi ⊕ h(y) ⊕ TPW’

7 Eavesdrops the message m1= { PIDr, ZIDi, Bij, βi } in
authentication phase, where PIDr =(h(IDi || x), t)⊕h(x
|| y), ZIDi = h(PIDr || Vi || βi), Bij = Ri ⊕ h(x || y)⊕h(h(SID ||
h(y))||βi) ⊕ h(PIDr || h(IDi || x)).

8 Computes Y=H(IDi || BIOi)

9 Calls Reveal oracle on inputting H(IDi || BIOi) to
produce (IDi, BIOi’) as (IDi || BIOi’)← reveal1 (H(IDi ||
BIOi))

10 Computes Ri´ = h(H(IDi´ || BIOi´) || x´), h(x || y) = Ri´ ⊕

K´, Vi´ = h(Ri´ || h(x || y))

11 Calculates session key as SKij*= h(h(IDi´ || x´)|| βi || βj
|| Vi´ || SID)

12 Compute ZIDi´́ = h(PIDr || Vi´ || βi)

13 If (ZIDi´== ZIDi) Then

14 Accept SKij* as the validated session key SKij among
participants Ui and Sj.

15 Return 1 (True)

16 Else
17 Return 0 (False)
18 End if

Theorem 2. If a one-sided hash function acts closely to
some randomly behaving oracle, the contributed pro-
tocol shall remain protected of malicious adversary in
case the latter attempts to intercept the parameters on
insecure channel and compute a valid session key SKij.

443Information Technology and Control 2018/3/47

Proof. In this proof, the attacker Ⱥ having ap-
proached the publicly available parameters as {PIDr,
ZIDi, Bij, βi, Qij , Ti, βj, Qij ‘}, might use the oracle Re-
veal1 to implement algorithm

 13

Table 2 A comparison of schemes on the basis of security features
 Liao and

Wang
 [38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

 Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th
Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

. The
probability for the success of

 13

Table 2 A comparison of schemes on the basis of security features
 Liao and

Wang
 [38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

 Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th
Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

 amounts
to Sussp2=Pr.2[

 13

Table 2 A comparison of schemes on the basis of security features
 Liao and

Wang
 [38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

 Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th
Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

=1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The advan-
tage function for algorithm

 13

Table 2 A comparison of schemes on the basis of security features
 Liao and

Wang
 [38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

 Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th
Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ
𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

 is referred to
as

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

(te2, qRy2) =maxȺ

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

],
with the execution time te2, while the corresponding
random query qRy2 is maximized on adversary (Ⱥ) [15-
16, 27]. We could safely refer to the contributed pro-

Table 2
A comparison of schemes on the basis of security features

Liao and Wang
 [38]

Hsiang and Shih
[18]

Lee et al.
[33]

Chen and
Lee [11] Ours

Ensuring anonymity

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Supports mutual authentication × × ×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Immune to Insider Attack ×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Immune to Offline password-guessing threat

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Immune to Stolen smart card threat

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Immune to Impersonation threat × × × ×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Immune to KCI threat

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Supports session key security

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Immune to trace attack

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Reparability

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

× ×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Efficient Password Modification

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

× ×

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

Table 3
The computational cost of schemes

Liao and Wang
[38]

Hsiang and Shih
[18]

Lee et al.
[33]

Chen and
Lee [11]

Ours

Login
& Authentication phase

Server side 7Th 9Th 8Th 8Th 8Th

User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395

Energy (μJ) 12.16 14.44 18.24 13.68 16.72

tocol as protected against the adversary Ⱥ so it might
not derive the convincing session key SKij, provided

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

(te2, qRy2) ≤ ρ for any adequately
small ρ > 0 [24-25, 48]. According to this testing al-
gorithm, if the adversary Ⱥ is able enough to reverse
the one-sided hash function h(.), and decipher the
oracle, it might recover the valid session key SKij, for
that IDi’, and eventually wins the game. Nonetheless,
keeping in view the above definition, this would be
computationally impractical to invert hash function
[20-22, 36-37, 50]

13

Table 2 A comparison of schemes on the basis of security features
Liao and

Wang
[38]

Hsiang
and Shih

[18]

Lee et
al. [33]

Chen and
Lee [11]

Ours

Ensuring anonymity ✓ ✓ ✓ ✓ ✓
Supports mutual authentication × × × ✓ ✓
Immune to Insider Attack × ✓ ✓ ✓ ✓
Immune to Offline password-guessing threat ✓ ✓ × ✓ ✓
Immune to Stolen smart card threat ✓ ✓ ✓ × ✓
Immune to Impersonation threat × × × × ✓
Immune to KCI threat ✓ × ✓ × ✓
Supports session key security ✓ ✓ ✓ × ✓
Immune to trace attack ✓ ✓ ✓ × ✓
Reparability ✓ × × ✓ ✓
Efficient Password Modification ✓ ✓ × × ✓

Table 3 The computational cost of schemes

Liao
and

Wang
[38]

Hsiang
and
Shih
[18]

Lee et
al. [33]

Chen
and Lee

[11]

Ours

Login
& Authentication

phase

Server side 7Th 9Th 8Th 8Th 8Th
User side 9Th 10Th 10Th 11Th 11Th+3TH

RC 0Th 5Th 0Th 0Th 0Th

Total 16 Th 24Th 18Th 19Th 19Th+3TH

Computation delay (s) 0.008 0.012 0.009 0.0095 0.0395
Energy (μJ) 12.16 14.44 18.24 13.68 16.72

Proof.
In this proof, the attacker Ⱥ having approached the
publicly available parameters as {PIDr, ZIDi, Bij, 𝛽𝛽𝛽𝛽i,
Qij , Ti, 𝛽𝛽𝛽𝛽j, Qij '}, might use the oracle Reveal1 to
implement algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 . The probability
for the success of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 amounts to
Sussp2=Pr.2[𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =1] - 1, where Pr[Evt2]
characterizes probability for an event Evt2. The
advantage function for algorithm 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is
referred to as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2, qRy2) =maxȺ

𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻], with the execution time te2, while
the corresponding random query qRy2 is maximized
on adversary (Ⱥ) [15-16, 27]. We could safely refer
to the contributed protocol as protected against the
adversary Ⱥ so it might not derive the convincing
session key SKij, provided 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2,
qRy2) ≤ 𝜌𝜌𝜌𝜌 for any adequately small 𝜌𝜌𝜌𝜌 > 0 [24-25,
48]. According to this testing algorithm, if the
adversary Ⱥ is able enough to reverse the one-sided
hash function h(.), and decipher the oracle, it might
recover the valid session key SKij, for that IDi', and
eventually wins the game. Nonetheless, keeping in
view the above definition, this would be
computationally impractical to invert hash function

[20-22, 36-37, 50] 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎_2 SPMSAC𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (te2) ≤ 𝜌𝜌𝜌𝜌 for
any adequately small 𝜌𝜌𝜌𝜌> 0.

7. Comparison and Performance Evaluation

In this section, we evaluate the strength for
proposed protocol with other MSA-based protocols
[11, 18, 33, 38]. Table 2 shows the security features
and the analysis of resistance to various threats for
various schemes, which signifies the contributed
scheme as a resilient authenticated key agreement
in contrary to previous schemes. For comparing the
costs, we depict the hash-digest operation with Th
and bio-hashing with TH and ignoring XOR
function due to a quite negligible cost as shown in
Table 3. The comparison in Table 2 is shown for
Liao and Wang [38], Hsiang and Shih [18], Lee et
al. [33], Chen and Lee [11], and our proposed
scheme. Therefore, in view of the current
performance evaluation, we infer that the proposed
model is quite more secure than Liao and Wang,
Hsiang and Shih, Lee et al., and Chen and Lee’s
schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen

(te2) ≤ ρ for any
adequately small ρ > 0.

Information Technology and Control 2018/3/47444

7. Comparison and Performance
Evaluation
In this section, we evaluate the strength for proposed
protocol with other MSA-based protocols [11, 18,
33, 38]. Table 2 shows the security features and the
analysis of resistance to various threats for various
schemes, which signifies the contributed scheme
as a resilient authenticated key agreement in con-
trary to previous schemes. For comparing the costs,
we depict the hash-digest operation with Th and
bio-hashing with TH and ignoring XOR function due
to a quite negligible cost as shown in Table 3. The
comparison in Table 2 is shown for Liao and Wang
[38], Hsiang and Shih [18], Lee et al. [33], Chen and
Lee [11], and our proposed scheme. Therefore, in view
of the current performance evaluation, we infer that
the proposed model is quite more secure than Liao
and Wang, Hsiang and Shih, Lee et al., and Chen and
Lee’s schemes. All of these schemes are based on light
weight hashed based symmetric cryptography. The
contributed protocol bears a bit higher computation
cost than Liao and Wang, and Lee et al., and Chen and
Lee’s schemes, but provides more security. Moreover,
our scheme achieves the required security objectives
in less cost than Hsiang and Shih’s scheme. Adding a
bit extra and negligible cost, the proposed protocol is
immune to insider attack, password guessing attack,
stolen smart card attack, impersonation and trace at-
tacks as compared to previous schemes. Comparing
on the same lines and taking the computation delay
of hash function as 0.0005s and bio-hash operation as
0.01s, the cost of Liao and Wang, Lee et al., Chen and
Lee, Hsiang and Shih, and proposed scheme amounts
to 0.008s, 0.009s, 0.0095s, 0.012s, and 0.395s, respec-
tively. Furthermore, the protocols may also be ana-
lyzed on account of energy consumptions by taking
the energy cost of computation for SHA-1 as 0.76μJ

against single byte [43]. Following this, the energy
consumption for the Liao and Wang’s, Lee et al.’s, Chen
and Lee’s, Hsiang and Shih’s and contributed protocol
amounts to 12.16, 13.68, 14.44, 18.24, and 16.72μJ, re-
spectively. As obvious from Table 3, the proposed pro-
tocol has a bit more cost than other related schemes;
this is for the reason that it makes a use of bio-hash
function, which increases the cost of the proposed
protocol from 0.01s to 0.395s. This paper makes the
proper use of biometric input by employing bio-hash
function, unlike previous schemes. Hence, in view of
the current performance evaluation, we can safely
deduce that our proposed protocol is secure enough
as compared to other schemes being analyzed, and
achieves this objective in almost an equivalent cost.

8. Conclusion
The multi-server authentication robustness is con-
sidered as a crucial requisite of the existing remote
authentication paradigm. Much of the research ef-
forts can be witnessed to strengthen multi-server
authentication protocols, lately. This paper critically
examines the Chen and Lee’s multi-server authen-
tication protocol. The Chen and Lee’s protocol has
been found recently susceptible to few attacks. Its
cryptanalysis suggests the three ways where the Chen
and Lee’s protocol could be attacked or termed as in-
efficient. The Chen and Lee’s scheme was found de-
fenseless to impersonation attack, trace attack, stolen
smart card attack exposing session key, key-compro-
mise impersonation attack and inefficient password
modification. The proposed study identified these
attacks and also demonstrated an improved version
countering the identified threats. This paper is com-
plemented with formal security analysis and perfor-
mance evaluation analysis among different schemes.

References
1. Amin, R., Biswas, G. P. Design and Analysis of Bilinear

Pairing Based Mutual Authentication and Key Agreement
Protocol Usable in Multi-Server Environment. Wireless
Personal Communications, 2015, 84(1), 439-462.

2. Amin, R., Islam, S. H., Biswas, G. P., Khan, M. K., Kumar,
N. A Robust and anonymous Patient Monitoring Sys-

tem Using Wireless Medical Sensor Networks. Future
Generation Computer Systems, 2018, 80, 483-495.

3. Amin, R., Islam, S. H., Biswas, G. P., Khan, M. K., Leng, L.,
Kumar, N. Design of an Anonymity-Preserving Three-Fac-
tor Authenticated Key Exchange Protocol for Wireless
Sensor Networks. Computer Networks, 2016, 101, 42-62.

445Information Technology and Control 2018/3/47

4. Arshad, H., Nikooghadam, M. An Efficient and Secure
Authentication and Key Agreement Scheme for Session
Initiation Protocol Using ECC. Multimedia Tools and
Applications, 2016, 75(1), 181-197.

5. Bellare, M., Rogaway, P. Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols. Proceed-
ing of the ACM Conference on Computer and Commu-
nications Security, Fairfax, VA, USA, 1993, 62-73.

6. Burrows, M., Abadi, M. A Logic of Authentication. Pro-
ceedings of the Royal Society of London. Series A, 1989,
426(1871), 233-271.

7. Chang C. C., Lee C. Y. A Smart Card-Based Authentica-
tion Scheme Using User Identify Cryptography. Interna-
tional Journal of Network Security 2013, 15(2), 139-147.

8. Chang, C. C., Lee, J. S. An Efficient and Secure Multi-
server Password Authentication Scheme Using Smart
Cards. IEEE Proceedings of the International Confer-
ence on Cyberworlds, Tokyo, Japan, 2004, 417-422.

9. Chaudhry, S. A., Farash, M. S., Naqvi, H., Sher, M. A Se-
cure and Efficient Authenticated Encryption for Elec-
tronic Payment Systems Using Elliptic Curve Cryp-
tography. Electronic Commerce Research, 2016, 16(1),
113-139.

10. Chaudhry, S. A., Naqvi, H., Sher, M., Farash, M. S., Has-
san, M. U. An Improved and Provably Secure Privacy
Preserving Authentication Protocol for SIP. Peer-to-
Peer Networking and Applications, 2017, 10(1), 1-15.

11. Chen, C. T., Lee, C. C. A Two-Factor Authentication
Scheme with Anonymity for Multi-Server Environ-
ments. Security and Communication Networks, 2015,
8(8), 1608-1625.

12. Das, A. K., Goswami, A. A Secure and Efficient Unique-
ness-and-Anonymity-Preserving Remote User Authen-
tication Scheme for Connected Health Care. Journal of
Medical Systems, 2013, 37(3), 1-16.

13. He, D. An Efficient Remote User Authentication and
Key Agreement Protocol for Mobile Client–Server
Environment from Pairings. Ad Hoc Networks, 2012,
10(6), 1009-1016.

14. He, D., Kumar, N., Chilamkurti, N. A Secure Temporal-Cre-
dential-Based Mutual Authentication and Key Agreement
Scheme with Pseudo Identity for Wireless Sensor Net-
works. Information Sciences, 2015, 321, 263-277.

15. He, D., Wang, D. Robust Biometrics-Based Authentica-
tion Scheme for Multiserver Environment. IEEE Sys-
tems Journal, 2015, 9(3), 816-823.

16. He, D., Zeadally, S., Kumar, N., Wu, W. Efficient and
Anonymous Mobile User Authentication Protocol Using
Self-Certified Public Key Cryptography for Multi-Server

Architectures. IEEE Transactions on Information Fo-
rensics and Security, 2016, 11(9), 2052-2064.

17. He, D., Zhao, W., Wu, S. Security Analysis of a Dynamic
ID-Based Authentication Scheme for Multi-Server En-
vironment Using Smart Cards. International Journal of
Network Security 2013, 15(5), 350-356.

18. Hsiang, H. C., Shih, W. K. Improvement of the Se-
cure Dynamic ID Based Remote User Authentication
Scheme for Multi-Server Environment. Computer
Standards and Interfaces 2009, 31(6), 1118–1123.

19. Irshad, A., Chaudhry, S. A., Xie, Q., Li, X., Farash, M. S.,
Kumari, S., Wu, F. An Enhanced and Provably Secure
Chaotic Map-Based Authenticated Key Agreement in
Multi-Server Architecture. Arabian Journal for Sci-
ence and Engineering, 2018, 43(2), 811-828.

20. Irshad, A., Sher, M., Ashraf, M. U., Alzahrani, B. A., Wu,
F., Xie, Q., & Kumari, S. An Improved and Secure Cha-
otic-Map Based Multi-Server Authentication Protocol
Based on Lu et al. and Tsai and Lo’s Scheme. Wireless
Personal Communications, 2017, 95(3), 3185-3208.

21. Irshad, A., Sher, M., Chaudhary, S. A., Naqvi, H., Farash,
M. S. An Efficient and Anonymous Multi-Server Au-
thenticated Key Agreement Based on Chaotic Map
Without Engaging Registration Centre. The Journal of
Supercomputing, 2016, 72(4), 1623-1644.

22. Irshad, A., Sher, M., Nawaz, O., Chaudhry, S. A., Khan,
I., Kumari, S. A Secure and Provable Multi-Server Au-
thenticated Key Agreement for TMIS Based on Amin et
al. Scheme. Multimedia Tools and Applications, 2017,
76(15), 16463-16489.

23. Islam, S. K., Obaidat, M. S., Amin, R. An Anonymous and
Provably Secure Authentication Scheme for Mobile
User. International Journal of Communication Sys-
tems, 2016, 29(9), 1529-1544.

24. Jiang, Q., Khan, M. K., Lu, X., Ma, J., He, D. A Priva-
cy Preserving Three-Factor Authentication Protocol
for E-Health Clouds. The Journal of Supercomput-
ing, 2016, 72(10), 3826-3849.

25. Jiang, Q., Ma, J., Li, G., Li, X. Improvement of Ro-
bust Smart-Card-Based Password Authentication
Scheme. International Journal of Communication Sys-
tems, 2015, 28(2), 383-393.

26. Jiang, Q., Ma, J., Li, G., Yang, L. An Enhanced Authenti-
cation Scheme with Privacy Preservation for Roaming
Service in Global Mobility Networks. Wireless Personal
Communications, 2013, 68(4), 1477-1491.

27. Jiang, Q., Ma, J., Lu, X., Tian, Y. An Efficient Two-Fac-
tor User Authentication Scheme with Unlinkability for
Wireless Sensor Networks. Peer-to-Peer Networking
and Applications, 2015, 8(6), 1070-1081.

Information Technology and Control 2018/3/47446

28. Jin, A. T. B., Ling, D. N. C., Goh, A. Biohashing: Two Fac-
tor Authentication Featuring Fingerprint Data and To-
kenised Random Number. Pattern Recognition, 2004,
37(11), 2245-2255.

29. Juang, W. S. Efficient Multi-Server Password Authenti-
cated Key Agreement Using Smart Cards. IEEE Trans-
actions on Consumer Electronics 2004, 50(1), 251-255.

30. Kalra, S., Sood, S. K. Secure Authentication Scheme for
IoT and Cloud Servers. Pervasive and Mobile Comput-
ing, 2015, 24, 210-223.

31. Kocher, P., Jaffe, J., Jun, B. Differential Power Analysis.
In: Advances in Cryptology CRYPTO 99, Lecture Notes
in Computer Science, 1999, 1666, 388-397.

32. Kumari, S., Chaudhry, S. A., Wu, F., Li, X., Farash, M. S.,
Khan, M. K. An Improved Smart Card Based Authenti-
cation Scheme for Session Initiation Protocol. Peer-to-
Peer Networking and Applications, 2017, 10(1), 92-105.

33. Lee, C. C., Lin, T. H., Chang, R. X. A Secure Dynamic ID
Based Remote User Authentication Scheme for Mul-
tiserver Environment Using Smart Cards. Expert Sys-
tems with Applications, 2011, 38(11), 13863-13870.

34. Lee, W. B., Chang, C. C. User Identification and Key
Distribution Maintaining Anonymity for Distributed
Computer Networks. Computer Systems Science and
Engineering, 2000, 15(4), 211-214.

35. Li, L. H., Lin, L. C., Hwang, M. S. A Remote Password
Authentication Scheme for Multiserver Architecture
Using Neural Networks. IEEE Transactions on Neural
Networks, 2001, 12(6), 1498-1504.

36. Li, X., Ma, J., Wang, W., Xiong, Y., Zhang, J. A Novel Smart
Card and Dynamic ID Based Remote User Authentica-
tion Scheme for Multi-Server Environments. Mathe-
matical and Computer Modelling, 2013, 58(1), 85-95.

37. Li, X., Xiong, Y., Ma, J., Wang, W. An Efficient and Securi-
ty Dynamic Identity Based Authentication Protocol for
Multi-Server Architecture Using Smart Cards. Journal
of Network and Computer Applications, 2012, 35(2),
763-769.

38. Liao, Y. P., Wang, S. S. A Secure Dynamic ID Based Re-
mote User Authentication Scheme for Multi-Server
Environment. Computer Standards & Interfaces 2009,
31(1), 24-29.

39. Lin, I. C., Hwang, M. S., Li, L. H. A New Remote User
Authentication Scheme for Multi-Server Architec-
ture. Future Generation Computer Systems, 2003,
19(1), 13-22.

40. Mir, O., Nikooghadam, M. A Secure Biometrics Based
Authentication with Key Agreement Scheme in Tele-
medicine Networks for e-Health Services. Wireless
Personal Communications, 2015, 83(4), 2439-2461.

41. Moon, J., Choi, Y., Kim, J., Won, D. An Improvement of
Robust and Efficient Biometrics Based Password Au-
thentication Scheme for Telecare Medicine Informa-
tion Systems Using Extended Chaotic Maps. Journal of
Medical Systems, 2016, 40(3), 70.

42. Nikooghadam, M., Jahantigh, R., Arshad, H. A Light-
weight Authentication and Key Agreement Protocol
Preserving User Anonymity. Multimedia Tools and Ap-
plications, 2017, 76(11), 13401-13423.

43. Potlapally, N. R., Ravi, S., Raghunathan, A., Jha N. K. A
Study of the Energy Consumption Characteristics of
Cryptographic Algorithms and Security Protocols. IEEE
Transactions on Mobile Computing, 2006, 5(2), 128-143.

44. Ravanbakhsh, N., Nazari, M. An Efficient Improvement
Remote User Mutual Authentication and Session Key
Agreement Scheme for E-Health Care Systems. Multi-
media Tools and Applications, 2018, 77(1), 55-88.

45. Sharma, G., Kalra, S. Identity Based Secure Authenti-
cation Scheme Based on Quantum Key Distribution for
Cloud Computing. Peer-to-Peer Networking and Appli-
cations, 2018, 11(2), 220-234.

46. Tsai, J. L. Efficient Multi-Server Authentication
Scheme Based on One-Way Hash Function Without
Verification Table. Computers & Security, 2008, 27(3-
4), 115-121.

47. Tsaur, W. J. A Flexible User Authentication Scheme for
Multi-Server Internet Services, In International Con-
ference on Networking, LNCS 2093, Springer Verlag,
Colmar, France, 2001, 174-183.

48. Wang, C., Zhang, X., Zheng, Z. Cryptanalysis and Im-
provement of a Biometric-Based Multi-Server Authen-
tication and Key Agreement Scheme. Plos One, 2016,
11(2), e0149173.

49. Wang, D., Wang, P. On the Anonymity of Two-Factor Au-
thentication Schemes for Wireless Sensor Networks:
Attacks, Principle and Solutions. Computer Networks,
2014, 73, 41-57.

50. Wazid, M., Das, A. K., Kumari, S., Li, X., Wu, F. Provably
Secure Biometric-Based User Authentication and Key
Agreement Scheme in Cloud Computing. Security and
Communication Networks, 2016, 9(17), 4103-4119.

51. Wu, T. S., Hsu, C. L. Efficient User Identification Scheme
with Key Distribution Preserving Anonymity for Dis-
tributed Computer Networks. Computers & Security,
2004, 23(2), 120-125.

52. Xu, L., Wu, F. Cryptanalysis and Improvement of a User
Authentication Scheme Preserving Uniqueness and
Anonymity for Connected Health Care. Journal of Med-
ical Systems, 2015, 39(2), 10.

