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This paper deals with utilizing a recursive fast terminal sliding mode control method for finite-time robust 
tracking in a class of nonholonomic systems described by an extended chained form of differential equations. 
To enhance the performance of the proposed method, the constrained parameters of the controller are exactly 
tuned using evolutionary algorithms such that the tracking error reaches zero in a short time while chatter-
ing is significantly reduced. A comparative study is also presented among the applied evolutionary algorithms, 
namely, differential evolution, bat optimization, cuckoo optimization and bacterial foraging optimization. Ap-
plying the proposed design method leads to a considerable reduction in convergence time of the states as well 
as the chattering phenomenon. It is shown that the method is robust against disturbance in the input of the sys-
tem. Numerical simulations for a well-known nonholonomic system, i.e., wheeled mobile robot demonstrate 
effective improvement in the results compared with conventional terminal sliding mode control method.
KEYWORDS: Nonholonomic systems, Terminal sliding mode control, Finite-time tracking, Evolutionary al-
gorithms, Chained form.

1. Introduction
An important class of general nonlinear systems is 
nonholonomic (NH) systems which have been stud-
ied as classical mechanical systems for many years. 

These systems have many applications in the fields 
of mechanics, mobile robotics, electro-magnetics 
and electromechanics. In such systems, there exists 
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a special type of conditions which restricts their mo-
tions. Some examples of the NH systems are sledg-
es that slide on a plane, wheels and spheres that roll 
without slipping on a plane, mobile cars and car-like 
vehicles, wheeled mobile robots (WMRs), knife-edge, 
under-actuated satellites, surface vessel and space 
robots [1, 3, 10, 14, 16].
In recent years, issues related to the control of the NH 
systems have received much attention. Due to the fact 
that Brockett’s necessary condition cannot be satis-
fied for the NH systems [4], such systems cannot be 
stabilized by smooth or even continuous stationary 
feedback control laws while they are controllable. In 
addition, such systems are highly nonlinear and they 
are also generally not invertible, and thereby design-
ing controller for stabilizing or tracking is not an easy 
task. Therefore, different control methods based on 
nonlinear control strategies such as discontinuous 
control methods, time varying control methods, the 
methods based on system conversion, sliding mode 
control methods, hybrid control methods and so on, 
have been devoted to the problem of stabilizing or 
tracking in the NH systems [12, 16, 17, 20, 33, 37, 38]. 
One of the important methods for controlling the NH 
system is based on system conversion into subsys-
tems. For instance, Ploeg et al. in [29] have proposed a 
position control method based on feedback lineariza-
tion, in which multi-cycle robots have been converted 
to a set of identical unicycles. Whenever each unicy-
cle is controlled, as a consequence, the whole NH sys-
tem position is controlled. Even though their method 
has some advantages, uncertainty in the dynamics 
has not been considered.
NH systems can also be described in a chained form, 
and many control strategies have been proposed based 
on this form [16, 20, 21, 34]. WMR is a well-known ex-
ample of the NH systems that can be stated in chained 
form with an appropriate coordinate transformation. 
Such transformations are useful tools for making the 
system suitable for applying control strategies in order 
to force the system to move along a desired trajectory.
Sliding mode control (SMC) method, especially, ter-
minal sliding mode control (TSMC) is a discontinuous 
control technique that has attracted the attention of 
many researchers in recent years due to its superior fea-
tures like robustness, easy implementation, finite-time 
convergence and high precision performance [18, 19, 
35, 41]. Recently, new types of TSMC with different 

sliding surfaces and also some improvements by using 
adaptive or intelligent methods have been proposed in 
the literature [13, 22, 23]. Such mechanisms are useful 
for improving the finite-time convergence of the con-
trol systems. In addition, nonsingular versions of the 
TSMC method have also been studied in [7, 11] to tack-
le the problem of singularity in TSMC. 
Utilizing SMC for controlling the NH systems have 
been reported in several papers [2, 6, 9, 21, 24, 34, 36]. 
In these works, backstepping-based second-order 
SMC [9], backstepping-based adaptive SMC [6] have 
been used to control the NH systems in presence of 
uncertainties.  Moreover, in [2, 21, 24, 34, 36], TSMC 
has been proposed for stabilizing the NH systems 
with chained form of state equations. In addition, the 
intelligent control strategies such as fuzzy and neural 
controllers and their combinations with SMC-based 
methods have also been widely proposed for trajecto-
ry tracking problems [5, 8, 15, 25-27, 32, 42].
Despite the advantages of the SMC-based control 
methods developed for the NH systems, most of them 
possess low speed of convergence and tracking error 
takes a long period of time to reach zero. Even in some 
cases, tracking error does not reach zero, especially in 
presence of uncertainty and disturbance. Therefore, 
the problem of robust finite-time tracking of the NH 
systems with chained form in presence of disturbanc-
es and uncertainties is still an open challenge in the 
literature. Moreover, making improvements in the 
SMC-based control methods in the NH systems, by 
using some supervisory mechanisms such as intel-
ligent control algorithms, can be an open challenge 
which motivates the current research. To address 
these problems, this paper uses a TSMC method, in 
which the main targets are to minimize the tracking 
error and to maximize the convergence speed. 
In this paper, we utilize a recursive TSMC for con-
trolling the chained-form NH systems in order to min-
imize the tracking error in these systems.  Despite the 
effectiveness of the recursive TSMC, there are some 
constrained parameters in the structure of recursive 
terminal sliding surface that should be determined 
accurately in order to reach such control objectives as 
tracking and the convergence of the states. Exact ad-
justment of such parameters leads to better tracking 
results and increases the convergence speed. The idea 
studied in this paper is to determine such parameters 
by using the intelligent algorithms. For this purpose, 
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an intelligent TSMC is proposed, in which the TSMC 
is combined with evolutionary algorithms. By using 
such intelligent optimization methods, the recursive 
terminal sliding structure is improved by reducing 
the convergence time of tracking error for the NH 
systems described in an extended chained form. Four 
intelligent algorithms, namely, differential evolution 
(DE), bat optimization (BO), cuckoo optimization 
(CO) and bacterial foraging optimization (BFO) are 
studied and compared in this paper. Such strategies 
are separately used to adjust the TSMC in order to 
minimize the tracking error of the NH system. Input 
disturbance is also considered in this paper, and it is 
shown that the convergence is guaranteed in pres-
ence of the disturbance. The simulation results show 
the effectiveness of the proposed method and it will 
be shown that by using the proposed method, a bet-
ter tracking error can be achieved compared with the 
conventional TSMC.
The paper is organized as follows. In Section 2, the 
dynamic model and problem formulation are de-
scribed. The main proposed controller is introduced 
in Section 3, in which a recursive TSMC is applied to 
the NH system in order to achieve finite-time track-
ing control of the desired output in presence of ex-
ternal disturbances. The intelligent optimization 
algorithms are also utilized in this section to adjust 
the coefficients of the TSMC in order to improve the 
performance of the closed loop system. Section 4 il-
lustrates the application of the proposed method to 
a nonholonomic WMR as a well-known benchmark 
example. Simulation results are illustrated in Section 
5 to show the applicability and effectiveness of the 
proposed method. Finally, Section 6 gives some con-
clusion remarks.

2. The Problem Statement
Consider NH systems in generalized extended chained 
form described by the following equations [34]:
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where u1 and u2 are control inputs of the system and 
1[ ,..., ]T

nx x x=  is the state vector of the system.
The desired dynamics, which is to be tracked by the NH 
system, is considered as:
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where u1d and u2d are reference control inputs. Now, 
consider the following dynamic extension of system 
(1) in order to solve the tracking control problem:
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where 1u  and 2u  are dynamic extension of the sys-
tem and 1f , 2f  are adjustable inputs of the dynamical 
model. Let e dx x x= −  be the tracking error. The track-
ing error dynamics can be obtained as:
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(4)

The objective is to design control inputs, 1f  and 2f , 
such that the states of the system track the desired dy-
namics of the reference system (2) and control strat-
egy makes the tracking error to reach zero in a short 
period of time.

3. The Main Results

3.1. Recursive Terminal Sliding Mode 
Control
In this section, the TSMC method is considered for 
controlling a NH system such that the tracking error 
converges to zero in finite time. For this purpose, (4) 
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is considered as two subsystems. The first subsystem 
can be described by: 

1 1 1

1 1.
e dx u u

u f
= −

=




(5)

The first subsystem (5) has been described in the ca-
nonical form of nonlinear SISO system. To design the 
fast terminal sliding control law for this subsystem, 
according to the conventional procedure of TSMC 
studied in the existing references such as [2, 21, 34-
36], recursive sliding surfaces should be defined as:
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where p and q are odd positive integers satisfying 
q p< , and β is a positive constant. For the first sub-

system, the recursive sliding surfaces are selected as 
(6) and the control law is taken as:
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Thus, using the control input in the form of (7), we 
have:

/
1 1 1 0.q ps k s ′ ′+ = (9)

It can be proven that the solution 1s  of this equation 
will reach zero in finite-time, i.e., the equilibrium 

1 0s =  is a fast terminal attractor. Based on the recur-
sive structure of (6), 0 0s =  will be reached in finite 
time and thereby the state errors, 1ex  will reach zero 
in finite time. It means that the system state trajecto-

ry starting from any initial state will reach the sliding 
mode 1 0s =  in finite-time and u1 = u1d. Therefore, the 
convergence of tracking error for the subsystem (5) 
will be guaranteed.
In order to overcome the singularity problem in 
this recursive method, the initial value should be 
defined carefully to avoid trajectory from reaching 

0  ( 1,..., 1)is i j= = −  before 0js =  is reached. Hence, 
if the initial value 1 (0)ex  and 1(0)u  is defined such 
that 0 0s >  and 1 0s > , then the switching manifolds 

1s  and 0s  reach zero sequentially and the singularity 
problem will not occur. 
The second subsystem can be described as follows:

2 2 2

3 2 1 2 1 1

( 1) 1 1 1 1

2 2

( )

( )
.

e d

e e d d

ne n e d n d

x u u
x x u x u u

x x u x u u
u f

− −

= −
= + −

= + −

=











(10)

By changing variables of the second subsystem, the 
system can be written as classical form so that the 
TSMC design can be applied.
Considering 1 ,ney x= 2 ( 1) ,n ey x −= … , 1 2n ey x− = ,

2 2n dy u u= − , and assuming u1 = u1d, the subsystem (10) 
can be transformed into the following form:
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For this system, the following recursive fast terminal 
sliding surface structure is used to design the control 
law 2f  [35]:
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where ip  and iq  are odd positive integers satisfying 
i iq p<  and iβ  are positive constants ( 1,..., 1)i n= − . 

Equation (12) can be rewritten as:
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Taking derivative of 1ns − , we have:
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On the other hand, we have:
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where 2ny f= . Let
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where np  and nq  are also odd positive integers such 
that n nq p<  and 2k  is a positive constant. Substituting 
this control law into (16), 1ns −  becomes:

/
1 2 1 .n nq p

n ns k s− −= − (18)

Equation (18) is a fast terminal attractor and by 
solving (18), it can be shown that after a finite time, 

1ns −  and 1ns −  will reach zero. Therefore, based on the 
recursive structure of (13), it can be proven that iy , 
for 1,...,i n=  and thereby the state errors, iex , for 

2,...,i n=  will reach zero in finite time and keep zero 
afterward as well as u2 = u2d.
The above analysis has been summarized as the fol-
lowing theorem.
Theorem 1. For the system described by (4), for which 
the control inputs are considered as (7) and (17), the 

state errors, iex , for 1,...,i n=  will reach zero in finite 
time, i.e., i idu u=  for 1,2i =  and the sliding manifolds 
are  according to terminal attractors in (9) and (18).

3.2. Robustness Analysis
Considering disturbance in the input 2f of the second 
subsystem (4), the tracking error dynamics can be re-
written as: 
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where 1fD  and 2fD  are additional terms which may be 
due to the disturbance in the input of the system. We 
assume that 1 1f MD ≤  and 2 2f MD ≤ where M1 and 
M2 are positive bounds on disturbances.
The first subsystem can be described by:
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Moreover, by changing variables for the second sub-
system, we have:
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Therefore, we have the following theorem.
Theorem 2. For the system described by (19) with 
bounded disturbance 1 1f MD ≤  and 2 2f MD ≤ , the con-
trol inputs considered as (7) and (17), the state error 1ex  
and also the state errors iex , for 2,...,i n=  will reach the 
neighborhood 1Ω  and 2Ω  of zero in finite time, respec-
tively, and also the sliding manifolds for the subsystems 
are according to terminal attractors /

1 1 1
q ps sγ ′ ′= −  and 

/
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n ns sγ− −= − , respectively, where:
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Proof. For the first subsystem described by (20), tak-
ing derivate of 1s  defined in (6), similar to (8), we can 
obtain:
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Considering 1f  as (7), it can be obtained that
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Thus:
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To prove the fast terminal convergence, we must 
prove that 1 0γ > . According to the condition (22), we 
have:
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Therefore, the conditions in (22) guarantee that
1 1 0γ η≥ > . Thus, the error will reach the region 1Ω  

constrained by /
1 ( / )q ps M k ′ ′≤  in finite time.  

For the second subsystem described by (21), defining 
differentiation of 1ns −  along its variables, we have:
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Considering 2f  as (17), it can be obtained that:
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Thus,
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To be able to have the fast terminal convergence, we 
have to prove that 2 0γ > . For this, according to the 
condition (22), we have:
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It means that the conditions in (22) guaran-
tee that 2 2 0γ η≥ > . Thus, it can be seen that the 
error will reach the region 2Ω  constrained by 

1 /
1 2 1 2( / ) n n

n q p
n ds M u k−

− ≤  in finite time. Hence the 
proof of theorem has been completed.
In the proposed controllers in (7) and (17), instead of 
sign function, 1k  and 2k  have to be selected as (22) in 
Theorem 2 in order to guarantee the robustness. Sim-
ilar to switching control inputs like sign functions, 
it has been proven in Theorem 2 that the proposed 
method can compensate the effects of disturbances 
and the state errors will reach the neighborhood of 
zero in finite time. In fact, by replacing  1k  and 2k  in 
(22), into (7) and (17), it can be seen that these con-
trollers act similar to sign function and can suppress 
the disturbances. In this method, the existence of 1η  
and 2η  plays an important role to reduce the chatter-
ing. On the other hand, increasing the parameters 1k  
and 2k  leads to increasing the gains 1γ  and 2γ  which 
causes faster convergence of terminal attractors 

/
1 1 1

q ps sγ ′ ′= −  and /
1 2 1

n nq p
n ns sγ− −= − . 
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3.3. Intelligent Tuning of Parameters
The error dynamics of the NH system reach zero in 
a finite period of time if the parameters are designed 
properly. Therefore, the design parameters should 
be chosen carefully, otherwise, it may take very long 
time for tracking error to reach zero or tracking er-
ror may fluctuate with the amplitude around zero 
without reaching it, as it will be shown in simulation 
results presented in Section 5. We separately utilize 
four intelligent optimization algorithms, namely, DE, 
BO, BFO and CO to design these parameters such that 
an enhanced tracking error can be achieved. Figure 1 
shows the block diagram of the main problem. 

Figure 1 
A block diagram of the proposed method.
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In this paper, our goal is to design the parameters ip , 
iq  ( 1,...,i n= ), iβ  ( 1,..., 1i n= − ) and 2k  considering 

the constraints mentioned above for each parameter 
by using evolutionary algorithms such that the tracking 
errors reach zero in finite time. In the following subsec-
tions, it will be illustrated how such algorithms work.

3.3.1. Differential Evolution (DE) Algorithm
DE algorithm has been proposed by Storn and Price 
in 1995 [31]. They have used this algorithm to solve 
continuous optimization problems, and recently it 
has been used for integer, discrete and other type of 
engineering problems. This algorithm has many sim-
ilarities with other intelligent algorithms, such as ge-

netic algorithm (GA). However, the main difference is 
its exclusive way to produce new population.
Three main operators in this algorithm are crossover, 
mutation and selection. DE algorithm changes the or-
dering of operators used in this algorithm. In addition, 
the way of using mutation is exclusive. The algorithm 
is explained in the following order:
Parameter Selection. The problem formulation in-
cludes the objective function, the unknown variables 
or parameters and decision parameters which have to 
be defined at the first stage. The ranges of unknown 
parameters have to be also determined. In addition, 
the parameters of the algorithm such as the popula-
tion size and scaling as well as crossover factors have 
to be chosen.
Initialization. The initial population with Np vectors 
is produced randomly in the acceptable range defined 
for parameters:

, , , ,(0,1) ( )
for 0,1,..., 1
j g j L j j U j L

p

rand
j N
= + × −

= −

x b b b
(31)

where bj,L and bj,U are lower and upper limit vectors for 
unknown parameters, respectively. xj,g is the base vec-
tor, g denotes the generation and randj(0,1) produces 
a random number with normal distribution in the in-
terval of (0,1].
Mutation. Differential mutation is a difference vec-
tor that is being sampled randomly from the initial 
population. If vi is the target vector, the mutation vec-
tor is produced with the following equation:

0 1 2, , , ,( ),i g r g r g r gF= + × −v x x x (32)

where 
0 ,r gx  (base vector) and 

1 2, ,r g r g−x x  (difference 
vector) are selected randomly from initial population 
considering r0 ≠ r1 ≠ r2 ≠ i. Moreover, F is a scaling fac-
tor which is a strictly positive real number that varies 
in the interval (0 , 1].
Crossover. Each current vector combines with muta-
tion vector and produces a new temporary response. 
In this paper, we use uniform crossover with the fol-
lowing equation:
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,

,

if (0,1)  or 
,
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j g

rand C j j≤ == 


v
u
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where Cr ∈ [0 , 1] is user defined crossover probabil-
ity and uj,g is called trial vector. In fact, (33) implies 
that trial vector is constructed at the randomly cho-
sen parameter index, jrand, which implies that the tri-
al vectors are inherited from the mutant vector until 
randj (0,1) ≤ Cr. The first time that randj (0,1) ≤ Cr, all 
the remaining parameters are obtained from the tar-
get vector.
Selection. We select the next generation with the fol-
lowing equation. It means that if the value of the ob-
jective function, evaluated with the trial vector, was 
better than the one evaluated with the target vector, in 
the next generation, the target vector is replaced with 
the trial vector, otherwise we keep the previous one:

, , ,
, 1

,

if ( ) ( )
,

O.W.
j g j g j g

j g
j g

f f
+

≤= 


u u x
x

x (34)

where f denotes the objective function.
Termination Criteria. Many conditions can be used 
for stopping the algorithm. In this paper, we used a 
stopping criterion based on maximum iteration (gmax).

3.3.2. Bat Optimization (BO) Algorithm
Another subcategory of swarm intelligence algo-
rithms is BO algorithm that has been presented by 
Yang in 2010 [39]. This algorithm has been proposed 
based on the sound reflection of special groups of 
bats called micro-bats that have forearm length be-
tween 2.2-11 centimeters. These bats can find their 
prey even in environments with complete darkness. 
They send out a very loud sound pulse and listen the 
echo returning from the surrounding objects. Usual-
ly, it takes about 300-400 microseconds to integrate 
the received signals. They follow louder sounds when 
they are looking for prey. The complete steps of the 
BO algorithm in simulation are described as follows:
Step1. Initialize the number of bats (n), decision 
variable (d), initial velocity vector (vi), define admissi-
ble interval for frequency [fmin, fmax], allocate the initial 
loudness, A0, in (1, 2) and initial emission rate, r0, in (0, 
1), for each bat and also produce initial bat population 
vector xi in search space randomly as:

low high lowrand( ).i = + −x x x x (35)

Step2. Evaluate objective function and determine 
the global best, xbest.

Step3. Update the frequency, velocity and position:

min max min

best

( )
( )
,

i

i i i i

i i i

f f f f
f
β= + −

= + −
= +

v v x x
x x v

(36)

where β ∈ [0, 1] is a random number.
Step4. Produce a random number (rand) with uni-
form distribution between 0 and 1. If rand > ri, then do 
local search, i.e.:

new old ,ε= +x x A (37)

where ε ∈ [-1, 1] and A is the average loudness of all 
the bats at this time step.
Step5. Evaluate the objective function.
Step6. Produce a random number (rand) with uni-
form distribution between 0 and 1. If rand < Aj and  
f(xnew) < f(xbest), then accept the new solution and up-
date Ai, ri as:

[1 exp( )],
i i

i i

A A
r r t

α
γ

=
= − −

(38)

where 0 < α < 1 and γ > 0 are constant values.
If the above condition is not satisfied, rank the bats 
and find the best one.
Step7. Check the termination criteria. If it is not sat-
isfied, go to step 3.
Step8. End.

3.3.3. Bacterial Foraging Optimization (BFO) 
Algorithm
BFO is an optimization algorithm based on swarm in-
telligence that has been presented by Passino in 2001 
to solve continuous optimization problems [28]. The 
main idea of this algorithm is based on natural selec-
tion which actually tends to eliminate animals with 
poor “foraging strategies” and also spread those genes 
of animals that have successful foraging strategies. 
After many generations, poor foraging strategies were 
either eliminated or got better.
The algorithm is based on the foraging behavior of 
Escherichia coli (E. coli) bacteria which are present 
in human intestine. The E. coli bacteria that are pres-
ent in human intestine have a foraging strategy gov-
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erned by four processes, namely, chemotaxis, swarm-
ing, reproduction and elimination-and-dispersal. All 
the steps of this algorithm are explained as follows:
Initialization: In this step, the parameters of the al-
gorithm, i.e., s, p, Ns, Nc, Nre, Ned, ped that are respectively 
the number of bacteria, problem dimensions, number 
of swims, number of chemotactic steps, reproduction 
steps, elimination-dispersal steps, elimination-dis-
persal probability are initialized. Moreover, C(i), for 
i=1,2,…,s, is defined as chemotactic step size of each 
bacteria and θi is considered as initial position of all 
bacteria.
Main Loop: The main loop consists of the following 
steps:
Step1. Elimination-dispersal loop: l = l + 1,
Step2. Reproduction loop:             k = k + 1,
Step3. Chemotactic loop:               j = j + 1,
Step4. For each bacterium, i = 1, 2, … , s take the che-
motactic step as follows:
 _ Calculate the evaluation function and add the 

attractant effect to the nutrient concentration:

( )
last

( , , , ) ( , , , )
               ( , , ), ( , , )

( , , , ),
cc i

J i j k l J i j k l
J j k l P j k l

J J i j k l
θ

=

+

=
(39)

where J is the objective function that has to be 
minimized, and Jcc is the cell-to-cell attractant ef-
fect to the nutrient concentration. In addition, P 
represents the position of each member in the pop-
ulation of s bacteria at the j-th chemotactic step, 
k-th reproduction step, and l-th elimination-dis-
persal event.

 _ Tumble: Generate a random vector, D(i), on [-1, 1].
 _ Move: Obtain new position by:

( )( 1, , ) ( , , ) ( ) .
( ) ( )

i i T

ij k l j k l C i
i i

θ θ D
+ = +

D D
(40)

 _ For this position, evaluate the objective function 
J(i, j+1, k, l).

 _ Swim:

Let m = 0 (counter for swim length).
While m < Ns:
Let m = m + 1.

If moving condition is satisfied, i.e., 
J(i, j+1, k, l) < Jlast,  then move and let
Jlast=J(i,j+1,k,l).

Otherwise and also if m=Ns, swimming loop is done.
 _ If i ≠ s, go to the next bacterium and repeat the 

above steps.
 _ If j < Ns, go to step 3; otherwise moving loop ends.

Step5. Reproduction:
a For the given k, l and for each bacterium, sort bac-

teria based on the objective evaluation function.
b A half of the bacteria with worst value dies and 

the other half with better value is divided into two 
parts in the same position.

c If k < Nre, go to step 2.
d Otherwise, end the reproduction loop.
Step6. Elimination-dispersal loop: l = l + 1.
a If condition of elimination and dispersal is satis-

fied, the bacterium is eliminated and replaced with 
another bacterium that is produced randomly.

b If l < Ned, go to step 1.
c Otherwise, end the elimination-dispersal loop.

3.3.4. Cuckoo Optimization (CO) Algorithm
In 2009, research about cuckoo search has been de-
veloped by Yang and Deb [40]. Since then, CO algo-
rithm has been presented by Rajabioun in 2011 [30]. 
The main reason that motivates researches to devel-
op this optimization algorithm is that cuckoo has a 
different life style in comparison with other birds. CO 
algorithm starts with random initial population simi-
lar to the other optimization algorithms. Each cuckoo 
lays a random number of eggs. Hence, the population 
is divided into two types, cuckoos and eggs. Some kind 
of effort occurs between this population and the bet-
ter cuckoos survive in this competition. These better 
cuckoos immigrate to a better environment, start re-
production and laying eggs. This cycle continues until 
the stopping criteria are satisfied. Steps of this algo-
rithm are as follows:
Step1. Generate the initial habitats for cuckoos ran-
domly in the search space.
Step2. Dedicate a random number of eggs to each of the 
initial cuckoo habits (in nature it is between 5 and 20).
Step3. Define the egg laying radius (ELR) for each 
cuckoo with the following equation:
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hi low

Number of current cuckoo's eggs   
Total number of eggs

   (var var ),

ELR α=

×

× −

(41)

where varhi and varlow are, respectively, the upper and 
lower limits of decision variables and α is an integer 
used to handle the maximum value of ELR.
Step4. Each cuckoo lays a random number of eggs in 
other host birds’ nest inside its corresponding ELR.
Step5. Those eggs that are verified because of lesser 
similarity to the host birds’ eggs will be killed by the 
host birds.
Step6. Let eggs hatch and grow. The first-born cuck-
oo ruins other eggs because of its three times larger 
body; it eats more food and other chicks die from star-
vation. Hence, we have only one cuckoo remaining in 
each nest in the end.
Step7. Evaluate the habitat of each newly grown 
cuckoo.
Step8. Determine the maximum number of cuckoos 
that can live in each environment and kill those that 
live in the worst habitats.
Step9. Cluster cuckoos, find the best group and se-
lect the best of it as a target habitat.
Step10. Immigrate toward the target habitat:

next current goal current( ),F= + −x x x x (42)

where F is a parameter defined between 0 and 1.
Step11. If stopping condition is not satisfied, go to 
Step 2.
Step12. End.

3.3.5. Parameters for Adjustment
To determine the parameters of terminal sliding 
surface with intelligent optimization algorithms, we 
firstly put all the parameters needed to be designed in 
the following vector:

1 2 1 2 1 1[ , ,...., , , , ,..., , ].n n nParam k q p q pβ β β −= (43)

The algorithms firstly randomly produce the initial 
population. Each member of the population contains 
the vector above. Parameters in the vector must satis-
fy the constraints, in which pi and qi (i = 1, 2, … , n) are 

odd positive integers such that qi < pi and βi (i = 1, 2, … , 
n-1) and k2 are certain positive constants. For each set 
of parameters shown in the form of the vector above, 
we can define the control law f2 as in (17). By applying 
the control law to the system, error tracking dynam-
ics (xie, for i = 2, 3, ... , n) can be obtained. Having these 
errors, we can define the integral square error (ISE) 
as an objective function with the following equation:

0

n
2

2
ISE ( ( )) .

t

ie
it

x d� �
�

� �� (44)

In order to choose the parameters that are deter-
mined by the intelligent optimization algorithm, we 
make a change in this objective function. For tracking 
purposes, occurring peaks at the beginning are preva-
lent, while peaks at the end are not desirable. In order 
to avoid the integration of these two peaks in the ob-
jective function, they should be separated. Therefore, 
we consider the integration of the square error from a 
short time after the beginning. In fact, for simulation, 
we take t0 = 0.4 and t = 10 in (44).
The value of ISE obtained from (44) is allocated to 
each parameter vector. It is obvious that the vector 
with less value of the allocated ISE is more successful 
in the algorithm. We continue the algorithm until the 
algorithm gets us the parameter vector with the best 
objective function value.

4. Mathematical Model of Wheeled 
Mobile Robots (WMRs)
WMRs are one of the applications of the NH systems 
which are especially being used in environments in 
which a motion on smooth surfaces such as shopping 
centers, hospitals and industrial areas is needed. Fur-
thermore, it plays an important role in security, trans-
portation inspecting, painting, soccer playing robots 
and other aspects. In fact, the main control problem 
in such systems is to force systems to move along a de-
sired trajectory. In this paper, a nonholonomic WMR 
with two driving wheels and one passive wheel in its 
behind is considered, as shown in Figure 2.
The nonholonomic constraint for WMR is due to the 
perfect rolling constraint in which driving wheels 
must purely roll without any longitudinal or lateral 
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slipping. In other words, the WMR can only move in 
a direction which is perpendicular to the axis of the 
driving wheels. Therefore, we have:

sin cos 0,x yθ θ− =  (45)

where [ ]Tx y θ represents the position of the WMR in 
the Cartesian space.
It has been well known that, under the assumption of 
pure rolling, state space equations of WMR with two 
driving wheels and a passive wheel in the behind is 
described by:
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(46)

where v is the linear velocity of the wheel and ω is the 
angular velocity around the vertical axis. M is a sym-
metric positive matrix. 1T  is the pushing force in the 
direction of heading angle and 2T  is the torque about 
the vertical axis for steering. It is assumed that v and 
ω are the available control inputs, which can be easily 
calculated from torques of the motor driving wheels.
In order to use the proposed TSMC design method, 
we convert the equations of the system into extended 
chained form of the NH systems considering the fol-
lowing states and control transformation:

Figure 2 
A nonholonomic WMR with two driving wheels and a 
passive wheel
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where 2 3( , )x x  denotes the coordinates of the center 
of mass, 2x is the axis aligned with the vehicle orien-
tation. Moreover, 1u  and 2u are the control inputs 
which depend on the pushing force 1T , steering torque 

2T  and linear and angular velocity as defined in (48):
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Using above definition, state space equations can be 
described as:
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(49)

where 1f  and 2f  are the adjustable control inputs of 
the dynamical model. These third order equations 
illustrate a NH system in the extended chained form 
same as equation (1) with n=3. Now assume that the 
desired trajectory for the third-order NH system, 

1 2 3[ , , ]T
d d d dx x x x= , is generated by:
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(50)

where 1du  and 2du  are the reference controls. Fur-
thermore, we denote the tracking error as e dx x x= −  
where x is the state vector. Tracking error for the 
third-order NH system, considering the dynamic ex-
tension, satisfies the following equations:

1 1 1
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(51)
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The first subsystem is controlled by 1f  as defined in 
(7). In the proposed method, the control task is to de-
sign 2f , as (17), using the intelligent TSMC method 
such that tracking error becomes zero in finite time. 
By using contexts stated in Section 3 for controlling 
second subsystem of generalized NH systems in ex-
tended chained form (51), system assuming 1 3ey x= , 

2 2ey x=  and 3 2 2 ,dy u u= −  we should convert the equa-
tions of third-order NH into the following equations:

1 1 2

2 3

3 2 2 .

dy u y
y y
y f f

=

=
= + D







(52)

To solve these equations, we consider terminal slid-
ing surface as:
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and the control input as:

3 31 1 2 2

2
// /

2 1 0 2 1 2 22
1

1 [ ( ) ( ) ( )].q pq p q p

d

d df s s k s
u dtdt

β β= − + + (54)

The simulation results in the next section show that if 
we design parameters using intelligent optimization 
algorithms, then the tracking errors will reach and re-
main on zero in a short period of time.

5. Simulation Results
In this section, we show the results of computer sim-
ulation performed in MATLAB/SIMULINK. The de-
sired trajectory is described as follows:

(sin cos )
(sin cos )
.

d

d

d

x t t t
y t t t

tθ

= +
= −
=

(55)

For the first subsystem described by (20), by consid-
ering disturbance as Δf1 = 0.1sin(t), the control law of 
the form (7) with parameters 3,q q′= =  5,p p′= =
and 1 3kβ = = has been applied to the system and the 
results have been shown in Figure 3. It can be seen 
that, using the defined control law in (7), the tracking 
error 1ex  reaches zero in a few seconds and the input 

1u  reaches the desired value in a finite time as well.
In Figure 4, the trajectory errors 2ex  and 3ex , the in-
put 2u  and control law 2f  for the second subsystem 
(52) have been shown when the parameters of termi-
nal sliding surface are selected randomly and with-
out using the intelligent algorithms. The parameters 
assumed in this simulation are q1=45, p1=117, q2=23, 
p2=123, q3=3, p3=5, β1=26, β2=54, and k2=44. It can be 
observed that for the case that the parameters of ter-
minal sliding surface are determined properly, the 
tracking error reaches zero in a finite time and it may 
fluctuate around zero with high amplitude.

Figure 3 
a) Tracking error of x1e, input u1 of first subsystem (5), b) control law f1 defined in (7)
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Figure 4 
a) Tracking error of x2e, b) tracking error of x3e, c) dynamic control law u2 and d) WMR linear velocity v when the parameters 
of terminal sliding surface structure are selected randomly
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Figure 3. a) Tracking error of x1e, input u1 of first subsystem (5), b) control law f1 defined in (7). 
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Now, we apply each algorithm presented in Section 
3 to find the parameters of the terminal sliding mode 
surface structure proposed to control the second 
subsystem of WMR. For each algorithm, in order to 
compare the performance of the algorithms, the same 
objective function is used which is integral square er-
ror, ISE, defined in (44). Each algorithm needs its own 
preliminary parameters to be defined. These parame-
ters are taken into consideration as discussed below:
DE: For simulation use, the population size is as-
sumed as 50, and the scaling factor is considered ran-
domly in the range of 0.2 < F < 0.8 with uniform distri-
bution. We additionally take Cr = 0.2 as the crossover 
probability.
BFO: For this algorithm, we assume that s = 50, Nc = 
10, Ns = 4, Nre = 4, Ned = 2 and Ped = 0.25.
BO: We use 30 bats with fmin = 0, fmax = 2. Other parameters 
are selected randomly in the range stated in Section 3.
CO: For simulating this algorithm, a number of 20 
cuckoos is used. There are between two to five eggs. 
For clustering, we use k-nearest-neighborhood 

(KNN) clustering method with three clusters. In ad-
dition, we take α = 5, F = 9.
Considering disturbance for the second subsystem de-
fined in (51) as Δf2 = sin(t), simulation results of con-
trolling second subsystem with TSMC tuned using 
these four algorithms and by considering the input 
disturbance have been depicted in Figures 5 and 6. In 
addition, Table 1 compares the results of applying the 
intelligent algorithms to the system by considering the 
number of function evaluations (NFE), consumed time 
for running the algorithms and the best cost of ISE.
It can be seen that by applying the TSMC in which the 
parameters of terminal sliding surface structure are 
chosen using the intelligent algorithms (Figures 5 and 
6), the results are considerably improved compared 
with the case in which the parameters have been se-
lected randomly (Figure 4). Simulation results show 
that the intelligent TSMC is robust against distur-
bance, i.e., applying disturbance to the system does 
not affect the tracking error dynamics of the system. 
By using the intelligent algorithm, the tracking errors 
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a

c d
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Figure 5 
a) Tracking error of x2e, b) tracking error of x3e, c) dynamic control law u2 and d) WMR linear velovity v when the parameters 
of the proposed method are selected using intelligent algorithms

Figure 6 
Control input f2 when the parameters of TSMC are selected using intelligent algorithms

H. Ghasemi, B. Rezaie and Z. Rahmani 

 

0 0.2 0.4 0.6 0.8 1
-60

-40

-20

0

20

x 2e

 

 

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

Time (second)

       

x 3e

 

 
DE
CO
BO
BFO

0 0.2 0.4 0.6 0.8 1

-2000

-1000

0

1000

2000

Time (second)     

 u
2

 

 

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

Time (second)   

v

 

 

DE
CO
BO
BFO

DE
CO
BO
BFO

DE
CO
BO
BFO

Time(second)

 
Figure 5. a) Tracking error of x2e, b) tracking error of x3e, c) dynamic control law u2 and d) WMR linear velovity v when the 

parameters of the proposed method are selected using intelligent algorithms. 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3000

-2000

-1000

0

1000

2000

3000

Time (second)

f 2

 

 

DE
CO
BO
BFO

 

H. Ghasemi, B. Rezaie and Z. Rahmani 

 

0 0.2 0.4 0.6 0.8 1
-60

-40

-20

0

20

x 2e

 

 

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

Time (second)
       

x 3e
 

 
DE
CO
BO
BFO

0 0.2 0.4 0.6 0.8 1

-2000

-1000

0

1000

2000

Time (second)     

 u
2

 

 

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

Time (second)   

v

 

 

DE
CO
BO
BFO

DE
CO
BO
BFO

DE
CO
BO
BFO

Time(second)

c)

b)

d)

a)

 
Figure 5. a) Tracking error of x2e, b) tracking error of x3e, c) dynamic control law u2 and d) WMR linear velovity v when the 

parameters of the proposed method are selected using intelligent algorithms. 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3000

-2000

-1000

0

1000

2000

3000

Time (second)

f 2

 

 

DE
CO
BO
BFO

 



Information Technology and Control 2018/1/4740

Table 1 
The results of using intelligent algorithms with or without disturbance for WMR. Parameters are a vector with the form of 
[β1, β2, k2, q1, p1, q2, p2, q3, p3] that shows the simulation outputs of the algorithms

Algorithm NFE Time Best Cost Best Parameters

CO 3516 52 min 0.01138 [21.7, 10.6, 1.6, 49, 41, 65, 97,9, 39]

DE 2050 40 min 0.01139 [11.7, 20.8, 1, 177, 217, 169, 197, 5, 271]

BO 1230 24 min 0.0119 [14.3, 15, 54.1, 275, 299, 235, 267, 113, 177 ]

BFO 8000 3 h 54 min 0.04 [22, 16, 148, 219, 261, 219, 261,5, 131]

converge to zero very quickly in less than a second. In 
addition, the control effort has been reduced by using 
the intelligent control scheme.

Figure 7 
Tracking the desired trajectory of x by four algorithms

Figure 8 
Tracking the desired trajectory of y by four algorithms

In order to see how tuning parameters affects the tra-
jectory tracking, Figures 7 to 10 show the effectiveness 
of each algorithm in tracking the desired trajectory. It 
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Figure 7. Tracking the desired trajectory of x by four algorithms. 
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Figure 8. Tracking the desired trajectory of y by four algorithms. 
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Figure 7. Tracking the desired trajectory of x by four algorithms. 
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Figure 9 
Tracking the desired trajectory of θ by four algorithms

Figure 10 
Trajectory tracking of WMR in Cartesian coordinate using four intelligent algorithms a) BFO, b) BO, c) DE, d) CO
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Figure 9. Tracking the desired trajectory of  by four algorithms. 
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can be seen from these figures that using the parame-
ters of TSMC obtained from BFO and BO algorithms, 
the desired trajectory is tracked with a little fluctua-
tion. However, using DE and CO algorithms, the pa-
rameters are properly tuned and therefore the trajec-
tory is accurately tracked in a short period of time.
Simulation results show that among these four al-
gorithms, by using CO algorithm, the best parame-
ter values can be obtained for trajectory tracking of 

WMR. Table 1 also reveals that BFO leads to a greater 
objective function and it takes much time compared 
with the others. Therefore, it could not find the best 
parameter values. However, CO algorithm tunes the 
parameters of terminal sliding surface such that leads 
to the least ISE as objective function. Thus, it can be 
concluded that CO algorithm is the best algorithm for 
tuning these parameters. The tracking error and the 
state variables, when CO algorithm is used for select-
ing the parameters, have been shown in Figure 11.

a b

c d

Figure 11 
a) Error of transformed system x1e, x2e, x3e, b) tracking of desired trajectory x, c) tracking of desired trajectory y, d) tracking 
of desired trajectory θ when the parameters of terminal sliding surface are selected using CO algorithm

6. Conclusion
In this paper, an intelligent TSMC has been proposed 
for controlling the NH systems in extended chained 
form. In this method, intelligent algorithms have been 
used to determine the parameters of the recursive 

terminal sliding surface structure designed for error 
dynamic tracking. Disturbance has also been consid-
ered in tracking dynamic error of the NH system. BFO, 
BO, DE and CO are the optimization algorithms, used 
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for designing the parameters. It has been shown that, 
using these intelligent algorithms, appropriate param-
eters can be found such that the system can track the 
desired trajectory very well. Simulation results per-
formed on WMR as a benchmark of the NH systems 
have shown the effectiveness of the proposed design 
for error dynamic tracking even in the presence of 
the input disturbance. In addition, simulation results 

show that CO algorithm has provided the most effec-
tive tuning of parameters among other algorithms 
such that the tracking error can reach zero in a very 
short period of time with a small amount of chattering.
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