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The ongoing development of a complex model for power grid networks, based on the Common Information 
Model (CIM), is dealing with design, operability and exchange of data among various power grid operators. 
This paper presents a methodological approach to development of a database that supports an easy storing and 
managing of active CIM instances, as well as their historical versions. To facilitate the implementation of the 
proposed approach, we apply a paradigm of automatic programming. Our code generator eases the work on de-
veloping an API communication layer over the database and allows faster response on CIM changes. Finally, we 
present a performance cost analysis on test models. By this, our intention is to contribute to a wider acceptance 
of CIM in power grid networks.
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1. Introduction
Power systems have been increasingly used since the 
middle of the 20th century. At the beginning, power 

grids were simple, isolated systems. In order to mon-
itor network states, to track power grid states, inputs 
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and outputs, Transmission System Operators (TSOs) 
had to have a model that would provide them with 
needed data. In 1951, the first European association 
appeared – the Union of the Co-operation of Trans-
mission of Electricity (UCTE) [7]. Since the UCTE’s 
appearance, electrical energy production, transpor-
tation and distribution became more separated be-
tween different companies.
After the separation of transmission, generation, 
distribution and trading activities of the electricity 
sector, a possibility of an easy exchange of operation-
al data has become even more important. Electrical 
markets have triggered an increase of cross-border 
power flows between countries. This leads to signif-
icant variations in generation patterns, displacing 
substantial amounts of electricity from one area to 
another, or from one hour to another. Therefore, ex-
changes of data have increased dramatically during 
recent years [16].
Since UCTE has been established, its model for de-
scribing power grids, UCTE DEF, has been widely 
used. UCTE DEF is power flow oriented model. Since 
it carries only the basic, necessary, information about 
power grid nodes, lines and border nodes, we could say 
that it is relatively simple model. UCTE DEF has been 
designed to meet requirements of European TSOs in 
the middle of the 20th century. For a long time, it was 
recognized as a satisfactory model. However, its sim-
plicity appeared to be the main cause of its serious 
limitations in recent decades.
To address the UCTE DEF limitations, a development 
of a new model for power grids was initiated in 1999. 
It is the Common Information Model (CIM). CIM is 
a still evolving model, and now maintained by the In-
ternational Electrotechnical Commission (IEC) [11]. 
As part of its development, cooperation and coordina-
tion, European Network of Transmission System Op-
erators for Electricity (ENTSO-E) [7], the successor 
of UCTE, also accepted CIM as the preferred model 
for describing power grids. CIM is a network oriented 
model that provides a common definition of manage-
ment information for systems, networks, applications 
and services, and allows extensions [11].
Development of CIM is followed by a series of stan-
dards. Part of CIM for energy market systems is cov-
ered by the standard IEC 61970, run by the IEC Tech-
nical Committee 57, Work Group 13 (TC57 WG13). At 

the time of writing, its current version is 2.4.15, while 
the version of its model is 16.25. A profile referred in 
our research work is Common Grid Model Exchange 
Standard (CGMES) that is used for transmission net-
works. Hereinafter, when referring to CIM, we refer 
to the IEC 61970, profile CGMES, standard 2.4.15, 
and model version 16.25. The CIM model is defined 
via UML. 
We may say that CIM defines a meta-model for power 
grids, as CIM instances are models of concrete power 
grids. Here, we observe CIM as the initial meta-model 
of our approach based on Model-Driven Development 
(MDD) paradigm [4], [5].
Despite the fact that CIM is a continuously evolving 
model, it has already been widely accepted and the 
need for its software support is constantly increas-
ing. Vendors that use CIM in their applications are 
dealing not only with the problem of how to use it in 
their power functions, but also how to store CIM in-
stances. In regard to this, it is not only the issue how to 
save initial model instances in a database, as a repos-
itory of CIM instances, but also how to track all their 
further changes, as there is a strong requirement to 
provide a possibility of restoring a model instance to 
some of its previous states.
From the previous experiences reported in [27], [10] 
and [28], it follows that for the development of a da-
tabase repository for instances of complex models as 
CIM instances certainly are, there is no a straightfor-
ward solution. From this, in our research we assume 
that CIM can be implemented as a relational database 
schema, while CIM instances are stored in a relational 
database, in an optimized way, without losing any data.
The goal of our research is to propose a methodolog-
ical approach with a generic database repository 
structure in support of efficient storing of CIM in-
stances, tracking changes without redundant data, 
and their restoring to previous states. In support of 
our approach, we propose a software application de-
veloped for CIM in power grid.
In this paper, we propose a repository structure for 
storing both current and previous (past) states of CIM 
instances under a relational database management 
system (DBMS). Here we introduce the notions of an 
active model and historical model. The active model 
supports a specification of the current states of CIM 
instances, while historical model supports a specifi-



321Information Technology and Control 2017/3/46

cation of the previous states of CIM instances. The 
development of active and historical models is orga-
nized in two phases of our methodological approach.
Our software application for CIM in power grid ful-
ly supports both, the active and historical models. It 
is designed in a way to meet expectations and logic 
of work of power engineers. As CIM is a constantly 
evolving model, an important requirement for this 
application is to be easily maintainable. To facilitate 
such a requirement, we have applied a paradigm of 
automatic programming in development of our ap-
plication. Thus, we have developed our code genera-
tor that eases the work on developing an Application 
Programmatic Interface (API) communication layer 
over the database that allows faster response on CIM 
changes. By this, complexity and the amount of re-
quired work needed for writing code is reduced sig-
nificantly.
The rest of the paper is organized as follows. Works 
related to our research are presented in Section 2. 
In Section 3, CIM is presented in more details, with 
its inner organization. Section 4 presents the first 
phase of our methodological approach – how to mod-
el the database to be accessed in a relatively easy way, 
without loss of speed. The second phase of our meth-
odological approach is presented in Section 5. The 
section explains how to structure historical part of 
database to provide tracking changes made on model 
instances, and restore them to any selected state. In 
Sections 4 and 5, a code generator is introduced to fa-
cilitate the implementation of the system. Evaluation 
of the results, with time performance analysis is given 
in Section 6.

2. Related work
In the survey of related works, we identified the fol-
lowing groups of references: i) works about CIM stan-
dardization and the importance of formalizing CIM as 
a standard (standardization improves CIM interop-
erability among various software vendors); ii) works 
about CIM in a practice use in power grids (this group 
of references is of an interest in searching for con-
crete examples of potential applications of our work); 
iii) works about strategies of storing CIM instances in 
a database (these references impact the selection of a 

proper approach to data organization and also our ap-
proach of development of a database system for CIM); 
and iv) works about automatic programming para-
digm and its influence on a reduction of development 
time, and increasing reliability of produced code. We 
present a selection of works that mainly affected the 
development of our code generator.
In [16] and [7], some important steps in moving from 
UCTE DEF to CIM are discussed. Ivanov and Chury 
in [16] argue that “the current version of the UCTE 
ASCII data exchange format (UCTE DEF) turned out 
to be insufficient for planning purposes because some 
data is missing and some network elements are not 
described in an appropriate level of detail.” In addi-
tion, Britton and deVos in [7] conclude that successful 
implementation and the usage of the CIM will signifi-
cantly improve the accuracy, quality and reliability 
of cross-TSOs data exchanges. In this research, the 
current version of CIM [11] is applied in a power grid. 
Moreover, Britton and deVos in [7] and Britton et al. 
in [6] propose ways of its development. Our approach 
relies on the data exchange process as it is proposed 
in [16].
Since it has been introduced by IEC, CIM has been 
extensively analyzed and used in power grids. In [20], 
CIM is used as the data model in the algorithm for 
finding the catalogue of topologies in a power system. 
In [8], it is a data model in algorithm for partition-
ing power grid networks. In [24], CIM is used in the 
scheduling algorithm for controlling power grid. Our 
approach is also based on CIM, as it is well known and 
recommended by international authority body. CIM 
is designed to be robust enough to support different 
granularity of data [15]. As described in [26], both 
bus-breaker and node-breaker models can be repre-
sented though CIM. The references [8], [20] and [26] 
give examples of a CIM usage in power engineering. 
Those are the typical examples of projects, where our 
approach will be applicable, as an extension that will 
provide a database support for storing and managing 
CIM instances.
One of the two papers of a narrow interest for our 
research presents a comparison of two strategies for 
storing CIM instances, relational and RDF-based da-
tabase approach [28]. CIM itself does not offer any 
official database models, so the focus was to find pros 
and cons of using a relatively new RDF-based data-
base versus well-established and ubiquitous relation-
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al database, for storing CIM instances. As concluded 
in [28], the main drawback of relational database is in 
that all data have to be mapped to and from CIM-XML 
format. However, due to being faster, the relational 
database is more preferred. In [27], Ravikumar et al. 
propose a CIM oriented database (CIMODB) design 
through the ORM, similar as we use in our approach. 
Both Ravikumar et al. [27] and Schulte et al. [28], 
advocate a selection of a relational (SQL) database 
in spite the growing popularity of NoSQL, more pre-
cisely RDF solutions. A ubiquitous use of relational 
DBMS, as described in [9], precludes the use of other 
technologies such as NoSQL, especially for federated 
data schemas [27]. In many other works, as in [19] and 
[23], the authors are slightly reserved towards NoSQL 
databases because of the lack of standards, consisten-
cy, familiarity, maturity and maintenance. Primarily 
because of the results presented in [27] and [28], as 
well as in [9], [19], [10], and [23], a relational database 
approach is used in this work.
Automatic programming, as a programming para-
digm is heavily used in many software development 
projects from the very beginnings of software pro-
gramming [17], [21]. Since CIM is described with 600 
classes, its specification belongs to a class of large 
and consequently complex models. The probability 
to make logical errors in designing such systems is 
high. The amount of time needed to develop database 
procedures and API communication layer by hand is 
also high. Therefore, we identify a need for the devel-
opment of a code generator to support the process of 
implementation of CIM as a model under a DBMS. A 
code generator takes a high-level description as its 
input and generates lower level code [25]. That is, 
the input specification for generators is simpler and 
shorter than the generated code [14]. In [18], UML 
with sequence diagrams is used in order to produce 
application that would better reflect designed pro-
cess. In [1], Ablonskis and Nemuraitė detect model-
to-code transformations, which can later be reused 
for composing templates for generating a program 
code. The authors in [3], [12] and [2] start from a data-
base model and templates to generate different layers 
of their applications. In addition, in [22], templates 
are used to transform model and generate Software-
as-a-Service applications. In our research, we use a 
UML representation of CIM as an input specification 
of our code generator.

3. CIM structure and data exchange
One of the main purposes of CIM as a standard is to 
define how members of ENTSO-E, using software 
from different vendors, would exchange network 
model instances as required by the ENTSO-E busi-
ness activities. Therefore, in this section we present 
the CIM model with its inner structure, as well as the 
process of data exchange based on it.
CIM instances are stored in XML file format. Data are 
divided into nine files: Equipment, Equipment Bound-
ary, Topology, Topology Boundary, State Variables, 
Dynamics, Diagrams, Geographical Data, and Steady 
State Hypothesis. Information from all the nine files 
represent one complete CIM instance.
CIM is a hierarchical model that comprises abstract and 
concrete classes. Through those classes, CIM maps phys-
ics of electrical power system and its states at the specif-
ic time (every hour). Abstract classes are used to ease the 
complexity of the system; they group and define base at-
tributes and associations, differentiating between more 
and less generic components of the system. In contrast, 
real (concrete) components of the system are described 
by concrete classes, which inherit much of the attributes 
and associations from the abstract classes. Concrete 
classes are dependent on abstract classes, as shown in 
Figure 1, which is an excerpt of the CIM model. In Fig-
ure 1, Equipment Container and Equipment represent 
abstract classes, while Substation, Voltage Level and 
Base Voltage represent concrete classes. Here, we are 
not discussing the meaning of those classes, as we are 
only interested in their relations.

Figure 1 
CIM UML class diagram
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Changes made on a model instance are exchanged by 
difference files that only contain information of what 
is updated, what is new and what is deleted. When 
difference files are received, they are applied on the 
model instance [11]. One of the main advantages of 
CIM is that data are maintained without the need to 
exchange the whole model instance [16], [7]. Chang-
es done on one model instance, made by one compa-
ny, are exported to a difference file and sent to other 
interesting parties who need to maintain their mod-
el instance of the same network. Difference files are 
XML formatted files.
In Section 4, we present a modeling process of the 
operational database, which relies on the CIM hier-
archical structure. Besides, CIM exchange process 
based on the usage of difference files is a basis for 
developing methodological approach for historical 
model described in Section 5.

4. Active model
In this section, the first phase of our methodological 
approach is presented. The active model (Figure 2) 
is described, through which we model CIM oriented 
database aimed at storing CIM instances. The active 
model is a representation of the CIM model, where 
each class in CIM has its active model representa-
tion. As we select a relational data model paradigm 
for storing CIM instances, our active model is imple-
mented under a relational DBMS. We call this data-
base the active database.
In this phase of our approach, the primary goal is to 
provide storing of the CIM instances, as well as easy 
and fast access to them. To achieve the goal, the phase 
is divided into three steps.
The first step is to perform an analysis of the active 
model in comparison to the CIM model. Next, we dis-
cuss two typical approaches for creating models, sim-
ilar to our active model, and why they do not meet our 
goals. The second step is to formulate a procedure for 
creating our active model. The final, third step is to 
implement an active database. In the following text, 
we elaborate each of the steps, in more details.
In the first step, we describe the active model and 
how we create it. In Figure 2, an excerpt of the active 
model is shown. By the CIM terminology, abstract 

Figure 2 
A database schema of the active model

classes are mapped to so-called abstract tables, while 
concrete classes are mapped to concrete tables. In 
the active model, we introduce BASE_OBJECT table 
that represents Base Object class, which is not a part 
of CIM. We introduce it to ensure that all tables will 
have a surrogate primary key (attribute BASE_OB-
JECT_ID), which becomes a foreign key from the 
table that represents the Base Object class. Abstract 
tables that represent Identified Object, Equipment 
Container and Equipment classes are created with-
out their attributes (columns) and references (foreign 
keys), as it is more convenient to have these attributes 
in their child, concrete tables that represent Substa-
tion, Voltage Level and Base Voltage classes. There-
fore, these concrete tables include attributes from 
their parent tables.
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We discuss two typical approaches that could be used 
to create a model that is conceptually similar to our 
active model. Since CIM is specified in UML via En-
terprise Architect, the same tool could generate SQL 
code for our active model. Next, since classes generat-
ed from CIM UML can be mapped to their table rep-
resentatives, the same approach is also an option for 
our active model. As such, object-relational mapping 
(ORM) is used. Many frameworks could be used for 
ORM. However, in a model as complex as CIM is, with 
many hierarchical levels, a potential problem is that 
CIM has relatively large number of abstract entities 
[20]. If simply table-for-class is created, for reading 
data from any table it would be hard to write a simple 
select query. A join clause has to be used to reach each 
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of parent tables that contain data mapped from par-
ent classes. The more join clauses we have, the slower 
the query will be [10]. However, our goal is to provide 
easy and fast access.
In the second step, we perform ORM in a specific way. 
Firstly, we map class attributes to their table repre-
sentatives only for concrete classes, with the inclu-
sion of inherited attributes. Secondly, tables repre-
senting abstract classes are created with keys only, 
without columns included. In our approach, abstract 
classes are needed to properly place the relations. As 
an example, in the model excerpt presented in Fig-
ure 2, Equipment requires a relation to Equipment 
Container. Equipment Container is an abstract class 
representation, as it generalizes either Substation or 
Voltage Level. Finally, parent references are mapped 
as foreign keys in concrete, child tables only. By do-
ing so, it is possible to fetch all needed data from just 
one table, without using join clause. By this, all data 
attributes are pushed down to concrete tables, while 
abstract tables form the skeleton of the model.
In the final, third step, we present the implementa-
tion process of the first phase of our methodological 
approach. CIM model has almost 600 classes, around 
200 of which are concrete classes. Here we map CIM-
XML structured data into the relational database. 
Implementation efforts for writing SQL commands 
for creating our database schema, database proce-
dures and an API communication layer can be quite 
high. Therefore, we propose creating a Code Gener-

ator. A development process defined by our method-
ological approach is presented in Figure 3. Our Code 
Generator reads the CIM UML specification. From 
the CIM UML specification, we generate the CIM 
object model, comprising the C# CIM classes. Code-
DOM framework has been used in developing the gen-
erator [13]. Next, the XML files are generated to spec-
ify ORM of the CIM object model. The XML ORM 
specification is created in accordance to the approach 
already presented in the previous step. Finally, having 
the object model and ORM specification, an active da-
tabase is created by using the ORM framework NHi-
bernate. The history elements, presented as the ‘C# 
CIM history classes’ and ‘XML ORM history specifi-
cation’ in Figure 3, are explained in the next section.
The Code Generator is used to create database proce-
dures in a way to fully utilize provided mechanisms 
of a selected DBMS. Stored procedures are generat-
ed for inserting new element into a concrete table. 
Firstly, data are inserted into parent tables (keys 
only), and after that into a corresponding concrete ta-
ble. Through update procedures, data are updated in 
concrete tables only. Finally, by deletion procedures, 
rows are firstly deleted from concrete tables, and then 
from all its parent tables. By using database stored 
procedures, we gain on speed, and simplify the way 
we communicate with the selected DBMS.
By the design of the active database, we provide the 
possibility to write queries with no JOIN clauses for 
reads and updates, which is important in accessing 

Figure 3 
The development process
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the latest states in power calculations like load flow. 
A similar approach is applied in [10], where time per-
formances are significantly improved.
To provide the track of changes on a model instance, 
restoring the model instances, usage of history data 
for analysis, statistics or some other calculations, the 
active model has to be extended. Such extensions are 
discussed in the next section, in the scope of the sec-
ond phase of our approach.

5. Historical model
In this section, the second phase of our methodologi-
cal approach is presented. The historical model (Fig-
ure 4) is presented, through which the states of CIM 
instances are recorded. The historical model is an 
extension of the active model, where we track chang-
es for concrete tables of the active model. We do not 
track changes on abstract tables, since all the needed 
data are in concrete tables. By means of the historical 
model, we implement a historical database.

Figure 4 
A database schema of the Historical model

 

 

 

 

In this phase of our methodological approach, the prima-
ry goal is to provide tracking changes of CIM instances, 
as well as a way to restore model instances to a select-
ed state before some change has been performed. To 
achieve the goal, this phase of our approach is divided 
into four steps. 
The first step is to create the structure for tracking 
changes made on a single element from active model. 

In the second step, we create the structure for track-
ing changes made simultaneously on a group of ele-
ments. After that, we discuss prerequisites to restore 
a model instance to some previous state in more de-
tail. In the third step, we provide a structure that is 
used to restore model instances. The final, fourth step 
is to implement a historical database. In the following 
text, we elaborate each of the steps in more details.
We describe the historical model, and how it is used 
for tracking changes. In Figure 4, an excerpt of the 
active and historical model is shown. For tracking 
changes on each concrete table from active model, 
we create a new history table, where we store previ-
ous states for each concrete class. For the table that 
represents the Substation class, a Substation History 
Table is created (SUBSTATION_H). All history tables 
have a surrogate primary key from BASE_OBJECT_H 
table that represents Base Object History class, which 
has a foreign key from table representing Base Object 
class. The active and historical models are connected 
via BASE_OBJECT and BASE_OBJECT_H tables. 
Base Object History stores information of what ac-
tion was made, Insert, Update or Delete. Before some 
action is performed to an element of active database, 
its state is recoded by creating a new record in corre-
sponding history table. We call those records history 
elements. Having only history tables, we provide the 
possibility to track changes efficiently at the level of 
a sole element only. However, restoring a whole mod-
el instance to a particular point in time could be very 
demanding, as all history tables are to be searched by 
comparing dates and times.
In the second step, we create a structure that groups 
changes made simultaneously on a group of elements. 
We call such a structure difference group, and it rep-
resents the difference files, introduced in Section 3. 
As presented in Figure 4, history tables are connected 
to DIFFERENCE table via table BASE_OBJECT_H. 
Each row in DIFFERENCE table represents one dif-
ference group. By this, history elements are grouped 
into difference groups. Figure 5 illustrates the rela-
tionship between history elements and difference 
groups. The elements from active database are shown 
in circles (A1 to A7), above the horizontal line. Their 
previous states, i.e. history elements are also shown 
in circles, placed vertically below the horizontal line. 
Letters I, U and D, represent actions made on them: 
Insert, Update and Delete, respectively. Difference 



Information Technology and Control 2017/3/46326

groups (Diff1 to Diff4) are presented with rectangles 
that group history elements. By grouping history 
elements into difference groups, it is easier to find 
changes made simultaneously, in one transaction. 
With each difference group, we also create a check-
point to which a model instance can be restored. 
When restoring the model instance by application of 
a group of changes, we ensure that the model instance 
will remain in a valid state. For example, for a model 
instance to remain in a valid state, removing one ele-
ment from the model instance requires removing all 
other dependent elements. By this, in order to revert 
one group of changes, there is no need to search the 
complete historical database and compare all ele-
ments by date and time.
However, to restore the model instance relatively easy 
and fast it is not enough to have history elements and 
difference groups only. Following Figure 5, if there is 
only one group (Diff1), it is easy to restore a model in-
stance to its previous state, as inserted elements need 
to be removed, the edited items need to be restored, 
while the ones that are deleted need to be added back. 
The restoration activity is more complex as we have to 
follow a longer chain of differences. For example, let us 
have two difference groups, Diff1 and Diff2. For restor-
ing to a state before Diff1, the changes from Diff1 must 
be reverted first, and then changes from Diff2 must be 
reverted, but without overlapping history elements, 
like in the case of A2. Therefore, we potentially have 
to compare a large amount of data again to restore the 
model instance. The more difference groups we have, 
the longer it takes to restore the model instance.
In the third step, we create a structure for reverting 
model instances. For this, we add is_first and is_last 

Figure 5 
Difference groups

 

 

 

 

flags as columns to the table representing Base Object 
History. With this, for one element from active data-
base, we track which of its history elements is the first 
and which is the last, respectively. Flag is_last has to 
be updated when new history element is added.
Then, we create a structure that groups all previous 
last changes from the historical database. We call 
such a structure before group of changes. In Figure 
4, BEFORE table represents before group of chang-
es. Before applying new changes, all history elements 
with is_last flag are recorded into before group, and 
that way connected to a difference group whose 
changes are then applied. Flags is_last are updated 
upon applying changes. Each difference group has its 
before group. 
In Figure 6, before and difference groups of changes 
are shown. Before groups (Before1 to Before4) are 
presented with rectangles that group key values as 
references to history elements shown as squares. 
Here, for difference group Diff3, its before group Be-
fore3 consists of a reference to the history element of 
A1, changed in Diff1, and references to the history ele-
ments of A2, A3 and A4, changed in Diff2.
Since there are history elements A5, A6, A7 from Fig-
ure 6 that were changed later in Diff3 and Diff4, but 
those changes were not covered by Before3, we also 
need to include those elements, in order to restore 
the model instance to the state before Diff3. There-
fore, we introduce after group of changes. It compris-

Figure 6 
Before groups in squares
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es history elements, which were created after before 
group of changes was formed. For one before group, 
its corresponding after group includes all history el-
ements that a) have is_first flag, and b) none of their 
instances are included in the before group. By using 
those two conditions, we are able to retrieve history 
elements without the need to search for them by com-
paring date and time. In Figure 6, for difference group 
Diff3, after group consists of history elements A5 and 
A6 changed in Diff3 itself, and A7, deleted in Diff4. 
The element A4, changed in Diff4, was also changed 
in Diff2, but contained in Before3, and therefore is not 
part of after group of changes. The after group is not 
represented as a separate table structure, as it is de-
fined with the is_fist flag and a before group. 
At the end of this step, we join corresponding before 
and after groups of changes into a slice. One slice con-
sists of before changes that are not the last, because 
their states are current in active database, and after 
changes that are not contained in before changes. 
Those are all the needed changes we have to revert in 
order to restore the model instance before any check-
point. Each difference group has its slice to undo in 
order to restore a valid model instance.
In Figure 8, we can see slices presented with rectan-
gles. It is easy to notice that for restoring the model 
instance to its first (initial) state, it requires the most 
data to be reverted. However, if we apply slices, less 
data are needed to revert latest changes.

Figure 7 
Revert algorithm for a single history element

Once the slice and the model instance are retrieved 
from relational DBMS, reverting individual changes 
is the next step. The complete algorithm for reverting 
a single element of an active model instance is shown 
in Figure 7. Following the algorithm, in Table 1 we 
present the possible states of a history element and 
operations that are to be performed over it. In Table 1, 
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Revert algorithm for a single history element
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by dots ‘●’ we mark states of a history element, while 
‘⊤’ and ‘⊥’ denote true and false values of decision 
conditions. The symbol ‘✓’ denotes a selected oper-
ation to perform on a history element in order to get 
restored model instance.

Figure 8 
Slices in squares

el instance, the action ‘revert’ is performed, since 
the element has been firstly deleted after slice and 
then element with the same ID was added. If it does 
not exist in active model instance, the action ‘add’ is 
performed, since the element has been deleted after 
checkpoint. If its is_first flag is set to true, and the 
element exists in active model instance, the action 
‘remove’ is performed, since the element has been de-
leted before and added after checkpoint. If it does not 
exist in the active model instance, the action ‘do noth-
ing’ is performed, since the element has been deleted 
before, added back and deleted again.
In the final, fourth step, we present the implemen-
tation of the second phase of our approach. Here for 
all 200 concrete classes of the CIM model we need to 
create their history classes, map them to the tables, 
and create stored procedures and the appropriate API 
communication layer to approach them. By our prac-
tical experience, it requires high implementation ef-
fort. Therefore, we have applied our Code Generator, 
developed to support the implementation. As the his-
torical model is an extension of the active model, we 
also extend the Code Generator to create a historical 
database. 
A development process covered by the second phase 
of our approach is also presented in Figure 3. The 
Code Generator reads the CIM UML specification 
and generates the object model comprising C# CIM 
history classes. An XML ORM history specification 
is created in accordance to the approach already pre-
sented in the previous step. Finally, a historical data-
base is created by using the NHibernate ORM frame-
work.
The Code Generator is used to produce database pro-
cedures that create history elements in a historical 
database, before any action is applied on the active 
database. Those procedures contain the calls to the 
active database procedures, explained in the previous 
section. In this way, we ensure that all changes on a 
CIM instance are tracked and can be reverted upon a 
request. 
In this section, we have presented a new approach for 
storing changes made on CIM instances. It allows us 
to restore the model instance before any wanted state. 
To the best of our knowledge, this is a novel approach, 
which introduces improvements in a design of a da-
tabase to store model instances, track changes on a 
model instance and restoring it.

 

 

 

 

 

 

If a history element is in the Insert action state, its is_
first flag is set to true, and it exists in the active model 
instance, the action ‘remove’ is performed, since the 
element has been added after a difference checkpoint. 
If it does not exist in the active model instance, the ac-
tion ‘do nothing’ is performed, since the element has 
been added and deleted after a checkpoint. If the ele-
ment’s is_first flag is set to false and the element exists 
in the active model instance, the action ‘revert’ is per-
formed, since the element has been added before and 
changed after a checkpoint. If it does not exist in the 
active model instance, the action ‘add’ is performed, 
as the element has been added before and deleted af-
ter a checkpoint.
If a history element is in the Update action state, its 
is_first flag is not of the importance. If it exists in 
the active model instance, the action ‘revert’ is per-
formed, since the element has been edited either 
before or after checkpoint. If it does not exist in the 
active model instance, the action ‘add’ is performed, 
since the element has been edited either before or af-
ter, and deleted after checkpoint.
If a history element is in the Delete action state, its 
is_first flag is set to true, and it exists in active mod-
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6. Evaluation
To support the active and historical CIM models, we 
have developed the active and historical relational da-
tabases. Tracking changes in the historical database 
increases complexity. Therefore, time performances 
may drop. Here we analyze how complexity affects 
our relational database. Then, we discuss the usage 
of our Code Generator. We present diagrams, where 
horizontal axis shows a number of model elements, 
while vertical axis shows time of performed opera-
tions over elements, in seconds. The tests were done 
on a PC, CPU Intel Core 2 Duo E7500 2.93GHz, with 
8GB RAM. Oracle Database 11g Express Edition was 
used as a relational DBMS.
The operations over the elements in the active mod-
el are the most frequent. By testing the system and 
calculating average time for reading and inserting 
active model instances, we created diagrams shown 
in Figure 9 and Figure 10, respectively. In Figure 9, 
we have two functions displayed, for average time 
needed for reading an active model instance from 
XML file (a line with triangles) and from the active 
database (a line with circles). The time needed to 
complete the task linearly depends on the number 
of elements. Reading active model instances is not 
affected by amount of historical data. Inserting CIM 
instance into a database is also linearly dependent, as 
it is presented in Figure 10. For model instances, with 
number of elements ranging from 500 up to 240.000, 
required time is from 1.7 up to 620 seconds. However, 

in comparison to saving it as XML files, it is notice-
ably slower, where required time is from 1.2 up to 2.5 
seconds, for the same instances. This is due to the fact 
that saving to XML files is done by serialization, while 
storing to database follows a complex table structure, 
as explained in Section 4.
As every change made on a model instance is tracked, 
for every operation we have one more action for re-
cording a before state. Thus we create a before group 
of changes. On average, changing a model instance, 
with tracking history, requires only 65% more time. 
Figure 11 shows the performance ratio when mod-
ifying a model instance with and without tracking 
changes, which is presented with circles and trian-

Figure 10 
Inserting a model into database and XML

Figure 9 
Reading a model from XML and from database

Figure 11
Making changes with and without history
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gles, respectively. For saving changes to database, 
with tracking history, ranging from 170 up to 86.000 
elements, required time is from 2.1 up to 740 seconds. 
Without tracking history, required time is from 1 up 
to 475 seconds, for the same instances. When saving 
to XML, required time is from 1.2 up to 4.2 seconds.
We have obtained such result by the application of our 
generated stored procedures for maintaining histori-
cal model instance while working with active model 
instance, as presented in Section 5. In this way, we are 
using full capabilities of the relational DBMS. In our 
experiments, on each model instance, various chang-
es have been made, and around 45% of all elements 
in a model instance have been affected. When saving 
CIM instance to the XML files, after applying chang-
es, performance is similar to that from Figure 10, be-
cause there is no tracking of changes.
To restore a model instance, as we explained in Sec-
tion 5, we must have a slice of changes. In Figure 12, 
we present the results of revert operations applied on 
a model instance, by means of the selected slice. Time 
needed to read the current model instance is shown 
with triangles, while time for its restoring is shown 
with circles. Firstly, the current model instance is read 
from active database, secondly a needed slice is read, 
and finally the slice is applied on the model instance – 
model is restored to a checkpoint of that slice. On aver-
age, after reading the model instance, 75% more time 
is needed to complete the restoration. This is possible 
because the time is not lost on searching for changes to 
revert, but simply reading the changes from the slice 
representing a corresponding checkpoint.

Now, we observe a number of lines of code being gen-
erated. In many examples, as it is in [18] and [2], it is 
provided a generation of 48% and 75% of total lines of 
code for their general-purpose solutions. We provide 
only a generation of API communication layer and 
database functions, and around 95% of total lines of 
code is generated. If we would consider other appli-
cation components, this number would be smaller. 
Nonetheless, we consider this as a good result, since 
there is a need to provide an efficient code generator 
in support of our methodological approach, which is 
in many aspects relatively complex.

7. Conclusion and Future work
In this paper, we present an approach to implementa-
tion of CIM instance storage in a relational database 
system, in order to provide efficient executions of op-
erations over model instances stored in the database.  
In our approach, we support both active and historical 
models of power grids. Thus, track change and restore 
operations, as complex and demanding in practice, are 
fully supported. In addition, we have developed a code 
generator to support an easy and efficient adaptation 
of the implemented database system to constantly 
emerging CIM changes. Finally, we have evaluated our 
system by measuring times needed to perform opera-
tions of saving a CIM instance, its reading, changing 
(with and without tracking changes), and restoring. By 
this, we believe that we may contribute to a wider ac-
ceptance of CIM in power grid networks.
Our future research will include: (i) development of 
a data warehouse system for reporting and data anal-
ysis; (ii) improving the code generator to include a 
component for graphical representation of CIM in-
stances and all states of CIM instances stored in the 
database system; and (iii) improving a code generator 
to provide a wider selection of implementation plat-
forms, including various DBMSs.
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Figure 12 
Reading from database and restoring the model
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Summary / Santrauka

The ongoing development of a complex model for power grid networks, based on the Common Information 
Model (CIM), is dealing with design, operability and exchange of data among various power grid operators. 
This paper presents a methodological approach to development of a database that supports an easy storing and 
managing of active CIM instances, as well as their historical versions. To facilitate the implementation of the 
proposed approach, we apply a paradigm of automatic programming. Our code generator eases the work on de-
veloping an API communication layer over the database and allows faster response on CIM changes. Finally, we 
present a performance cost analysis on test models. By this, our intention is to contribute to a wider acceptance 
of CIM in power grid networks.

Nenutrūkstamas kompleksinio elektros energijos tinklų modelio vystymas, pagrįstas Bendruoju informaci-
jos modeliu (CIM), siekia patobulinti modelio dizainą ir veiksmingumą bei duomenų keitimąsi tarp energijos 
tinklų operatorių. Straipsnyje pristatomas metodologinis duomenų bazės, palaikančios nesudėtingus aktyvių 
CIM kaupimo ir valdymo atvejus ir jų istorines versijas, sukūrimo būdas. Siekdami palengvinti siūlomo metodo 
įgyvendinimą, autoriai taiko automatinio programavimo paradigmą. Jų kodų generatorius palengvina darbą 
kuriant API ryšių sluoksnį per duomenų bazę ir leidžia greičiau reaguoti į CIM pokyčius. Galiausiai pristatoma 
ir bandomųjų modelių našumo sąnaudų analizė. Straipsnio autoriai siekia prisidėti prie platesnio CIM taikymo 
elektros energijos tinkluose.




