
321

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2016, T. 45, Nr. 3

Hybrid Metaheuristic Method for Solving a Multi-Period

Emergency Service Location Problem

Stefan Mišković

Faculty of Mathematics, University of Belgrade,

Studentski trg 16/IV, 11 000 Belgrade, Serbia

e-mail: stefan@matf.bg.ac.rs

Zorica Stanimirović

Faculty of Mathematics, University of Belgrade,

Studentski trg 16/IV, 11 000 Belgrade, Serbia

e-mail: zoricast@matf.bg.ac.rs

 http://dx.doi.org/10.5755/j01.itc.45.3.14041

Abstract. This study deals with the problem of establishing the network of emergency service units. The goal of

the basic problem proposed in the literature is to locate certain number of units at given discrete points of the region

and to allocate cities to established units, in order to balance the load of established emergency units. Having in mind

that emergency units work in shifts, we extend the basic model to a multi-period model and involve additional

constraints on the number of units to be located. Since, in practice, the number of emergency incidents varies on daily

or monthly basis, we consider the uncertainty of the number of incidents and propose a robust integer programming

formulation of the multi-period model, which controls the deviation of objective value under uncertainty of input data.

In order to solve both deterministic and robust variant of the problem, we design an efficient hybrid metaheuristic

method based on combination of Particle Swarm Optimization method (PSO) and Reduced Variable Neighborhood

Search (RVNS). Computational results show that the proposed hybrid PSO-RVNS method quickly reaches all known

optimal solutions obtained by CPLEX solver, and provides solutions for instances that remained out of reach of

CPLEX. In the single-period case, PSO-RVNS outperforms existing metaheuristic method from the literature in the

sense of CPU time. Short running times of PSO-RVNS and high-quality solutions indicate the efficiency of the

proposed hybrid metaheuristic approach when solving the considered problem. Results presented in this study may

help security experts and emergency managers to design an efficient and sustainable emergency system.

Keywords: emergency system; facility location problem; robust optimization; particle swarm optimization;

reduced variable neighborhood search.

1. Introduction

In this paper, we consider a generalization of the

problem of establishing the network of emergency

service units that was introduced by Stanimirović et

al. [33]. The authors of [33] deal with the problem of

designing the network of the Police Special Forces

Units (PSFUs) in the Republic of Serbia. A set of

potential locations for establishing PSFU units is

given, and a set of cities to be allocated to established

units. Each city is assigned the number of criminal

acts within its area, which was obtained from

statistical data over past years. The number of the

PSFUs to be located is limited by a given constant,

and according to the most common situation in

practice, it is assumed that each city will be assigned

to its closest established PSFU unit. The model

proposed in [33] also involves penalties in the case

that a city is assigned to a PSFU unit that lies outside

given range that ensures an efficient PSFU reaction.

Differently from studies that optimize emergency

service systems from customers’ point of view, i.e.,

minimize the maximum distance between customer

and service provider [8, 9, 11, 19], Stanimirović et al.

[33] deal with designing the network of emergency

units from providers’ point of view [5, 13, 26]. In

practice, emergency units are required to travel longer

distances than others to reach an assigned city, or to

react in cities with higher number of incidents, and

therefore, the workload of emergency units will be

mailto:stefan@matf.bg.ac.rs
mailto:zoricast@matf.bg.ac.rs

S. Mišković, Z. Stanimirović

322

most likely unequal. On the other side, all units are

generally equally paid, regardless of amount of their

workload during a shift. Therefore, the objective of

the model proposed in [33] is to minimize the

maximal load of a PSFU unit, while preserving the

efficiency of the emergency system. In the literature,

there are examples of location models that involve

workload balance of facilities in the objective [1, 16,

20, 21]. The balanced workload of facilities may be

used in long-term planning and designing public

services, such as health-care systems, determining

optimal locations of various public services within a

city area or a region, finding optimal locations of

telecommunication hubs, etc.

Since in practice, the number of incidents in each

city may vary from average values obtained from sta-

tistical data, it is necessary to take into account de-

mand uncertainties in emergency network model. Cap-

turing data uncertainty in deterministic models may be

achieved in different approaches that were proposed in

the literature in past years [7, 19, 27, 31, 36]. Starting

from deterministic PSFU location model, Stanimirović

et al. [33] also proposed a robust optimization model

that captures the uncertainty of the number of incid-

ents in each city. More precisely, in [33] it is assumed

that the coefficients representing the number of crimi-

nal incidents in are subject to uncertainty, and they are

modeled as independent, symmetric and bounded ran-

dom variables with unknown distribution.

In [33], both deterministic and robust models are

tested by CPLEX 12.5 commercial solver on the set of

real-life test instances including up to 165 cities and

234 potential PSFU sites, and different protection

levels. Obtained solutions are analyzed by security

experts from practical point of view. Since the largest

problem instance remained out of reach of CPLEX

12.5 solver, the Stanimirović et al. [33] also designed

an evolutionary-based algorithm (EA) that was enhan-

ced with a local search method (LS). The proposed

hybrid method EA-LS was benchmarked on the same

real-life data set. The results of computational experi-

ments presented in [33] showed that the proposed

hybrid method EA-LS quickly reached all known opti-

mal solutions and provided solutions for the instances

unsolved to optimality by CPLEX 12.5 solver. The

analysis on the impact of different protection levels on

the objective value increase was also presented.

In this study, we extend the model presented in

[33] to a multi-period problem of locating emergency

units, having in mind that emergency units usually

work in two or three shifts during the day. In addition,

we impose the upper limit on the number of the

available emergency units through all time periods and

the lower limits on the number of active units within

each considered period. We further allow the number

of emergency incidents to vary within each time

period and propose a robust formulation of the

deterministic multi-period model.

We also design a novel hybrid optimization

method for solving both deterministic and robust

variants of the considered problem. The proposed hy-

brid method is designed as a combination of Particle

Swarm Optimization method (PSO) and Reduced Va-

riable Neighborhood Search (RVNS). In each iteration

of the proposed PSO-RVNS method, a subset of solu-

tions obtained by PSO, are used as initial solutions for

the RVNS, in order to obtain further improvements.

Parameters of the PSO-RVNS are fine-tuned in order

to achieve the best performance of the algorithm.

The proposed hybrid PSO-RVNS approach is ben-

chmarked on single-period real-life problem instances

used in [33] and generated multi-period instances that

are derived from single-period ones. Results obtained

by th PSO-RVNS approach are compared with the re-

sults of EALS from [33] for solving deterministic and

robust variant of the single-period problem. Computa-

tional results clearly indicate the superiority of the

proposed PSO-RVNS method over existing EA-LS

heuristic in the sense of CPU times for problem

instances of larger dimension. For multi-period case,

most of the tested instances remained out of reach for

CPLEX solver, while the proposed PSO-RVNS con-

verges steadily to its best solutions, which coincide

with optimal solutions obtained by CPLEX (in cases

when optimal solutions are known). Short running

times of the PSORVNS (even in the case of the largest

considered instance) indicate the efficiency of the

proposed hybrid approach.

The rest of paper is organized as follows. In Sec-

tion 2, discrete optimization model of the multi-period

problem is presented. In Section 3, the discrete model

is extended to a robust optimization model that invol-

ves uncertainty of the number of emergency incidents.

Hybrid PSORVNS metaheuristic method is described

in Section 4. In Section 5, we present computational

results obtained on real-life problem instances for

single period case and compare them with the results

of EA-LS method from [33]. Results of computational

experiments for deterministic and robust multi-period

case are also presented in Section 5. Finally, in Section

6 we give the summary of obtained results and some

directions for future work.

2. Mathematical formulation of the multi-

period emergency units location problem

Let 𝐼 represent the set of cities, and 𝐽 the set of

potential locations for establishing emergency units.

Let 𝑇 denote the set of considered time periods (work

shifts of emergency units). As in [28], it is assumed

that 𝐼 ⊆ 𝐽 holds, meaning that an emergency unit may

be located in a city itself. Each city 𝑖 ∈ 𝐼 has assigned

values 𝑓𝑡𝑖 ≥ 0, 𝑡 ∈ 𝑇 representing the average number

of incidents in the city 𝑖 ∈ 𝐼 in a time period 𝑡 ∈ 𝑇.

For each pair of locations 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽, the dis-

tance 𝑑𝑖𝑗 is calculated as driving distance between

two locations. It is assumed that between each pair of

locations there is a direct link (road) connecting them.

Let 𝑐 represents the maximal driving distance between

a location of an emergency unit and a location of the

Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem

323

incident that allows the unit to react in a timely manner.

For each 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽, the following sets are defined:

 𝐶𝑖𝑗 = {𝑘 ∈ 𝐽: 𝑑𝑖𝑘 ≤ 𝑑𝑖𝑗}, 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 represents

the set of potential locations 𝑘 ∈ 𝐽 for which the

distance from location 𝑖 is less than or equal to

the distance from 𝑖 to 𝑗;

 𝐹𝑖𝑗 = {𝑘 ∈ 𝐽: 𝑑𝑖𝑘 > 𝑑𝑖𝑗}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 stands for

the set of potential locations 𝑘 ∈ 𝐽 for which the

distance from 𝑖 is greater than distance from 𝑖
to 𝑗;

 Note that 𝐶𝑖𝑗 ∪ 𝐹𝑖𝑗 = 𝐽 and 𝐶𝑖𝑗 ∩ 𝐹𝑖𝑗 = ∅ hold

for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽;

 𝑆𝑗 = {𝑖 ∈ 𝐼: 𝑑𝑖𝑗 ≤ 𝑐} , 𝑗 ∈ 𝐽 denotes the set of

locations 𝑖 ∈ 𝐼 for which the distance from

location j is less than or equal to 𝑐;

 𝐷𝑗 = {𝑖 ∈ 𝐼: 𝑑𝑖𝑗 > 𝑐}, 𝑗 ∈ 𝐽 represents the set of

locations 𝑖 ∈ 𝐼 for which the distance from lo-

cation 𝑗 is greater than 𝑐.

 Here 𝑆𝑗 ∪ 𝐷𝑗 = 𝐼 and 𝑆𝑗 ∩ 𝐷𝑗 = ∅ hold for all

𝑗 ∈ 𝐽.

For each time period 𝑡 ∈ 𝑇 , we introduce an

integer parameter 𝑘𝑡,𝑚𝑖𝑛 representing the minimum

number of emergency units to be located in time

period 𝑡 ∈ 𝑇 . The total number of established units

through all time periods is limited by integer 𝑘𝑚𝑎𝑥,

where 𝑘𝑚𝑎𝑥 ≥ ∑ 𝑘𝑡,𝑚𝑖𝑛𝑡∈𝑇 .

As in [33], for each pair 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 , a

parameter 𝑝𝑖𝑗 is involved, representing the penalty in

the case that a location 𝑖 ∈ 𝐷𝑗 is assigned to a unit at

location 𝑗. In order to avoid excessively large penalty

values, the value of parameter 𝑝𝑖𝑗 is calculated as:

𝑝𝑖𝑗 = min {
|𝑑𝑖𝑗−𝑐|

𝑐
, 1}.

The proposed multi-period emergency service

location model uses a continuous variable 𝑧𝑚𝑎𝑥
representing the objective function value, and two sets

of binary variables that indicate location and

allocation decisions. More precisely, binary variable

𝑦𝑡𝑗 , 𝑡 ∈ 𝑇 , 𝑗 ∈ 𝐽 indicates if an emergency unit is

established at location 𝑗 ∈ 𝐽 in a time period 𝑡 ∈ 𝑇:

𝑦𝑡𝑗 = {

1, emergency unit is established at

location 𝑗 in time period 𝑡
0, otherwise,

while binary variable 𝑥𝑡𝑖𝑗 indicates whether or not a

police unit established at location 𝑗 ∈ 𝐽 reacts on

incidents in a city 𝑖 ∈ 𝐼 for a time period 𝑡 ∈ 𝑇:

𝑥𝑡𝑖𝑗 = {

1, if in time period 𝑡 city i is assigned

to unit at location 𝑗 ,
0, otherwise.

The goal of the considered problem is to determine

locations for emergency units, such that the maximal

value of

∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗 + ∑ 𝑓𝑡𝑖(1 + 𝑝𝑖𝑗)𝑥𝑡𝑖𝑗

𝑖∈𝐷−𝐽 𝑖∈𝑆𝑗

for all 𝑡 ∈ 𝑇 and 𝑗 ∈ 𝐽 is minimized.

Having in mind the problem’s nature, it is assumed

that emergency incidents in each city are handled by

the nearest established emergency unit (single

allocation scheme and closest-assignment rule). In the

considered problem, no capacity restrictions and no

fixed costs for establishing units are involved. It is

also assumed that the performance rate of each

emergency unit is the same.

Using the notation and conditions mentioned

above, the mixed integer linear programming (MILP)

formulation of the multi-period emergency units

location problem may be written as:

min 𝑧𝑚𝑎𝑥 (1)

such that

∑ 𝑥𝑡𝑖𝑗 = 1
𝑗∈𝐽

 ∀𝑡 ∈ 𝑇 ∀𝑖 ∈ 𝐼, (2)

𝑥𝑡𝑖𝑗 ≤ 𝑦𝑡𝑗 ∀𝑡 ∈ 𝑇 ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽, (3)

𝑦𝑡𝑗 ≤ ∑ 𝑥𝑡𝑖𝑘𝑘∈𝐶𝑖𝑗
 ∀𝑡 ∈ 𝑇 ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽, (4)

∑ 𝑦𝑡𝑗 ≥ 𝑘𝑚𝑖𝑛,𝑡𝑗∈𝐽
 ∀𝑡 ∈ 𝑇, (5)

∑ 𝑡∈𝑇 ∑ 𝑦𝑡𝑗 ≤ 𝑘𝑚𝑎𝑥𝑗∈𝐽
, (6)

∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗𝑖∈𝑆𝑗
+ ∑ 𝑓𝑡𝑖(1 + 𝑝𝑖𝑗)𝑥𝑡𝑖𝑗 ≤ 𝑧𝑚𝑎𝑥𝑖∈𝐷𝑗

∀𝑡 ∈ 𝑇 ∀𝑗 ∈ 𝐽, (7)

𝑥𝑡𝑖𝑗 ∈ {0,1} ∀𝑡 ∈ 𝑇 ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽, (8)

𝑦𝑡𝑗 ∈ {0,1} ∀𝑡 ∈ 𝑇 ∀𝑗 ∈ 𝐽, (9)

𝑧𝑚𝑎𝑥 ≥ 0. (10)

By objective (1) and constraint (7), the maximal

load of established emergency units through all time

periods is minimized. Each city is assigned to exactly

one emergency unit location, which is ensured by (2).

Constraints (3)–(4) denote that each city is assigned to

its closest established unit. By constraints (5), lower

bounds on the number of located units in each time

period are given, while constraint (6) imposes the

upper bound on the number of established locations

through all time periods. Constraints (7) define lower

bounds on the value of objective variable 𝑧𝑚𝑎𝑥 .

Variables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑗 are binary (8)–(9), while

variable 𝑧𝑚𝑎𝑥 is nonnegative (10).

In the single-period case (|𝑇| = 1), index 𝑡 may be

omitted from variables 𝑥𝑡𝑖𝑗 and 𝑦𝑡𝑗 , 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 .

Parameters 𝑓𝑡𝑖 are then reduced to 𝑓𝑖 , 𝑖 ∈ 𝐼 , while

𝑘𝑚𝑖𝑛,𝑡 is reduced to 𝑘𝑚𝑖𝑛 . If the lower bound for

number of established units is set to zero (𝑘𝑚𝑖𝑛 = 0),

the MILP model (1)–(10) reduces to the MILP model

proposed by Stanimirović et al. in [33].

3. Robust variant of the problem

There are numerous examples of applying tradi-

tional optimization techniques when dealing with un-

certainty in emergency service design, such as sto-

chastic programming and optimization under probabi-

listic constraints [17–19, 27, 34, 36]. However, the

difficulties in applying stochastic programming arise

S. Mišković, Z. Stanimirović

324

when the exact distribution of input data is unknown,

which often happens when modeling real-life emer-

gency service problems. For optimization under pro-

babilistic constraints, the problem usually arises when

it is not possible to cover all scenarios that capture the

distribution of input data, even if all scenarios are

known. In this case, the size of resulting optimization

model increases drastically as a function of the

number of scenarios. This results in fact that optimal

solution can not be found due to time or memory

limits of computer resources.

Robust optimization [32] represents an alternative

approach to stochastic programming and optimization

under probabilistic constraints. It allows us to control

the degree of conservatism of the solution, and it is

computationally tractable both practically and theore-

tically, see [2, 3]. In robust models, random variables

are modeled as uncertain parameters belonging to a

convex or polyhedral uncertainty set, and the goal is to

protect the system against the worst case within the

uncertainty set [4].

In this study, we use robust optimization approach

to optimize the emergency system in the worst-case

situations that arise under uncertainty of number of

emergency incidents. The goal of robust model is to

protect the emergency system against the uncertainty

of the number of incidents 𝑓𝑡𝑖 that occur in city 𝑖 ∈ 𝐼

in time period 𝑡 ∈ 𝑇 . Therefore, the number of

incidents in a city 𝑖 ∈ 𝐼 in time period 𝑡 ∈ 𝑇 is

modeled as an independent and bounded random

variable, denoted as 𝑓𝑡𝑖 and it is assumed that it has

unknown distribution. Considering the nature of the

problem, we are interested in cases when 𝑓𝑡𝑖 may

decrease or increase from the nominal values 𝑓𝑡𝑖 .

However, without loss of generality, we may suppose

that 𝑓𝑡𝑖 ∈ [𝑓𝑡𝑖 , 𝑓𝑡𝑖 + 𝑓𝑡𝑖] , where 𝑓𝑡𝑖 ≥ 0 , 𝑖 ∈ 𝐼 , 𝑡 ∈ 𝑇 .

Note that it is enough to consider the asymmetric

interval, since symmetric interval [𝑔𝑡𝑖 − �̂�𝑡𝑖 , 𝑔𝑡𝑖 + �̂�𝑡𝑖]

may be obtained from [𝑓𝑡𝑖 , 𝑓𝑡𝑖 + 𝑓𝑡𝑖] by introducting

substitutions 𝑔𝑡𝑖 = 𝑓𝑡𝑖 + �̂�𝑡𝑖 and 𝑓𝑡𝑖 = 2�̂�𝑡𝑖.

Let us observe the set 𝐺 = {(𝑡, 𝑖) ∈ 𝑇 × 𝐼: 𝑓𝑡𝑖 > 0

consisting of all pairs (𝑡, 𝑖) ∈ 𝑇 × 𝐼 for which the

number of incidents increases from the nominal value

𝑓𝑡𝑖. For robustness purposes, we introduce protection

level parameter Γ ∈ [0, |𝐺|] ∩ ℕ, which controls level

of robustness in the objective. In the case of Γ = 0, we

completely ignore the change in the number of

incidents, while in the case of Γ = |𝐺|, all possible

changes in the number of incidents are considered. In

general, for higher values of Γ, the level of robustness

is increased at the expense of higher objective values

[4].

Using the notation and assumptions from

deterministic model (1)–(10), the robust mathematical

model of the considered multi-period emergency units

location problem is given as follows:

(1), under constraints (2)–(6), (8)–(10) and

𝑞𝑡𝑗 ≤ 𝑧𝑚𝑎𝑥 ∀𝑡 ∈ 𝑇 ∀𝑖 ∈ 𝐼, (11)

where

𝑞𝑡𝑗 = ∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗𝑖∈𝑆𝑗
+ ∑ 𝑓𝑡𝑖(1 + 𝑝𝑖𝑗)

𝑖∈𝐷𝑗
+

max
𝑃⊂𝐺:|𝑃|≤Γ

∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗(𝑡,𝑖)∈𝑃
 (12)

We now formulate Theorem 1 that will be used to

present mathematical formulation of robust multi-

period emergency units location model.

Theorem 1. Consider the nominal Integer Progra-

mming (IP) problem

min ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽
,

∑ 𝑎𝑖𝑗𝑥𝑗𝑗∈𝐽
≤ 𝑏𝑗 ∀𝑖 ∈ 𝐼,

𝑥𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽.

Let 𝐽𝑖 , 𝑖 ∈ 𝐼 represent the set of coefficients 𝑎𝑖𝑗 , 𝑗 ∈ 𝐽𝑖

that are subject to uncertainty, i.e., 𝐽𝑖 = {𝑗 ∈ 𝐽: �̂�𝑖𝑗 >

0}. Let integer parameters 𝛤𝑖 ∈ [0, |𝐽𝑖|], 𝑖 ∈ 𝐼 denote

protection levels for the i-th constraint. The IP

problem

min ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽 ,

∑ 𝑎𝑖𝑗𝑥𝑗𝑗∈𝐽
+ max

𝑆𝑖⊆𝐽𝑖:|𝑆𝑖|≤Γ𝑖

∑ �̂�𝑖𝑗𝑥𝑗𝑗∈𝑆𝑖
 ∀𝑖 ∈ 𝐼,

𝑥𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽

has an equivalent Mixed Integer Linear Programming

(MILP) formulation:

min ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽
,

∑ 𝑎𝑖𝑗𝑥𝑗𝑗∈𝐽
+ 𝑧𝑖Γ𝑖 + ∑ 𝑝𝑖𝑗𝑗∈𝐽𝑖

≤ 𝑏𝑖 ∀𝑖 ∈ 𝐼,

𝑧𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑗 ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽𝑖,

𝑝𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽𝑖,

𝑧𝑖 ≥ 0 ∀𝑖 ∈ 𝐼,

𝑥𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽.

It is easy to see that the presented theorem follows

directly from the Theorem 1 given in [4]. Finally,

having in mind Theorem 1, the robust variant of the

multi-period emergency units location model may be

formulated as:

(1), subject to (2)–(6), (8)–(10) and

∑ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗𝑖∈𝑆𝑗
+ ∑ 𝑓𝑡𝑖(1 + 𝑝𝑖𝑗)𝑥𝑡𝑖𝑗𝑖∈𝐷𝑗

+ Γ𝑧 +

∑ 𝑟𝑖𝑖∈𝐺 ≤ 𝑧𝑚𝑎𝑥 ∀𝑡 ∈ 𝑇 ∀𝑗 ∈ 𝐽𝑖, (13)

𝑧 + 𝑟𝑖 ≥ 𝑓𝑡𝑖𝑥𝑡𝑖𝑗 ∀𝑡 ∈ 𝑇 ∀𝑖 ∈ 𝐺 ∀𝑗 ∈ 𝐽, (14)

𝑧 ≥ 0, (15)

𝑟𝑖 ≥ 0 ∀𝑖 ∈ 𝐺. (16)

Note that the robust model (1), subject to (2)–(6),

(8)–(10) and (13)–(16) represents a generalization of

the robust model proposed in [33].

4. Proposed hybrid metaheuristic method

Hybrid metaheuristics showed to be promising

approaches for solving numerous optimization prob-

Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem

325

lems [6, 35]. In the literature, one of the most popular

strategies to develop a hybrid metaheuristic method is

to combine a population-based approach and a variant

of a local search heuristic [20, 22, 25, 28]. In general,

population-based heuristics offer more facilities for

exploration, while local search methods provide more

capabilities for exploitation. However, it is important

to achieve a good balance between exploitation and

exploration strategies, such that the resulting hybrid

method provides high-quality solutions in reasonably

short running times [6, 25].

In this paper, we present a hybrid metaheuristic

method that is obtained by combining a Particle

Swarm Optimization (PSO) as a population-based

heuristic, and a Reduced Variable Neighbourhood

Search (RVNS) as a local search heuristic. The

proposed PSO-RVNS works over population 𝑁𝑟 ,

consisting of |𝑁𝑟| solutions. In each iteration of the

algorithm, solutions are evaluated and ranked in

respect to their objective values. The objective

function calculation is designed and implemented such

that PSO-RVNS successfully solves both deterministic

and robust variant of the problem. The PSO method is

applied only to less-quality solutions from 𝑁𝑟 , while

high-quality solutions 𝑁𝑒 ⊂ 𝑁𝑟 are directly passed to

the RVNS part of the hybrid method. The RVNS

heuristic is applied to all solutions from the set 𝑁𝑟 ,

looking for their improvements. Described steps are

repeated until a stopping condition is satisfied. The

described way of combining PSO and RVNS methods

takes advantage of good sides of both constructive

heuristics. The basic structure of the proposed PSO-

RVNS hybrid method is presented in Algorithm 1.

Algorithm 1. The basic structure of the PSORVNS method

1: Read input

2: while stopping condition is satisfied do

3: 𝑖 ← 𝑖 + 1

4: Calculate objective function value of the solutions

from 𝑁𝑟

5: Choose the set of high quality solutions 𝑁𝑒 from 𝑁𝑟

6: Apply PSO to all solutions from the set 𝑁𝑟 ∖ 𝑁𝑒

7: for 𝑟 ∈ 𝑁𝑟 do

8: Apply RVNS to solution r

9: end for

10: end while

11: Write output

4.1. Representation of solutions

Each solution from the set 𝑁𝑟 is assigned an infor-

mation on locations of established emergency units in

each time period. It is represented by a binary array of

length 𝑁, where 𝑁 = |𝑇| ⋅ |𝐽|. The binary array consi-

sts of |𝑇| segments of length |𝐽|, where each segment

𝑡 ∈ {1, … , |𝑇|} corresponds to one time period. If loca-

tion 𝑗 is opened in a period 𝑡, the ((𝑡 − 1) ⋅ |𝐽| + 𝑗)-th

bit in the array takes the value of 1, and 0 otherwise.

A solution is denoted as feasible if

 the number of bits in the 𝑡-th segment of its

code is greater than or equal to 𝑘𝑡,𝑚𝑖𝑛, and

 the total number of bits with the value of 1 is

less than or equal to 𝑘𝑚𝑎𝑥.

For example, for |𝑇| = 3 , |𝐽| = 3 , 𝑘1,𝑚𝑖𝑛 =
𝑘2,𝑚𝑖𝑛 = 𝑘3,𝑚𝑖𝑛 = 1 and 𝑘𝑚𝑎𝑥 = 4, a solution to the

problem is represented as |100|010|010|. In the first

period, an emergency unit is established at location 1,

while in the second and third period, emergency unit

established at location 2. The solution is feasible, sin-

ce the sum of all bits with the value of 1 is equal to 3

(which is less than 𝑘𝑚𝑎𝑥), while each time period

contains at least 𝑘𝑡,𝑚𝑖𝑛 = 1 established unit.

4.2. Objective function calculation

The indices of locations with established emer-

gency units for each time periods are read from the

solution’s code. After that, its objective function value

in the case the deterministic model is calculated

through the following steps:

Step 1. For each time period 𝑡 ∈ {1, … , |𝑇|} , create

the subset of locations 𝐸𝑡 = {𝑗 ∈ 𝐽 :

emergency unit is established at 𝑗 in time

period 𝑡};

Step 2. For each city i and each time period 𝑡, assign

the city 𝑖 is to a unit at location 𝑗 ∈ 𝐸𝑡, such

that the distance 𝑑𝑖𝑗 is minimal. If there is

more than one location 𝑗 ∈ 𝐸𝑡 such that the

distance 𝑑𝑖𝑗 is minimal, randomly choose one

of them;

Step 3. Let 𝑤𝑡𝑗 represent the workload of an esta-

blished unit at location 𝑗 ∈ 𝐸𝑡. Set 𝑤𝑡𝑗 = 0;

Step 4. For all cities 𝑖 that are assigned to 𝑗 ∈ 𝐸𝑡

a) if 𝑑𝑖𝑗 ≤ 𝑐, increase 𝑤𝑡𝑗 by the value of 𝑓𝑡𝑖;

b) if 𝑑𝑖𝑗 > 𝑐 , increase 𝑤𝑡𝑗 by the value of

𝑓𝑡𝑖(1 + 𝑝𝑖𝑗);

Step 5. Set the objective function value to

max {𝑤𝑡𝑗: 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽}.

The complexity of objective function calculation

in the deterministic case is equal to 𝑂(|𝑇| ⋅ |𝐼| ⋅ |𝐽|).

Once the objective function value of the solution

to the deterministic case (Γ = 0) is calculated, the

corresponding objective function value for the robust

case (F > 0) may be obtained in an efficient manner

by using the result of the following theorem.

Theorem 2. Let 𝑓1, 𝑓2, . . . , 𝑓𝑛, 𝑓𝑛+1 be the nonnegative

real parameters such that 𝑓1 ≥ 𝑓2 ≥ ⋯ ≥
𝑓𝑛 ≥ 𝑓𝑛+1 = 0 holds, and let 𝛤 be a posi-

tive integer parameter 𝛤 ∈ {0, 1, … , 𝑛 }. If

𝑧 + 𝑟𝑖 ≥ 𝑓𝑖 , 𝑖 = 1, … , 𝑛 holds for

𝑧, 𝑟1, 𝑟2, … , 𝑟𝑛 ≥ 0, then the minimal value

of function 𝐹𝛤: ℝ𝑛 → ℝ

S. Mišković, Z. Stanimirović

326

𝐹𝛤(𝑧, 𝑟1, … , 𝑟𝑛) = 𝛤𝑧 + ∑ 𝑟𝑖

𝑛

𝑖=1

 is achieved for 𝑧 = 𝑓𝛤+1.

The proof of Theorem 2 can be found in

Appendix A.

Let 𝐹𝛤
𝑚𝑖𝑛 represent the objective function value of

the robust model for the fixed protection level

parameter 𝛤 > 0 . Let array 𝑓𝑡𝑘𝑖𝑘
 , 1 ≤ 𝑘 ≤ 𝑀 , 𝑀 =

|𝑇| ⋅ |𝐼|, represent a permutation of 𝑓𝑡𝑖 , 𝑡 ∈ 𝑇 , 𝑖 ∈ 𝐼

such that

𝑓𝑡1𝑖1
≥ 𝑓𝑡2𝑖2

≥ ⋯ ≥ 𝑓𝑡𝑀𝑖𝑀
. (17)

From Theorem 2 and (13), it follows that

𝐹𝛤
𝑚𝑖𝑛 = 𝐹0

𝑚𝑖𝑛 + ∑ 𝑓𝑡𝑘𝑖𝑘

𝛤

𝑘=1
, (18)

which allows us to easily calculate objective value of

the solution to the robust model (with 𝛤 > 0) when

the objective value of the corresponding solution to

the deterministic model (𝛤 = 0) is known. Note that

similar conclusion may be applied for calculating

objective function value for the robust variant of the

problem proposed in [33].

4.3. Particle Swarm Optimization part

Particle swarm optimization method (PSO) is a

population-based metaheuristic, based on the idea of

swarm intelligence. Since 1995, when the concept of

PSO was introduced by Kennedy and Eberhart [14], it

has been applied to both continuous and discrete

optimization problems in a wide range of areas. An

overview of publications on applications of PSO to

various optimization problems may be found in [29].

The PSO works over a swarm X of particles mo-

ving in a N-dimensional search space (𝑁 = |𝑇| ⋅ |𝐽|).
Each swarm represents a candidate solution to the

problem. PSO shares many similarities with evolutio-

nary-based algorithms, but the main difference is that

PSO includes no variation operators (e.g. crossover,

mutation), and therefore, it is easier to implement

compared to EA. In spite the fact that the structure of

PSO is simpler than the structure of EA, the PSO still

provides good and efficient diversification of solutions

in the search space.

In this study, we design a variant of PSO that is

used as population-based part of the proposed hybrid

method. In each iteration of the hybrid algorithm, PSO

is applied only to the set of non-elite solutions from

the previous iteration. Therefore, the initial swarm of

particles X in each iteration is actually the set of non-

elite solutions 𝑁𝑟\𝑁𝑒 from the previous iteration of

the hybrid method. The percentage of elite individuals

represents a parameter that is experimentally adjusted

(see Section 5.1).

Each particle 𝑖 ∈ 𝑋 is assigned vectors 𝐱𝑖 ∈ ℝn

and 𝐯𝑖 ∈ ℝn, 𝑖 ∈ 𝑋. A N-dimensional binary vector 𝐱𝑖

represents the current position of a particle 𝑖 ∈ 𝑋 and

corresponds to a candidate solution in the search

space. The velocity of a particle is represented by a

N-dimensional vector 𝐯𝑖 with real coordinates that

take values from interval [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] , where 𝑣𝑚𝑖𝑛

and 𝑣𝑚𝑎𝑥 are predetermined parameters. If a coordi-

nate of the velocity vector 𝑣𝑖 exceeds 𝑣𝑚𝑖𝑛 or 𝑣𝑚𝑎𝑥, it

is reset to𝑣𝑚𝑖𝑛or 𝑣𝑚𝑎𝑥 , respectively. In addition, for

each particle 𝑖 ∈ 𝑋 , its best visited position in N-

dimensional binary vector 𝐩𝑖 is memorized. The best

and the second best position visited by whole swarm

are saved in N-dimensional binary vectors g and 𝐠′,
respectively.

In the initialization phase, the positions of particles

are set in accordance with non-elite solutions that are

subject to PSO. More precisely, the position vector 𝐱𝑖

of a particle 𝑖 ∈ 𝑋 is equal to the binary code of a non-

elite solution 𝑖 ∈ 𝑁𝑟\𝑁𝑒. Coordinates of velocity vec-

tor 𝐯𝑖, 𝑖 ∈ 𝑋 are obtained by uniform distribution from

[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]. Having in mind the nature of considered

problem, in the proposed PSO implementation, 𝑣𝑚𝑖𝑛

and 𝑣𝑚𝑎𝑥 are set to 0 and 1, respectively. Initial values

of vectors 𝐩𝑖, 𝑖 ∈ 𝑋, g and 𝐠′ are also calculated in this

step.

After the initialization phase, in each PSO itera-

tion, a particle 𝑖 ∈ 𝑋 successively adjusts its position

𝐱𝑖 in respect to the best position 𝐩𝑖 visited by itself,

and the best position visited by the whole swarm 𝐠. In

addition, inspired by idea presented in [30], we use the

second best global position 𝐠′ when adjusting a par-

ticle’s position. In [30] it is experimentally confirmed

that the variant of PSO that uses the second best glo-

bal position has better performance compared to the

standard PSO. Therefore, in each iteration, coordinates

of velocity change vector ∆𝑣𝑖,𝑙 of a particle 𝑖 are

calculated as:

∆𝐯𝑖,𝑙 = 𝑟𝑝𝑐𝑝(𝐩𝑖 − 𝐱𝑖) + 𝑟𝑔𝑐𝑔(𝐠 − 𝐱𝑖) +

𝑟𝑔′𝑐𝑔′(𝑔′ − 𝑥𝑖), 𝑙 = 1, 2, … , 𝑁, 𝑖 ∈ 𝑋.

Note that velocity change vector of a particle also

depends on a cognitive learning parameter 𝑟𝑝 , and

social learning parameters 𝑟𝑔 and 𝑟𝑔′.

Parameter 𝑟𝑝 represents the attraction that a partic-

le will fly toward its own success, while parameters 𝑟𝑔

and 𝑟𝑔′ denote the tendency that a particle will be

leaded by the success of the best and the second best

positioned particle in whole swarm, respectively. In

each PSO iteration, the values of parameters 𝑟𝑝, 𝑟𝑔 and

𝑟𝑔′ are chosen by uniform distribution from the

interval (0;1). The values of 𝑐𝑝, 𝑐𝑔 and 𝑐𝑔′ are taken

from paper by Shin and Kita [30]: 𝑐𝑝 = 𝑐𝑔 = 1.5, and

𝑐𝑔′ = 5, since they are experimentally determined in

[30]. Parameters 𝑐𝑝 , 𝑐𝑔 and 𝑐𝑔′ have constant values

through all PSO iterations.

In each PSO iteration, flying direction of a particle

𝑖 ∈ 𝑋 is calculated as:

𝐯𝑖,𝑙 ← {

1, if 𝐯𝑖,𝑙 + ∆𝐯𝑖,𝑙 > 1,

0, if 𝐯𝑖,𝑙 + ∆𝐯𝑖,𝑙 < 0,

𝐯𝑖,𝑙 + ∆𝐯𝑖,𝑙 otherwise.

Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem

327

After we obtain the flying direction of particle

𝑖 ∈ 𝑋 , a new particle position is calculated as 𝐱𝑖 =
𝐱𝑖 + 𝐯𝑖 . Since we are dealing with discrete problem

with binary variables, the velocity of a particle is

associated with the probability that a bit in a particle’s

position vector will take the value of 1. Therefore, a

sigmoid function 𝑆(𝑣) = 1/(1 + 𝑒−𝑣) is used to

normalize the coordinates of velocity vector into

interval [0,1] , see [15]. A random number r is

generated uniformly from (0,1), and the coordinates

of position vector 𝑥𝑖,𝑙 , 𝑙 = 1, 2, … , 𝑁 of particle 𝑖 ∈ 𝑋

are adjusted as follows:

𝐱𝑖,𝑙 ← {
1, if 𝑟 < (1 + 𝑒−𝑣𝑖,𝑙)−1,
0, otherwise.

In this way, it is ensured that 𝑥𝑖,𝑙 ∈ {0, 1} , 𝑙 =
1, 2, … . , 𝑁 for the adjusted position of particle 𝑖 ∈ 𝑋.

Note that it may happen the new particle position

𝐱𝑖 may correspond to an infeasible solution. This

situation will occur if the total number of bits 𝑥𝑖,𝑙, 𝑙 =
1, 2, … . , 𝑁 with the value of 1 is greater than 𝑘𝑚𝑎𝑥, or

if for some 𝑡 ∈ {1, 2, … , |𝑇|}, the number of bits 𝑥𝑖,𝑙

with the value of 1 in the t-th segment of 𝐱𝑖 is smaller

than 𝑘𝑚𝑖𝑛,𝑡. If the total number of bits with the value

of 1 is 𝑘, where 𝑘 > 𝑘𝑚𝑎𝑥, we randomly choose 𝑘 −
𝑘𝑚𝑎𝑥 coordinates 𝑥𝑖,𝑙 with the value of 1 and invert

them to 0. Similarly, if number of bits with the value

of 1 in the t-th segment is 𝑘𝑡 , where 𝑘𝑡 < 𝑘𝑚𝑖𝑛,𝑡 ,

exactly𝑘𝑚𝑖𝑛,𝑡 − 𝑘𝑡 randomly chosen coordinates with

the value of 0 are inverted to 1.

If a particle 𝑖 ∈ 𝑋 has moved to a better position 𝐱𝑖

compared to its best local position, vector 𝐩𝑖 is

updated with 𝐱𝑖. If the new best local position is better

than the best global one, the best global position 𝐠 of

the swarm is updated. The second best global position

𝐠′ is also updated, if necessasry.

4.4. Reduced Variable Neighborhood Search part

Variable neighborhood search (VNS) is a metah-

euristic method proposed by Mladenović and Hansen

in [23]. The basic idea of VNS is systematic change of

neighborhood within a local search. In general, VNS

sequentially explores neighborhoods of the current

solution looking for a better solution, and moves from

the current solution to its neighbour if an improvement

was made. The summary of VNS applications to

various optimization problems and its hybrids with

other optimization techniques can be found in [35].

Let 𝑈𝑙(𝑟) denotes the set of solutions belonging to

the l-th neighborhood of the current solution 𝑟, where

𝑙𝑚𝑎𝑥 denotes the number of different neighborhood

structures. Assuming that 𝑙 is initially set to 1, the

basic VNS procedure typically consists of the follo-

wing three phases:

 Shake – generate a random solution 𝑟′ from the

l-th neighborhood of the current solution 𝑈𝑙(𝑟);

 Local search – apply a local search method

starting from the randomly generated solution

𝑟′ ∈ 𝑈𝑙(𝑟) and find a local optimum in 𝑈𝑙(𝑟);

 Move – if the local optimum is better than the

current solution, move there and set 𝑙 ← 1 .

Otherwise, set 𝑙 ← 𝑙 + 1.

These steps are repeated until 𝑙 = 𝑙𝑚𝑎𝑥. The initial

VNS solution is randomly generated, but it also may

be obtained by the means of some other heuristic. In

this way, it is ensured that VNS starts the search from

a good quality solution.

In cases that local search is costly, the acceleration

of VNS may be achieved by completely omitting the

local search phase. This is the basic idea behind the

variant of VNS, denoted as Reduced Variable

Neighborhood search (RVNS). In RVNS, solutions are

chosen at random in successive neighborhoods of the

current solution, and the search is restarted each time

when an improvement is obtained (see [12]). In this

paper, we have used Reduced Variable Neighborhood

Search instead of basic VNS, in order to achieve

improvements within short running times. The results

of preliminary experiments showed that the idea of

omitting local search drastically reduced running time

of the hybrid PSO-RVNS, while the solution quality

was preserved.

The RVNS method is applied each iteration of the

proposed hybrid algorithm. Let us consider a solution

𝑟 to the problem, and let (𝑡, 𝑗), 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 denote a

bit on ((𝑡 − 1) ⋅ |𝐽| + 𝑗) -th position in the code of

solution r. Neighbourhood structures 𝑈𝑙(𝑟), 𝑙 = 1,2,3

used in this paper are as follows:

 𝑈1(𝑟) – the set of solutions obtained from solu-

tion r by swapping two different bits (𝑡, 𝑖) and

(𝑡, 𝑗), 𝑖, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗 in the same code’s segment

𝑡 ∈ {1, … , |𝑇|};

 𝑈2(𝑟) – the set of solutions obtained from

solution r by swapping bits (𝑡1, 𝑖) and

(𝑡2, 𝑗), 𝑖, 𝑗 ∈ 𝐽 belonging to two different code’s

segments 𝑡1, 𝑡2 ∈ {1, … , |𝑇|}, 𝑡1 ≠ 𝑡2;

 𝑈3(𝑟) – the set of solutions obtained from the

solution r by inverting a randomly chosen bit
(𝑡, 𝑗), 𝑖 ∈ 𝐽 from a code’s segment 𝑡 ∈
{1, … , |𝑇|}.

The basic structure of the RVNS procedure used in

this study is presented by Algorithm 2. In each itera-

tion of the proposed hybrid method, the RVNS heuris-

tic is applied 10 times to each solution 𝑟 from the

population 𝑁𝑟 . A neighbor solution 𝑟′ is considered

better than solution 𝑟, if the objective function 𝑓(𝑟′) is

less than 𝑐𝑟 ⋅ 𝑓(𝑟). The value of parameter 𝑐𝑟 is adjus-

ted by using analysis of variance (see Section 5.1).

When generating a neighbor solution 𝑟 in the

Shaking phase of the RVNS, it is necessary to either

invert the bit values from 0 to 1, or from 1 to 0 in the

code of current solution 𝑟 . Instead of recalculating

objective function value of the generated neighbor

from the beginning, we take into consideration only

changes in objective value that resulted from inversion

of the particular bit of the current solution 𝑟 . The

applied strategy significantly reduced computational

time of the RVNS part.

S. Mišković, Z. Stanimirović

328

Algorithm 2. RVNS method

1: for each solution 𝑟 ∈ 𝑁𝑟 do

2: 𝑙 ← 1

3: 𝐰𝐡𝐢𝐥𝐞 𝑙 ≤ 𝑙𝑚𝑎𝑥 𝐝𝐨

4: Shaking: generate randomly solution 𝑟′ ∈ 𝑈𝑙(𝑟)

5: if 𝑓(𝑟′) ≤ 𝑐𝑟 ⋅ 𝑓(𝑟) then

6: 𝑟 ← 𝑟′

7: 𝑙 ← 1

8: else

9: 𝑙 ← 𝑙 + 1

10: end if

11: end while

12: end for

Let us assume that the value of ((𝑡 − 1) ⋅ |𝐽| + 𝑗)-

th bit in the code of current solution is changed from 1

to 0. It means that emergency unit at location 𝑗 in time

period 𝑡 is removed. Therefore, the sum of 𝑓𝑡𝑖 among

all cities 𝑖 that were assigned to the unit at location 𝑗

in time period 𝑡 becomes 0. Each city 𝑖 that was

assigned to the unit at location 𝑗 in time period 𝑡, is

now being assigned to the established unit at its

closest location 𝑗′ in the same time period. The value

of the workload of the unit at location 𝑗′ is further

updated. Since we only consider the set of cities that

were assigned to the unit at location 𝑗 in time period 𝑡,

the overall computational time of this step is reduced

from 𝑂(|𝑇| ⋅ |𝐼| ⋅ |𝐽|) to 𝑂(|𝐽𝑗| ⋅ |𝐽|).

Similarly, let us assume that the value of ((𝑡 − 1) ⋅

|𝐽| + 𝑗) -th bit in the code of current solution is

inverted from 0 to 1. This implies that emergency unit

at location 𝑗 in time period 𝑡 is now established. For

all cities 𝑖 ∈ 𝐼, we check if the value 𝑑𝑖𝑗 is less than

𝑑𝑖𝑘, where 𝑘 is the location of the closest established

emergency unit for city 𝑖 ∈ 𝐼 in time period 𝑡 ∈ 𝑇. If

𝑑𝑖𝑗 < 𝑑𝑖𝑘 holds, the city 𝑖 ∈ 𝐼 is now assigned to the

unit at location 𝑗 in time period 𝑡 . The workload of

location 𝑗 is increased by 𝑓𝑡𝑖 , while the workload of

location 𝑘 is decreased by the same value. As in

previous case, the overall computational time of this

step is 𝑂(|𝐼|).

4.5. Other aspects of the PSO-RVNS

Initial population, containing |𝑁𝑟| individuals, is

generated by uniform distribution, thus providing a

good diversity of the initial solutions. Infeasible in-

dividuals in the initial population are corrected to be

feasible, as described in Section 4.3. The PSO method

corrects infeasible solutions that might appear during

PSO iterations (see Section 4.3), while RVNS impro-

vement procedure is designed in such way that the

feasibility of the solutions is preserved.

In the proposed PSO-RVNS, we use the elitism in

generation replacement strategy. All individuals are

ranked according to their objective function value, and

the best fitted |𝑁𝑒| ones are selected as elite indivi-

duals. These individuals directly pass in the next PSO-

RVNS generation, and therefore, they do not need re-

calculation of the objective function value (since they

have been evaluated in one of previous generations).

In this way, we provide additional time-savings in

total CPU time. Remaining (non-elite) individuals are

replaced in the next generation. The percentage of

elite individuals is denoted as 𝑝𝑒𝑙 , which represents

one of the parameters of the algorithm that is experi-

mentally adjusted. The number of elite individuals
|𝑁𝑒| is calculated as the product 𝑝𝑒𝑙 ⋅ |𝑁𝑟| rounded to

the nearest integer.

If a duplicate individual appears during the algo-

rithm’s run, it is being removed by setting its objective

value to +∞ . In this way, we tend to preserve the

diversity of individuals and to prevent the premature

convergence of the algorithm. The PSO-RVNS stops if

the solution with the best objective value remains

unchanged through 𝑟𝑒𝑝 subsequent generations.

The number of individuals in the population |𝑁𝑟|,
the percentage of elite individuals in the population

𝑝𝑒𝑙 , and the stopping criterion parameter 𝑟𝑒𝑝 are

experimentally determined by using analysis of

variance (see Section 5).

5. Experimental analysis

All computational experiments in this study were

carried out on an Intel i5-2430M 2.4 GHz with 8 GB

RAM memory under Windows 7 operating system.

The CPLEX 12.1 commercial solver was employed to

obtain optimal solutions, if possible. The PSO-RVNS

implementation was coded in C++ programming

language. On each test instance, the proposed PSO-

RVNS was run 15 times.

In order to benchmark PSO-RVNS method, we

start from the real-life instances introduced in [33],

which are obtained from the network of Police Special

Forces Units (PSFUs) in the Republic of Serbia. These

instances involve geographical positions locations of

cities and potential locations for PSFUs in the

Republic of Serbia. The driving distances between the

cities and potential PSFU locations are calculated by

using given locations. The largest instance contains all

165 cities and 234 locations, while the smaller-size

instances are obtained by grouping cities and locations

that belong to one or more neighbor administrative

regions in Serbia. The average number of incidents on

a monthly basis 𝑓𝑖 for a city 𝑖 ∈ 𝐼 is obtained from the

data provided by the Statistical Office of the Republic

of Serbia, see [33].

In the single-period case (|𝑇| = 1), the PSORVNS

method was tested on instances i12, i6_7_8, i1_2_3_4

and i_all used in [33], and the obtained results were

compared with the EA-LS approach proposed in the

same paper. In order to benchmark PSO-RVNS for the

multi-period case, we have generated instances with

|𝑇| = 2 and |𝑇| = 3 periods by modifying instances

from [33].

In Table 1 we give the overview of test instances

used in our computational study. The first two colu-

Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem

329

mns contain the name of the instance and its descript-

tion, respectively. The name of a single-period instan-

ce is the same as in [33], while the name of a multi-

period instance includes the number of periods. For

example, i12_t2 denotes the instance with two periods

that is generated from instance i12 used in [33].

Column headings |𝐼|, |𝐽|, and |𝑇| in Table 1 represent

the number of cities, potential locations and time

periods, respectively. The values of 𝑓𝑡𝑖 are generated

in respect to the values of 𝑓𝑖 from [33]. For |𝑇| = 2,

the values of 𝑓𝑡𝑖 are in the ratio 1: 2, while for |𝑇| = 3,

the corresponding ratio is 1: 1: 2 . As in [33], it is

allowed that the values fti increase up to 5% from

their nominal values. For each instance presented in

Table 1, different values of 𝑘𝑚𝑎𝑥, and parameter Γ are

considered, while the values of parameters 𝑘𝑡,𝑚𝑖𝑛 ,
𝑡 ∈ 𝑇 are set to 1.

Table 1. Overview of test instances used in computational study

Table 2. The results of parameter analysis test

5.1. Calibration of the PSO-RVNS parameters

In order to attain best performance of the proposed

PSO-RVNS algorithm, we have performed experi-

mental analysis of several parameters:

 |𝑁𝑟| – the size of population;

 𝑐𝑟 – coefficient used in acceptance criterion for

the newly generated solution in RVNS part;

 𝑟𝑒𝑝 – the maximal number of subsequent

generations without improvement of the best

solution;

 𝑝𝑒𝑙 – the percentage of elite individuals in the

population.

A full factorial design experiment is conducted to

obtain the best combination of parameters [24]. The

levels of parameters used in the experiment are as

follows:

 parameter |𝑁𝑟| has two levels – 30 and 60;

 parameter 𝑐𝑟 has three levels – 1, 1.001 and

1.005;

 parameter 𝑟𝑒𝑝 has two levels – 1000 and 2000;

 parameter 𝑝𝑒𝑙 has two levels – 66:67% and

75%.

The total number of combinations is 2 ⋅ 3 ⋅ 2 ⋅ 2 =
24. In order to test all considered combinations, we

use the subset of four problem instances: i12,

i6_7_8_t2, i1_2_3_4_t3, and i_all. On each instance,

S. Mišković, Z. Stanimirović

330

PSO-RVNS algorithm was run 15 times for each com-

bination of parameters. For each considered instance

and each parameter combination, the best objective

value obtained by PSORVNS was memorized.

In Table 2, we present the results of the one-way

analysis of variance (ANOVA) for the conducted

experiments, see [24]. The column headings in Table 2

have the following meaning:

 Inst. – instance’s name;

 Par. – parameter that is being tested;

 SS – sum of squares between groups;

 DF – degrees of freedom between group;

 MS – mean of squares between groups;

 F – the value obtained by F-test;

 p – corresponding p-value.

Critical value used in the parameter analysis test is

set to 0.05. According to p-values presented in the last

column of Table 2, only parameter 𝑐𝑟 has some effect

on the objective value of the best PSO-RVNS solution

(see the results obtained for instances i6_7_8_t2 and

i_all). For instances i12 and i1_2_3_4_t3, each

combination of parameters leaded to the same result,

and therefore no parameter has significant effect when

testing these two instances. We may conclude that

parameters |𝑁𝑟|, 𝑟𝑒𝑝 and 𝑝𝑒𝑙 do not have significant

effect on the obtained PSO-RVNS results. In all cases,

the value of 𝑐𝑟 = 1.001 showed to be the best choice,

while the values of other three parameters are set to

|𝑁𝑟| = 30, 𝑟𝑒𝑝 = 1000, and 𝑝𝑒𝑙 = 75%.

5.2. Results and comparisons for single-period case

In this subsection we present the computational

results of the proposed PSO-RVNS for single-period

case and compare them with the results of EA-LS

method from [33] and CPLEX 12.1 commercial sol-

ver. The results and comparisons on the set of instan-

ces with |𝑇| = 1 period, different values of 𝑘𝑚𝑎𝑥 and

protection parameter Γ are presented in Tables 3 – 7.

The meaning of the column headings through these

tables are as follows:

 𝑘𝑚𝑎𝑥 – maximal number of locations to be

established;

 Γ – the value of parameter controlling the level

of robustness;

 Sol. – the objective value of optimal solution

(obtained by CPLEX 12.1) or best-known

solution (when no optimal solution is known);

 𝑡𝐶𝑃𝐿𝐸𝑋[𝑠] – running time of CPLEX 12.1

solver for the robust model from [33];

 𝑡𝐶𝑃𝐿𝐸𝑋
𝑖𝑚𝑝𝑟

[𝑠] – running time of CPLEX 12.1

obtained the robust model from [33] when

using Theorem 2;

 EA-LSbest – the objective value of the best EA-

LS solution, with mark opt or best when it

coincides with the objective value of optimal or

best known solution, respectively;

 PSO-RVNSbest – the objective value of the best

PSO-RVNS solution, with mark opt or best

when it coincides with the objective value of

optimal or best known solution, respectively;

 𝑡𝐸𝐴−𝐿𝑆[𝑠] – average time (in seconds) for

which EA-LS produced its the best solution;

 𝑡𝑃𝑆𝑂−𝑅𝑉𝑁𝑆[𝑠] – average time (in seconds) for

which PSO-RVNS method produced its best

solution;

 Incr[%] – increment of the objective value of

the solution for the given level of robustness Γ.

In Table 3, the results for instance i12 and 𝑘𝑚𝑎𝑥 ∈
{3,4,5} are presented. Both EA-LS and PSO-RVNS

reached all optimal results previously obtained by

CPLEX 12.1 solver. From the values presented in

column Impr[%], it may be noticed that objective

function value increases as parameter Γ increases. For

example, for 𝑘𝑚𝑎𝑥 = 3, the increment of the objective

function ranges from 0% for Γ = 0 (no deviation of

𝑓𝑡𝑖) up to 10.919% for Γ = 17 (when all values of 𝑓𝑡𝑖

are changed). Similarly, for 𝑘𝑚𝑎𝑥 ∈ {4,5} , the

objective function value increases from 0% for Γ = 0

up to 15.232% for Γ = 17.

Table 3. Results and comparisons for instance i12 (single-period case)

Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem

331

Table 4. Results and comparisons for instance i6_7_8 (single-period case)

The average CPU time of EA-LS method for

instance i12 among all values of 𝑘𝑚𝑎𝑥 and Γ was 0.02

s, while the average running time of PSORVNS was

0.923 s. However, it should be mentioned that EA-LS

method was tested on a machine with Intel Core i7-

860 2.8 GHz processor and 8 GB RAM memory,

which has higher performances compared to the

computing machine used for experiments in this study

(Intel Core i5-2430M 2.4 GHz processor with 8 GB

RAM memory). Due to difference in computing plat-

forms, we have normalized the average computational

time of the EA-LS by using the approach described in

[10] and the data from http://www.cpubenchmark.net/.

The average normalized EA-LS running time

NAT(EA-LS) is equal to product of average EA-LS

time AT(EALS) multiplied by

𝑃𝐶𝑃𝑈𝑆(𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑒 𝑖7−860 2.8 𝐺𝐻𝑧)

𝑃𝐶𝑃𝑈𝑆(𝐼𝑛𝑡𝑒𝑙 𝐶𝑜𝑟𝑒 𝑖5−2430𝑀 2.4 𝐺𝐻𝑧)
.

where PCPUS stands for Passmark CPU Score. There-

fore, the calculated normalized average EALS running

time for instance i12 is 0.03 seconds, which is given in

the last row of Table 3 with mark *.

Note that in [33], the CPLEX 12.5 solver was

applied to the robust model involving |𝐼||𝐽| + |𝐽| +
|𝐺| + 2 constraints and 2|𝐼||𝐽| + |𝐺||𝐽| + |𝐼| + 3|𝐽| +
|𝐺| + 4 variables. From Theorem 2, it follows that

solutions for the robust case Γ > 0 can be easily

calculated by using solution that was previously

obtained for the deterministic case Γ = 0. Therefore,

in cases when Γ > 0, we use the results of Theorem 2

and employ CPLEX 12.1 solver on the model with
|𝐼||𝐽| + |𝐽| + 1 variables and 2|𝐼||𝐽| + |𝐼| + 3|𝐽| + 3

constraints. In order to investigate the effects of the

applied time-saving strategy when solving the robust

model, we have tested both variants by using CPLEX

12.1 solver on the same machine – Intel Core i5-

2430M 2.4 GHz processor with 8 GB RAM. By

comparing CPLEX 12.1 running times presented in

columns 𝑡𝐶𝑃𝐿𝐸𝑋[𝑠] and 𝑡𝐶𝑃𝐿𝐸𝑋
𝑖𝑚𝑝𝑟

[𝑠], it can be seen that

the use of Theorem 2 speeds up optimization process

and enables CPLEX 12.1 to produce optimal solutions

in significantly shorter CPU times. The average

running time of CPLEX 12.1 was 0.53 seconds when

solving the robust formulation from [33], while only

0.29 seconds was needed when using Theorem 2,

which is almost 2 times faster. The same strategy was

also used in the proposed PSO-RVNS method when

calculating objective function values for the robust

model. The PSO-RVNS uses the objective value of a

solution obtained for the deterministic case (Γ = 0) to

efficiently calculate the corresponding objective value

in the robust case (Γ > 0). For this reason, for each

considered instance, computational times of PSO-

RVNS obtained for the same value of parameter kmax

are the same for all Γ ∈ {0, … , |𝐼|}.

In Table 4, we present results for instance i6_7_8

and 𝑘𝑚𝑎𝑥 ∈ {10,11,12} in the same way as in Table 4.

Both EA-LS and PSO-RVNS methods reach optimal

solutions, which were previously obtained by CPLEX

12.1 solver. As in the case of instance i12, it may be

noticed that objective function value increases as the

value of parameter Γ increases. The highest increment

of the objective function value is obtained for Γ = 32:

for 𝑘𝑚𝑎𝑥 = 10 , the objective function value is

increased by 38.043%, while for 𝑘𝑚𝑎𝑥 = 11 and

𝑘𝑚𝑎𝑥 = 12 , the objective value is increased by

38.371% and 39.012%, respectively. The average

computational time of PSO-RVNS was 2.10 seconds,

while the EA-LS showed to be slightly faster, since its

normalized average running time was 1.9 seconds.

Time savings obtained by using Theorem 2 when

solving the robust model by CPLEX 12.1 are more

obvious in the case of instance i6_7_8. In average,

CPLEX 12.1 needed 110.8 seconds when solving

robust model from [33] for instance i6_7_8 among all

values of 𝑘𝑚𝑎𝑥 and Γ. However, when applying the

results of Theorem 2, CPLEX 12.1 needed only 8.1

seconds (in average), which is more than 13 times

faster.

In Table 5 we present the results obtained for insta-

nce i1_2_3_4 and 𝑘𝑚𝑎𝑥 ∈ {21,22,23} . The EA-LS

and PSO-RVNS methods were successful in reaching

S. Mišković, Z. Stanimirović

332

Table 5. Results and comparisons for instance i1_2_3_4 (single-period case)

optimal solutions provided by CPLEX 12.1. From the

last column, it may be noticed that objective function

value increases as parameter Γ increases. The highest

increment of the objective function value is obtained

for Γ = 62. For 𝑘𝑚𝑎𝑥 ∈ {21,22,23} objective function

value is increased up to 45.37%. The average CPU

time of PSO-RVNS method for instance i1_2_3_4

among all values of 𝑘𝑚𝑎𝑥 and Γ was 5.1 s, while the

normalized average CPU time of EA-LS was 0.9

seconds.

The proposed PSO-RVNS method shows its

advantages when the size of instances increases. The

results and comparisons for the largest instance i_all is

presented in Table 6. We have considered the same

values for parameter 𝑘𝑚𝑎𝑥 ∈ {4,24,36,48,60} as in

[33]. Note that in the case of instance i_all, CPLEX

12.1 solver was unable to provide optimal solutions

with the given time limit of 3 h. For 𝑘𝑚𝑎𝑥 = 4 ,

𝑘𝑚𝑎𝑥 = 36 , 𝑘𝑚𝑎𝑥 = 48 and 𝑘𝑚𝑎𝑥 = 60 , both PSO-

RVNS and EA-LS obtained the same (best-known)

solutions. However, for 𝑘𝑚𝑎𝑥 = 24 , the proposed

PSO-RVNS improved the best EA-LS solutions for all

0 ≤ Γ ≤ 165 . The PSO-RVNS was also superior

compared to the EA-LS regarding CPU times for the

largest instance i_all. The normalized average

computational time of EA-LS method for instance

i_all among all values of 𝑘𝑚𝑎𝑥 and Γ was 79.35

seconds, while the average computational time of the

proposed PSO-RVNS was 22.33 seconds, which is

around 3.5 shorter. From the last column, it may be

noticed that objective function value increases with

the increase of protection parameter Γ . The highest

increment of the objective function value is obtained

for Γ = 165: for 𝑘𝑚𝑎𝑥 = 4, 𝑘𝑚𝑎𝑥 = 24 and 𝑘𝑚𝑎𝑥 ∈
{36,48,60}, objective function value is increased by

10.985%, 47.395% and 48.354%, respectively.

The presented results for the single-period case

show that PSO-RVNS reached all optimal and best-

known solutions from [33]. In several cases of the

largest considered instance i_all, the proposed PSO-

RVNS improved best EA-LS solutions from the same

paper. Regarding CPU times, the EA-LS appears to be

more efficient than PSORVNS when solving small

size instances, while it outperformed EA-LS in the

terms of computational time for the largest instance

i_all. Computational results obtained with CPLEX

12.1 instance show significant improvements regar-

ding CPU times when using the results of Theorem 2.

5.3. Results for |𝑻| > 𝟏

In this subsection we present the results on PSO-

RVNS instances with |𝑇| = 2 and |𝑇| = 3 time

periods. For each instance, we consider the different

values of parameter 𝑘𝑚𝑎𝑥 . Similarly, as in the case

with one period, the objective values in the robust case

may be easily calculated by using the corresponding

values in the deterministic case. The values of the

parameter 𝑘𝑚𝑎𝑥 for each instance represent the

product of number of periods and value of 𝑘𝑚𝑎𝑥 for

corresponding instance with one period. For example,

for instance i12 with one period, the values of 𝑘𝑚𝑎𝑥

are 3, 4 and 5, for twoperiod instance i12_t2 the

considered values of 𝑘𝑚𝑎𝑥 are 6, 8 and 10, while for

three-period instance i12_t3, the values of 𝑘𝑚𝑎𝑥 are

equal to 9, 12 and 15, etc.

The results of of PSO-RVNS obtained on multi-

period instances in the deterministic case (Γ = 0) are

presented in Table 7. This table also contains optimal

solution obtained by CPLEX 12.1 solver and the

corresponding running time 𝑡𝐶𝑃𝐿𝐸𝑋
𝑖𝑚𝑝𝑟

[𝑠]. In cases when

CPLEX found no solution within the given time limit

of 3h, mark - is placed the corresponding row. When

PSO-RVNS reached optimal solution obtained by

CPLEX 12.1, it is denoted by mark opt. The remain-

der of the Table 7 follows the structure of tables from

the previous subsection. As it can be seen from

Table 7, CPLEX 12.1 provided optimal solutions for

15 out of 28 instances only. The proposed PSORVNS

method quickly reached all known optimal solutions,

but also provided solutions for 13 instances that

remained out of reach of CPLEX 12.1 solver. The

Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem

333

Table 6. Results and comparisons for instance i_all and 𝑘𝑚𝑎𝑥 ∈ {4,24,36,48,60} (single-period case)

average running time of PSO-RVNS on instances from

Table 7 was 53.3 seconds. As in deterministic case, the

increase of the objective function values follows the

increase of the protection parameter Γ.

Tables 8–9 show the results obtained for modified

instance i_all with |𝑇| = 2 and |𝑇| = 3 periods,

respectively. As it was expected, these instances could

not be solved to optimality by CPLEX 12.1 solver

within the given time limit of 3 hours. For all

instances from Tables 8–9 PSORVNS achieved its

best solutions in short CPU times. The average

running time of PSO-RVNS was 53.2 seconds for

i_all_t2 and 129.6 seconds for i_all_t3. The average

increase of the objective function value was 62.54%

and 85.23%, respectively.

Figure 1 shows the increment of the objective

function value as a function of parameter Γ in the case

of instance i12_t2. The function value increases for

S. Mišković, Z. Stanimirović

334

Table 7. Results of CPLEX and PSO-RVNS for instances with Γ = 0, |𝑇| = 2 and |𝑇| = 3 (multi-period case)

Table 8. Results of PSO-RVNS for instance i_all_t2 and

|𝑇| = 2 (multi-period case)

Table 9. Results of PSO-RVNS for instance i_all_t3 and

|𝑇| = 3 (multi-period case)

Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem

335

Figure 1. Change in the objective function value as a function of Γ for instance i12_t2

Figure 2. Change in the objective function value as a function of Γ for instance i12_t3

0 ≤ Γ ≤ 34, while for Γ ≥ 34 it remains unchanged.

We present the result graphically for two values of

parameter 𝑘𝑚𝑎𝑥: 6 and 10. For 𝑘𝑚𝑎𝑥 = 6, the highest

increment is obtained for Γ ≥ 34 and it is equal to

19.537. The value for 𝑘𝑚𝑎𝑥 = 10 is equal to 22.848.

The blue line shows the values for 𝑘𝑚𝑎𝑥 = 6, and the

red one for 𝑘𝑚𝑎𝑥 = 10.

Similarly, Figure 2 presents the increment of the

objective function value as a function of parameter Γ

in the case of instance i12_t3. The function value

increases for 0 ≤ Γ ≤ 51, while for Γ ≥ 51 it remains

unchanged. We present the result graphically for two

different values of pa rameter 𝑘𝑚𝑎𝑥: 9 (blue line) and

15 (red line). For 𝑘𝑚𝑎𝑥 = 9, the highest increment is

obtained for Γ ≥ 51 and it is equal to 26.049. The

value for 𝑘𝑚𝑎𝑥 = 15 is equal to 30.464.

6. Conclusions

This study introduces a generalization of the prob-

lem of emergency service location from [33]. Having

in mind that needs for emergency service may vary on

weekly or daily basis, we involve multiple periods in

the model proposed in [33]. In addition, we impose

lower bounds on the number of services to be located

in each period and the upper limit on the total number

of available emergency services through all periods.

Considering the nature of the problem, we further

propose a robust optimization model of the multi-

period problem which captures the uncertainty of

emergency incidents. It is assumed that input data

representing the number of incidents in the considered

city and time period are subject to uncertainty, and

they are modeled as independent and bounded random

variables with unknown distribution.

Both deterministic and robust variant of the multi-

period model are tested by CPLEX 12.1 solver on the

set of modified real-life instances [33]. In the case of

robust variant, we propose the strategy that speeds up

objective function calculation and therefore, significa-

ntly reduces the running time of CPLEX 12.1 solver.

In spite of the applied time saving strategy, the largest

problem instances remained out of reach for CPLEX

within the given time limit of 3h. Therefore, a hybrid

optimization approach (PSO-RVNS), based on combi-

nation of Particle Swarm Optimization (PSO) and

Reduced Variable Neighbourhood Search (RVNS), is

proposed. The elements of the proposed hybrid PSO-

RVNS are designed for the problem under conside-

ration and its parameters are experimentally adjusted

to obtain the best algorithm’s performance.

S. Mišković, Z. Stanimirović

336

The results of the conducted computational experi-

ments showed that the proposed PSO-RVNS quickly

reached all optimal solutions obtained by CPLEX 12.1

for both deterministic and robust variants of the

problem. In cases when optimal solutions are known,

the PSO-RVNS steadily converged to its best solution

in short CPU times. In the single-period case, it has

been shown that for largest problem instances, the

PSO-RVNS outperformed the EA-LS method from

[33] in the case of both solution quality and CPU

times. The analysis of the solutions obtained in the

robust case of the multi-period problem showed that

the value of objective function increases as the

protection level parameter Γ increases, as in the

single-period case.

Based on the presented results of computational

experiments, we conclude that the proposed PSO-

RVNS showed to be successful when solving both

deterministic and robust variant of the multi-period

emergency service location problem, and it represents

a promising approach that may be applied to similar

location problems. Some directions for future work

involve parallelization of the proposed PSO-RVNS

method and its hybridization with other heuristic or

exact optimization techniques.

Acknowledgement

This research was partially supported by Serbian

Ministry of Education, Science and Technological

Development under the grants no. 174010, 47017, and

044006.

References

[1] O. Baron, O. Berman, D. Krass, Q. Wang. The

equitable location problem on the plane. European

Journal of Operational Research, 2007, Vol. 183,

No. 2, 578–590.

[2] A. Ben-Tal, A. Nemirovski. Robust solutions to

uncertain programs. Operations Research Letters,

1999, Vol. 25, No. 1,1–13.

[3] A. Ben-Tal, A. Nemirovski. Robust solutions of linear

programming problems contaminated with uncertain

data. Mathematical Programming, 2000, Vol. 88,

411–424.

[4] D. Bertsimas, M. Sim. Robust discrete optimization

and network flows. Mathematical Programming, 2003,

Vol. 98, 49–71.

[5] M. Blais, S.D. Lapierre, G. Laporte. Solving a home-

care districting problem in an urban setting. Journal of

the Operational Research Society, 2003, Vol. 54,

1141–1147.

[6] C. Blum, J. Puchingerb, G.R. Raidl, A. Roli.
Hybrid metaheuristics in combinatorial optimization:

A survey. Applied Soft Computing, 2011, Vol. 11,

4135–4151.

[7] B. Boffey, R. Galvão, L. Espejo. A review of conges-

tion models in the location of facilities with immobile

servers. European Journal of Operational Research,

2007, Vol. 178, No. 3, 643–662.

[8] L. Brotcone, G. Laporte, F. Semet. Ambulance loca-

tion and relocation models. European Journal of Ope-

rational Research, 2003, Vol. 147, 451–463.

[9] M. S. Canbolat, M. von Massow. Locating emergen-

cy facilities with random demand for risk minimiza-

tion. Expert Systems with Applications, 2011, Vol. 38,

No. 8, 10099–10106.

[10] J. J. Dongarra. Performance of Various Computers

Using Standard Linear Equations Software. CS-89-85s,

University of Manchester, 2014.

[11] J. B. Goldberg. Operations research models for the

deployment of emergency services vehicles. EMS

Management Journal, 2004, Vol. 1, 20–39.

[12] P. Hansen, N. Mladenović. Variable neighborhood

search: Principles and applications. European Journal

of Operational Research, 2001, Vol. 130, 449–467.

[13] J. Kalcsics, S. Nickel, M. Schöder. Towards a unified

territory design approach – Applications, algorithms

and GIS integration. Top, 2005, Vol. 13, 1– 56.

[14] J. Kennedy, R. Eberhart. Particle Swarm Optimiza-

tion. In: Proceedings of IEEE International Conferen-

ce on Neural Networks, 1995, Vol. 4, 1942– 1948.

[15] J. Kennedy. The particle swarm: social adaptation of

knowledge. In: Proceedings of IEEE International

Conference on Evolutionary Computation, 1997,

303–308.

[16] D. G. Kim, Y. D. Kim. A branch and bound algorithm

for determining locations of long-term care facilities,

European Journal of Operational Research, 2010,

Vol. 206, 168–177.

[17] R. C. Larson. A hypercube queueing model for facili-

ty location and redistricting in urban emergency servi-

ce. Computers and Operations Research, 1974, Vol. 1,

67–95.

[18] F. V. Louveaux. Discrete stochastic location models.

Annals of Operations Research, 1986, Vol. 6, 87– 94.

[19] V. Marianov, C. ReVelle. Siting of emergency servi-

ces. In: Z. Drezner (ed). Facility Location: A Survey of

Applications and Methods. Springer Verlag, New York,

1995, 199–223.

[20] M. Marić, Z. Stanimirović, S. Božović. Hybrid meta-

heuristic method for determining locations for long-

term health care facilities. Annals of Operations

Research, 2015, Vol. 227, No. 1, 3–23.

[21] A. Marin. The discrete facility location problem with

balanced allocation of customers. European Journal of

Operational Research, 2011, 210(1), 27–38.

[22] S. Mišković, Z. Stanimirović. A Memetic Algorithm

for Solving Two Variants of the Two-Stage Uncapaci-

tated Facility Location Problem. Information Techno-

logy and Control, 2013, Vol. 42, No. 2, 1178–190.

[23] N. Mladenović, P. Hansen. Variable neighborhood

search. Computers and Operations Research, 1997,

Vol. 24, 1097–1100.

[24] D. C. Montgomery. Design and Analysis of Experi-

ments. 7th edition, New York: John Wiley & Sons.

[25] F. Neri, C. Cotta. Memetic algorithms and memetic

computing optimization: A literature review. Swarm

and Evolutionary Computation, 2012, Vol. 2, 1–14.

[26] W. Ogryczak. Inequality measures and equitable

approaches to location problems. European Journal of

Operational Research, 2000, Vol. 122, 374–39.

[27] L. Özdamar, E. Ekinci, B. Küçükyazici. Emergency

logistics planning in natural disasters. Annals of Ope-

rations Research, 2004, 129, 217– 245.

Hybrid Metaheuristic Method for Solving a Multi-Period Emergency Service Location Problem

337

[28] G. Palubeckis, D. Rubliauskas, A. Targamadzė Me-

taheuristic approaches for the quadratic minimum

spanning tree problem. Information Technology and

Control, 2010, Vol. 39, No. 4, 257–268.

[29] R. Poli. Analysis of the publications on the applica-

tions of particle swarm optimisation. Journal of Artifi-

cial Evolution and Applications, 2008, 685175, 1–10.

[30] Y. B. Shin, E. Kita. Search performance improvement

of Particle Swarm Optimization by second best particle

information. Applied Mathematics and Computation,

2014, Vol. 246, 346–354.

[31] L. V. Snyder. Facility location under uncertainty: a re-

view. IIE Transactions, 2006, Vol. 38, No. 7, 547–564.

[32] A. L. Soyster. Convex programming with setinclusive

constraints and applications to inexact linear pro-

gramming. Operations Research, 1973, Vol. 21,

1154–1157.

[33] Z. Stanimirović, I. Grujičić, D. Trifunović. Mode-

ling the Emergency Service Network of Police Special

Forces Units for High-Risk Law Enforcement Opera-

tions. INFOR: Information Systems and Operational

Research, 2014, Vol. 52, No. 4, 206–226.

[34] A. J. Swersey. The deployment of Police, Fire and

Emergency Medical Units. In: S.M. Pollock et al. (eds)

Handbooks in Operations Rresearch and Management

Science. Elsevier Science, Chapter 6, 151–200.

[35] E. G. Talbi. Metaheuristics: From Design to Imple-

mentation. Hoboken, New Jersey: Wiley & Sons, 2009,

385–454.

[36] X. Xu, Y. Qi, Z. Hua. Forecasting demand of commo-

dities after natural disasters. Expert Systems with

Applications, 2010, Vol. 37, No. 6, 431–437.

Received January 2016.

Appendix A. Objective function calculation for the case 𝚪 > 𝟎

For the objective function calculation in the case

𝛤 > 0, we use the results of Theorem 2.

Proof. (Theorem 2) Let us first assume that 𝑧 ≠
𝑓𝑘 holds for all 𝑘 , 1 ≤ 𝑘 ≤ 𝑛 + 1. Therefore, there

exists an index 𝑗 such that 𝑧 = 𝑓𝑗 − 𝑡, where 𝑡 > 0.

Let 𝑧′ = 𝑓𝑗 = 𝑧 + 𝑡 and 𝑟𝑖
′ = 𝑟𝑖 − 𝑡 , 1 ≤ 𝑖 ≤ 𝑛 . We

now have

𝑧′ + 𝑟𝑖
′ = (𝑧′ − 𝑡) + (𝑟𝑖

′ + 𝑡) = 𝑧 + 𝑟𝑖 ≥ 𝑓𝑖,(A.1)

and

𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) = Γ𝑧 + ∑ 𝑟𝑖
𝑛
𝑖=1

= Γ(𝑧′ − 𝑡) + ∑ (𝑟𝑖
′ + 𝑡)

𝑛

𝑖=1

= Γ𝑧′ + ∑ 𝑟𝑖
′𝑛

𝑖=1
+ (𝑛 − Γ)𝑡

= 𝐹Γ(𝑧′, 𝑟1
′, … , 𝑟𝑛

′) + (𝑛 − Γ)𝑡. (A.2)

Since 0 ≤ Γ ≤ 𝑛, it follows that

𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) ≥ 𝐹Γ(𝑧′, 𝑟1
′, … , 𝑟𝑛

′).

We may now conclude that it is enough to

consider the case when 𝑧 = 𝑓𝑘 for 𝑘 ∈ {1, … , 𝑛 + 1}.

Let 𝑧 = 𝑓𝑘 for some 𝑘 ∈ {1, … , 𝑛 + 1}.

In order to achieve the minimum of

𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛),

the following conditions need to be satisfied for all

1 ≤ i ≤ 𝑛:

𝑟𝑖 = {
𝑓𝑖 − 𝑧, if 𝑓𝑖 ≥ 𝑧,

0, if 𝑓𝑖 < 𝑧.
 (a.3)

From (A.3) it follows that

𝑟𝑖 = {
𝑓𝑖 − 𝑧, if 𝑖 ≤ k,

0, if i > k.
 (a.4)

We now rewrite 𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) as

𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) = ∑ 𝑟𝑖
𝑛
𝑖=1 + Γ𝑧

= ∑ (𝑓𝑖 − 𝑓𝑘) + Γ𝑓𝑘
𝑘
𝑖=1

= ∑ 𝑓𝑖
𝑘
𝑖=1 + (Γ − 𝑘)𝑓𝑘. (A.5)

The following cases may be distinguished:

1° If 𝑘 = Γ + 1, then

∑ 𝑓𝑖 + (Γ − 𝑘)
𝑘

𝑖=1
𝑓𝑘 = ∑ 𝑓𝑖 + (Γ − Γ − 1)𝑓Γ+1

Γ+1
𝑖=1

= ∑ 𝑓𝑖 + 𝑓Γ+1 − 𝑓Γ+1
Γ
𝑖=1

= ∑ 𝑓𝑖
Γ
𝑖=1 . (A.6)

2° If 𝑘 > Γ + 1, then

∑ 𝑓𝑖 + (Γ − 𝑘)𝑓𝑘
𝑘
𝑖=1 = ∑ 𝑓𝑖

Γ
𝑖=1

+ ∑ 𝑓𝑖
k
𝑖=Γ+1 + (Γ − 𝑘)𝑓𝑘

= ∑ 𝑓𝑖
Γ
𝑖=1 + ∑ (𝑓𝑖 − 𝑓𝑘)

𝑘

𝑖=Γ+1
. (A.7)

Since 𝑓𝑖 ≥ 𝑓𝑘 for all 𝑖 ∈ {Γ + 1, … , 𝑘} , for

𝑘 > Γ + 1 we have

∑ 𝑓𝑖
Γ
𝑖=1 + ∑ (𝑓𝑖 − 𝑓𝑘)

𝑘

𝑖=Γ+1
≥ ∑ 𝑓𝑖

Γ
𝑖=1 . (A.8)

3° If 𝑘 < Γ + 1, then

∑ 𝑓𝑖
k
𝑖=1 + (Γ − 𝑘)𝑓𝑘 = ∑ 𝑓𝑖

Γ
𝑖=1

− ∑ 𝑓𝑖
Γ
𝑖=k+1 + (Γ − 𝑘)𝑓𝑘 =

∑ 𝑓𝑖
Γ
𝑖=1 + ∑ (𝑓𝑘 − 𝑓𝑖)

Γ

𝑖=k+1
. (A.9)

Note that in this case for all 𝑖 ∈ {𝑘 + 1, … , Γ}, we

have 𝑓𝑘 ≥ 𝑓𝑖. Therefore, for 𝑘 < Γ + 1, we have

∑ 𝑓𝑖
Γ
𝑖=1 + ∑ (𝑓𝑘 − 𝑓𝑖) ≥ ∑ 𝑓𝑖

Γ
𝑖=1

Γ

𝑖=𝑘+1
 (A.10)

From cases 1° − 3° , we may conclude that the

minimal value of 𝐹Γ(𝑧, 𝑟1, … , 𝑟𝑛) = Γ𝑧 + ∑ 𝑟𝑖
𝑛
𝑖=1 is

obtained for 𝑧 = 𝑓Γ+1 , and it is equal to 𝐹𝛤
𝑚𝑖𝑛 =

∑ 𝑓𝑖
𝛤
𝑖=1 . ␄

