
Information Technology and Control 2017/1/46118

SBVR Based Natural Language
Interface to Ontologies

ITC 1/46
Journal of Information Technology
and Control
Vol. 46 / No. 1 / 2017
pp. 118-137
DOI 10.5755/j01.itc.46.1.13998
© Kaunas University of Technology

SBVR Based Natural Language Interface to Ontologies

Received 2016/01/20 Accepted after revision 2017/02/23

 http://dx.doi.org/10.5755/j01.itc.46.1.13998

Algirdas Šukys, Lina Nemuraitė, Rita Butkienė
Kaunas University of Technology, Department of Information Systems, Studentų St. 50-308, LT-51368 Kaunas,
Lithuania; e-mails: algirdas.sukys@ktu.lt, lina.nemuraite@ktu.lt, rita.butkiene@ktu.lt

Corresponding author: algirdas.sukys@ktu.lt

The semantic search over ontologies allows user to retrieve more relevant results comparing with ordinary
keyword based search systems. This type of search system is powered by ontologies and the most convenient
interface to ontologies is natural language interface. In this paper, we present multilingual SBVR standard
based natural language interface to ontologies, which allows writing questions based on concepts of SBVR vo-
cabulary and transforms them to SPARQL queries using model transformations. The solution can also be used
for questioning, when question mapping to ontology is not straightforward. The experimental evaluation of
correctness using Mooney Natural Language Learning Data showed results, similar to other natural language
interface solutions, answering questions in English and Lithuanian languages.
KEYWORDS: Natural language interface, semantic search, SPARQL, OWL ontology, SBVR business vocabu-
lary, SBVR questions, ATL, Acceleo.

Introduction
The amount of information on the Web grows con-
stantly nowadays. Information overload makes the
search process tedious. Traditional keyword based
Web search engines use HTML documents that are
intended to render information for humans and do
not represent semantics that computer can under-
stand. Although such search engines help to find in-
formation, they give redundant results with keyword
matches, leaving a lot of work for users to find rele-
vant information.

The Semantic Web idea [17] is based on understand-
ing the meaning of published information. The back-
bone of Semantic Web are ontologies that store enti-
ties representing real world objects, their relations,
properties, etc. The search over ontologies is called
semantic search. Due to capability to understand the
intent of user’s queries and even complex questions,
semantic search returns results that are more precise.
One of the challenges in developing a system with
semantic search function is an implementation of

119Information Technology and Control 2017/1/46

usable graphical user interface. After the Semantic
Web idea spread, a number of systems with interfac-
es to ontologies were created: Semantic Crystal [1],
Ginseng [24], QuestIO [2], FREyA [3], ORAKEL [5],
PANTO [20], Querix [8], etc. They vary from simple
SPARQL interfaces to more sophisticated natural
language interfaces (NLI). The study carried out by
E. Kaufmann and A. Bernstein [1] have showed that
various interfaces differ in their usability and users
prefer querying ontologies using full sentences in nat-
ural language (NL). This usability study revealed the
potential of NLIs for end-user access to the Semantic
Web - this type of interface proved most useful and
best-liked query interface.
The mandatory requirement of NLI is portability.
Portable NLI can be adapted for questioning different
ontologies. The process of adaptation is called config-
uration. It includes creating the lexicon and mapping
NL phrases with ontology resources. As this work is
time-consuming, most NLIs can be ported to different
ontologies without or with minimum configuration
efforts. In some situations, mapping can be complex.
Ontologies in the Semantic Web are processed by ma-
chines and their structure can differ from how ques-
tions are formulated (e.g., using n-ary relations [23]).
Therefore, robust NLI must have means to map NL
phrases with combination of ontology resources also.
Questioning, using regular NL sentences, seems not
difficult from the user’s perspective. On the other
hand, the ambiguity and complexity of NL makes it
difficult to interpret user’s questions by machine. An
important notion here is habitability. It is a term, pro-
posed by Watt [21], to define, how naturally and easy
a user can express his thoughts using language re-
strictions. There are three groups of techniques that
are usually used to deal with ambiguities of NL and
improve habitability [18]: automatic ambiguity re-
solving, based on heuristics and ontology reasoning;
clarification dialogues; query refinement.
Another feature that is taken into account in this paper
is ability to adjust NLI for questioning in different lan-
guages. According to [13], 26.3% of internet users use
English language and the rest part use other languages.
Therefore, multilingualism of NLI is important.
In this paper, we present SBVR based NLI solution.
Particular features of this solution is adaptability for
different languages and ability to answer questions
that cannot be directly mapped to the ontology. The

rest of the paper is structured as follows. Section 2
analyses existing NLIs to ontologies. Section 3 pres-
ents components of our solution. Sections 4 intro-
duces SBVR metamodel, SPARQL syntax metamodel,
and transformation rules of SBVR to SPARQL. Sec-
tion 5 presents the experimental evaluation. Finally,
Section 6 draws conclusions and describes directions
for future work.

The comparative analysis of existing
NLIs to ontologies
In this section, existing NLIs to ontologies, which
show promising results of answering questions, are
analysed. In order to find commonalities and differ-
ences, the joint method of agreement and difference is
used [25]. NLIs are analysed overviewing algorithms
of parsing and transforming questions to ontology
queries and compared on the following criteria: (1)
portability; (2) automatic configuration; (3) mapping
NL phrases with combination of ontology resources;
(4) automatic ambiguity resolving; (5) clarification
dialogs; (6) query refinement; (7) clear adaptability
for different languages. In further text, the criterion
number in parenthesis marks the mentions of anal-
ysed criterion.
The analysis starts from QuestIO [2]. This NLI does
not require any user training and allows writing En-
glish questions of any length and form. QuestIO is
portable (1), the lexicon is created automatically by
generating gazetteer list from morphologically nor-
malized ontological lexicalizations. Therefore, the ap-
proach can be applied for different ontologies without
configuration (2). QuestIO cannot map NL phrases
with combination of ontology resources (3).
Questions are interpreted identifying key concepts
and searching for relations between them based on
object properties of the ontology. The algorithm of
analysis and transformation of questions includes
the following steps: linguistic analysis, ontological
gazetteer lookup, transformation to SeRQL query,
executing query and displaying results. In the first
step, tokenization, POS tagging and morphological
analysis is performed. In the second step, annotations
for all mentions of ontological resources are created
from gazetteer list. In the third step, the most suitable

Information Technology and Control 2017/1/46120

interpretation is found. Finally, question is trans-
formed to query which is executed against the ontol-
ogy. Disambiguation (4) is performed using ontology
reasoning in order to derive all potential valid inter-
pretations of the question. To find the most suitable
interpretation, fuzzy string distance metrics and sim-
ilarity scores are used. Clarification dialogs (5) are not
used in this approach. However, it allows to refine the
set of returned documents [18] (6).
The next NLI is FREyA [4]. It allows a flexible for-
mulation of English questions, having no strict struc-
tures [3]. FREyA is designed by authors of QuestIO
to have better understanding of semantic meaning
of questions and provide concise answers. FREyA
is portable NLI (1), requiring no configuration. The
lexicon is derived from the semantic repository by
executing the set of SPARQL queries [18] (2). FREyA
cannot map NL phrases with combination of ontology
resources (3).
The algorithm of translating question to query com-
bines ontology reasoning and syntactic parsing. First
of all, ontology based annotations, called ontology
concepts (OC), are identified in the question. In the
next step, syntax tree is created. Certain words in the
syntax tree (e.g., nouns, noun phrases, etc.) are identi-
fied as potential ontology concepts (POC). The algo-
rithm iterates through all POCs and tries to map them
to OCs either automatically (4) or engaging the user
(5). If some POCs cannot be resolved, the algorithm
finds the closets OC for that POC by walking through
the syntax tree and generates suggestions using on-
tology reasoning. Suggestions are ranked using string
similarity metrics, synonyms, and other algorithms.
Clarification dialog is generated for user to select the
relevant suggestion. When all POCs are resolved, the
query is interpreted as a set of OCs and transformed
to SPARQL.
To improve habitability, FREyA also uses query re-
finement together with feedback mechanism. It al-
lows user to confirm, if question is interpreted cor-
rectly or reformulate it if needed (6).
ORAKEL is the system, capable to understand com-
posite semantic constructions, such as quantifica-
tions, conjunctions, and negations [5]. ORAKEL is
portable (1), but, unlike QuestIO and FREyA, it re-
quires configuration (2). The mapping of NL phras-
es with ontology is defined creating linguistic struc-

tures, called subcategorization frames (i.e., verbs with
their arguments). Part of the lexicon (including prop-
er names) is automatically generated from the under-
lying ontology. WordNet [6] is used to append lexicon
with synonyms. ORAKEL allows to relate subcatego-
rization frames with combination of several relations
in the ontology and answer questions that do not di-
rectly correspond to one relation in the ontology (3).
The parsing process includes syntactic analysis of
question and construction of semantic representa-
tion in terms of first order logic, enriched with query,
count, and arithmetic operators. The syntactic anal-
ysis is performed using logical description grammar.
First of all, parser selects elementary trees from the
lexicon for each token. Parse tree is produced com-
bining elementary trees. Then, the meaning of every
word in the parse tree is analysed, semantic repre-
sentation is created and translated into the query. In
ORAKEL, ambiguities are resolved automatically (4)
during parsing process. The algorithm selects only
those elementary trees that fulfil ontological restric-
tions. Clarification dialogs (5) and query refinement
(6) are not used in this approach.
PANTO [20] accepts English NL questions and is de-
signed to be portable (1) for different domain ontol-
ogies without manual configuration (2). The lexicon
is built automatically from ontology entities. As well
as in ORAKEL, proper names are written to the lex-
icon. Users can enter their own synonyms, it helps to
adapt system for specific domains. In this approach,
NL phrases cannot be mapped with combination of
ontology resources (3).
The parsing and transformation to SPARQL is per-
formed by the query translator. First of all, questions
are parsed using the statistical Stanford Parser [7].
Nominal phrase pairs (i.e., phrases or words and their
relationships expressed by verb phrases, prepositions,
etc.) are extracted from parse tree to form intermedi-
ate representation of question, called query triples.
Then, query triples are mapped to ontology triples us-
ing lexicon. Simultaneously, parse tree is analysed to
extract potential words for targets (i.e., variables after
SELECT keyword) and modifiers (i.e., information for
UNION and FILTER elements). Ontology triples, tar-
gets and modifies are finally used to generate SPAR-
QL query. Questions are disambiguated automatically

121Information Technology and Control 2017/1/46

(4), matching query triples to ontological triples. This
step is performed employing semantic matching (i.e.,
using WordNet [6]) and morphological matching (i.e.,
using string metrics and heuristic rules).
PANTO does not use clarification dialogs (5) or query
refinement (6).
Querix [8] is domain-independent NLI for the Se-
mantic Web to answer NL questions in English.
Querix is portable (1) and requires no manual config-
uration (2). The lexicon is constructed from the on-
tology automatically and is enriched using WordNet
[6]. Querix does not have means to map NL phrases
with combination of ontology resources (3).
The algorithm of question analysis starts from cre-
ating the syntax tree using Stanford Parser [7]. Word
categories of syntax tree are used to compose the que-
ry skeleton. Then, a small set of heuristic patterns
are used to identify triple patterns of question. After
finding possible triples in the skeleton and combining
them with ontology resources, SPARQL query is gen-
erated [8].
Querix does not try to resolve ambiguities of NL auto-
matically (4), but asks for user for clarifications using
dialogs (5). This approach does not use query refine-
ment (6).
AquaLog is portable (1) question answering sys-
tem [9], which interprets questions using terms and
structure of the ontology. Although Garcia et al. [9]
state that configuration time is negligible, AquaLog
requires manual configuration (2). However, it cannot

be configured to map NL phrases with combination of
ontology resources (3).
The analysis of NL question starts translating it into
a set of intermediate representations – query triples.
Further, relation similarity service (RSS) is used to
map query triples to ontology compliant triples. On-
tology compliant triples are used to generate SPARQL
query. Ambiguities are resolved automatically in RSS.
The algorithm uses knowledge, encoded in the ontol-
ogy and string metrics (4). Ambiguities can also be re-
solved interacting with users, using clarification dia-
logs (5). Query refinement (6) is not used in AquaLog.
The analysis is summarized in Table 1. It also includes
SBVR based NLI, presented in further sections.
During the analysis, it was not found information about
possibilities to adapt existing NLIs for different lan-
guages, what components are language dependent, etc.
All of the analyzed NLIs are portable. The lexicon of
NLIs is often created semi-automatically. Part of the
lexicon is generated from ontology lexicalization, and
the rest is created manually by user. However, most
NLIs do not have means to relate questions with com-
binations of several ontology relations.
For improving the habitability, most NLIs use algo-
rithms to solve ambiguities automatically using heu-
ristic rules or ontology reasoning. When ambiguities
cannot be resolved automatically, users are involved
showing clarification dialogs. FREyA additionally
uses query refinement to improve the correctness of
answering questions.

Table 1
Comparison of NLIs to ontologies

Criterion QuestIO FREyA ORAKEL PANTO Querix AquaLog SBVR based NLI

1. Portability + + + + + + +

2. Automatic configuration + + - + + - -

3. Mapping NL phrases with
combination of ontology resources - - + - - - +

4. Automatic ambiguity resolving + + + + - + +

5. Clarification dialogs - + - - + + +

6. Query refinement + + - - - - -

7. Clear adaptability for different
languages - - - - - - +

Information Technology and Control 2017/1/46122

SBVR based natural language
interface to ontologies
The created NLI to ontologies is based on the OMG’s
SBVR standard. SBVR is intended to specify business
vocabularies and business rules using structured nat-
ural language and allows querying software models by
writing questions. The foundation of SBVR is semi-
otic/semantic triangle, which is the theoretical basis
for SBVR’s linguistic based architecture and allows
separating the expression from meaning [10]. This
separation allows expressing same things different-
ly and in different languages. For example, the same
question written in different languages will have the
same meaning and will be interpreted equally.
Another reason of using SBVR is semantic richness of
SBVR specifications. It allows to describe generaliza-
tions of concepts, synonyms and use them for seman-
tic search. Furthermore, SBVR concepts can have
definitions given as rules that describe derivations
of those concepts. Such definitions formally specify
the derivation of concepts from other concepts, and
can support inferences [19]. We see a good potential
of SBVR definitions for bridging the gap between the
way in which that data are stored (i.e., the ontology
scheme) and the way, how user thinks about data and
formulates questions. It allows questioning facts us-
ing simple formulations even though they are stored
in more complex ontology structures (i.e., expressed
through several object properties, derived from val-
ues of data properties, etc.).
The main components of the solution are presented
in Figure 1.

The system accepts NL questions that are written and
analysed based on SBVR vocabulary, which is created
in a configuration phase, using SBVR Structured lan-
guage editor [22]. To help writing correct questions,
autocomplete is provided for users. Suggestions are
generated using SBVR vocabulary. This function is lan-
guage dependent and requires morphological library to
generate words in correct morphological form.
The analysis of questions is performed by question
analyzer. This component is language dependent. The
goal of the analysis is to find SBVR concept that ques-
tion is based on. It is performed taking the following
steps:
 _ Tokenization – question is splitted into separate

tokens;
 _ Morphological analysis – tokens are analyzed

morphologically by finding part of speech, lemma
and other information using morphological
analyzer. This step requires specific morphological
analyzer, such as Stanford parser [7] for English;

 _ Joining compound SBVR words – this step is
performed comparing tokens with words of SBVR
vocabulary. Compound SBVR words (e.g., large_
state, works_in, etc.) are searched in the question
and joined into a single token in the question.

 _ Identification of SBVR words – each token that is
found in SBVR vocabulary as term, verb or proper
name is marked as SBVR word.

 _ Clarification – clarification is used when some
words of the question are not recognized as SBVR
word and morphological analysis does not provide
any helpful information (e.g., word is name of place,
surname, etc.). User can clarify unrecognized word

Figure 1
Components of

SBVR based NLI

123Information Technology and Control 2017/1/46

as: (1) synonym of other SBVR vocabulary word;
(2) proper name of certain type; (3) stop word
that should be skipped in further interpretation.
Clarification dialog is also generated in cases of
ambiguities when several equal interpretations of
questions available. Certainly, some ambiguities
can be resolved using context. For example,
although Mississippi can mean state or river, but
in question What states border Mississippi? it is
obvious that state is meant.

 _ Identification of SBVR concept – this step is required
to find concept (i.e., general or verb concept) that
question is based on. Each interpretable question
must be based on one or more SBVR concepts. For
example, question What states border Illinois? is
based on SBVR verb concept state borders state, while
question Find cities is based general concept city.

Question analyzer also identifies the type of question
(simple questions, questions for counting, etc.) and
passes it as a parameter for query transformation
component to use appropriate transformation rules.
After analyzing question and identifying SBVR con-
cept, SBVR model of question is created by model
composer component. If the identified concept has
definition, that describes derivation rules of that con-
cept, model composer uses the derivation. In the final
step, SBVR model is transformed into SPARQL query

using model transformations. Model composer and
SPARQL transformation components are indepen-
dent from language. Metamodels and transformation
rules are presented in the following section.

Transforming SBVR questions to
SPARQL queries

SBVR metamodel for meaning of question
SBVR metamodel allows formulating three types
of meaning: concepts, propositions, and questions.
SBVR metamodel fragment to represent meanings
and detailed representation of questions is presented
in Figure 2.
The meaning of question is formulated using specific
SBVR semantic formulation – closed projection. Ac-
cording to the SBVR specification [10], a projection
returns a set of things that satisfy projection’s con-
straints. Projection introduces one or more variables to
represent types of results. They are defined by general
concepts that variables range over. For example, if one
wants to see a list of persons, projection introduces the
variable that ranges over general concept person.
A projection is constrained by a logical formulation,
which projects variables using first order logic. A con-

Figure 2
SBVR metamodel
for representing
meanings

Information Technology and Control 2017/1/46124

straining logical formulation is based on a verb concept.
Depending on the question, verb concept roles can be
bound to particular bindable targets – variables or indi-
vidual concepts to formulate particular meaning.

SPARQL 1.1 syntax metamodel
The SPARQL 1.1 syntax metamodel is based on the
W3C specification [11]. Although SPARQL has four
types of query (i.e., SELECT, ASK, DESCRIBE, and
CONSTRUCT), we use only SELECT queries. Fig-
ure 3 presents top-level elements of this query type:
SELECT clause, dataset clause, WHERE clause, and
solution modifier.

Figure 5
Structure of

WHERE clause

Figure 3
Structure of

SELECT query

Figure 4
Structure of

SELECT clause

The detalization of SELECT clause is presented in
Figure 4. It is used to declare variables to appear in
query results. It can be either simple variable or vari-
able expressed using counting, minimum, maximum,
or other aggregate functions.
WHERE clause is presented in Figure 5. It defines tri-
ple patterns that are used to formulate query results
and create bindings of variables, defined in SELECT
clause. Results are formed by matching triple pat-
terns with RDF graph.
WHERE clause is expressed by GroupGraphPattern-
Sub element and contains TriplesBlock, which holds
TriplesSameSubjectLeft elements, representing tri-

125Information Technology and Control 2017/1/46

ple patterns. This element has a structure of subject,
predicate, and object. In positions of subject and ob-
ject, variables or graph elements (e.g., IRI references,
blank nodes, RDF literals, numeric literals, Boolean
literals, etc.) can be used. In a position of predicate,
variables or IRI references, expressed by VerbPath
element, are used.
WHERE clause can have Filter elements, expressed
by GraphPatternNotTriples or FilterConstraint (see
Figure 6). Note that SPARQL specifications describe
many other types of filter constraints, such as func-
tions of data type conversions, IN, NOT IN operators,
aggregate, rounding functions, etc. In this model,
we only include those types of constraints that were
used in transformations for numeric comparison and
string matching.
The last part of SELECT query is solution modifier. It
is presented in Figure 7. This part is used after pattern
matching for the following reasons: (1) divide results
into smaller groups with GROUP BY modifier to cal-
culate aggregate values; (2) filter grouped solution
sets using HAVING modifier; (3) order results using
ORDER BY modifier; (4) slice results using LIMIT
and OFFSET modifiers.

Rules to transform SBVR questions to SPARQL

There are six types of questions that are transformed
in the solution: questions to find individuals of cer-
tain type (e.g., Find persons); simple questions with

Figure 6
WHERE clause
with Filter
element

Figure 7
Structure of
solution modifier

roles bound to variables or individuals (e.g., What
states that border Illinois?); counting questions (e.g.,
How many states border Illinois?); questions with
cardinality restriction (e.g., Find states that border
at least 3 states.); questions with numerical compari-
son (e.g., Find cities that have population greater than
100000.); questions to find minimum or maximum
values (e.g., Find state that has largest population.).
We defined 9 model transformation rules to trans-
form SBVR questions to SPARQL queries. Transfor-
mation rules are called by different algorithms (Fi-
gure 8 – Figure 13) depending on the type of question.

Figure 6. WHERE clause with Filter element

Figure 7. Structure of solution modifier

Figure 8. Algorithm for transforming questions to find individuals

Figure 6. WHERE clause with Filter element

Figure 7. Structure of solution modifier

Figure 8. Algorithm for transforming questions to find individuals

Figure 8
Algorithm for transforming questions to find individuals

Figure 6. WHERE clause with Filter element

Figure 7. Structure of solution modifier

Figure 8. Algorithm for transforming questions to find individuals

Information Technology and Control 2017/1/46126

Figure 10
 Algorithm for
transforming

counting
questions

Figure 12
Algorithm for
transforming

questions with
numerical

comparisons

Figure 9
Algorithm for
transforming

simple questions

Figure 9. Algorithm for transforming simple questions

Figure 10. Algorithm for transforming counting questions

Figure 11. Algorithm for transforming questions with cardinality restrictions

Figure 12. Algorithm for transforming questions with numerical comparisons

Figure 13. Algorithm of transforming questions with minimum or maximum restrictions

Rule 1: transform closed projection to the basis of query

This rule is called first for all types of questions. It uses closed projection to create top level element of the

Figure 9. Algorithm for transforming simple questions

Figure 10. Algorithm for transforming counting questions

Figure 11. Algorithm for transforming questions with cardinality restrictions

Figure 12. Algorithm for transforming questions with numerical comparisons

Figure 13. Algorithm of transforming questions with minimum or maximum restrictions

Rule 1: transform closed projection to the basis of query

This rule is called first for all types of questions. It uses closed projection to create top level element of the

Figure 11
Algorithm for
transforming

questions with
cardinality

restrictions

Figure 9. Algorithm for transforming simple questions

Figure 10. Algorithm for transforming counting questions

Figure 11. Algorithm for transforming questions with cardinality restrictions

Figure 12. Algorithm for transforming questions with numerical comparisons

Figure 13. Algorithm of transforming questions with minimum or maximum restrictions

Rule 1: transform closed projection to the basis of query

This rule is called first for all types of questions. It uses closed projection to create top level element of the

Figure 9. Algorithm for transforming simple questions

Figure 10. Algorithm for transforming counting questions

Figure 11. Algorithm for transforming questions with cardinality restrictions

Figure 12. Algorithm for transforming questions with numerical comparisons

Figure 13. Algorithm of transforming questions with minimum or maximum restrictions

Rule 1: transform closed projection to the basis of query

This rule is called first for all types of questions. It uses closed projection to create top level element of the

127Information Technology and Control 2017/1/46

Rule 1: transform closed projection to the basis of
query
This rule is called first for all types of questions. It uses
closed projection to create top level element of the que-
ry with empty SELECT clause and WHERE clause ele-
ments that are filled calling subsequent rules. Steps of
this rule are presented in Figure 14. Table 2 presents
SPARQL model fragment, created by this rule. It also
includes example question and SPARQL fragment.

Figure 13
Algorithm of
transforming
questions with
minimum or
maximum
restrictions

Figure 14
Steps of Rule 1

Table 2
Model fragment and example created by Rule 1

Rule 2: transform variables of closed projection to
variables of the SELECT clause
This rule (see Figure 15 and Table 3) transforms vari-
ables of closed projection to variables of SELECT
clause. Names are set by expressions of general con-
cepts that projection variables range over.

Figure 14. Steps of Rule 1

Table 2. Model fragment and example created by Rule 1
in: SBVR:ClosedProjection
out: SPARQL:
 SelectQuery (
 SelectClause (),
 WhereClause (
 GroupGraphPatternSub (
 TriplesBlock ()
)
)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 WHERE { ... }

Table 3. Model fragment and example created by Rule 2
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause (
 foreach in.variable as v
 Var(name=v.rangedOver.expr)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 ?river
 ?state
 WHERE { ... }

Figure 14. Steps of Rule 1

Table 2. Model fragment and example created by Rule 1
in: SBVR:ClosedProjection
out: SPARQL:
 SelectQuery (
 SelectClause (),
 WhereClause (
 GroupGraphPatternSub (
 TriplesBlock ()
)
)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 WHERE { ... }

Table 3. Model fragment and example created by Rule 2
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause (
 foreach in.variable as v
 Var(name=v.rangedOver.expr)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 ?river
 ?state
 WHERE { ... }

Figure 14. Steps of Rule 1

Table 2. Model fragment and example created by Rule 1
in: SBVR:ClosedProjection
out: SPARQL:
 SelectQuery (
 SelectClause (),
 WhereClause (
 GroupGraphPatternSub (
 TriplesBlock ()
)
)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 WHERE { ... }

Table 3. Model fragment and example created by Rule 2
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause (
 foreach in.variable as v
 Var(name=v.rangedOver.expr)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 ?river
 ?state
 WHERE { ... }

Figure 15
Steps of Rule 2

Figure 14. Steps of Rule 1

Table 2. Model fragment and example created by Rule 1
in: SBVR:ClosedProjection
out: SPARQL:
 SelectQuery (
 SelectClause (),
 WhereClause (
 GroupGraphPatternSub (
 TriplesBlock ()
)
)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 WHERE { ... }

Table 3. Model fragment and example created by Rule 2
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause (
 foreach in.variable as v
 Var(name=v.rangedOver.expr)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 ?river
 ?state
 WHERE { ... }

Figure 14. Steps of Rule 1

Table 2. Model fragment and example created by Rule 1
in: SBVR:ClosedProjection
out: SPARQL:
 SelectQuery (
 SelectClause (),
 WhereClause (
 GroupGraphPatternSub (
 TriplesBlock ()
)
)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 WHERE { ... }

Table 3. Model fragment and example created by Rule 2
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause (
 foreach in.variable as v
 Var(name=v.rangedOver.expr)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 ?river
 ?state
 WHERE { ... }

Figure 14. Steps of Rule 1

Table 2. Model fragment and example created by Rule 1
in: SBVR:ClosedProjection
out: SPARQL:
 SelectQuery (
 SelectClause (),
 WhereClause (
 GroupGraphPatternSub (
 TriplesBlock ()
)
)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 WHERE { ... }

Table 3. Model fragment and example created by Rule 2
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause (
 foreach in.variable as v
 Var(name=v.rangedOver.expr)
)
SBVR: What rivers run_through states?
SPARQL:
 SELECT
 ?river
 ?state
 WHERE { ... }

Table 3
Model fragment and example created by Rule 2

Information Technology and Control 2017/1/46128

Rule 3: transform variables of closed projection to
count expression and group clause
This rule (see Figure 16 and Table 4) is called trans-
forming questions with counting. Since SBVR meta-
model is not capable to represent counting, models
for such questions are created in the same way as sim-
ple questions. Transformation accepts the parameter
to indicate counting questions and call the appropri-
ate rule. This rule takes the first variable of the closed
projection and creates the counting expression. The
second variable is transformed to group clause.

Figure 16
Steps of Rule 3

Table 4
Model fragment and example created by Rule 3

Figure 16. Steps of Rule 3

Table 4.
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr +
 “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

Rule 4: transform variables of closed projection to group and having clauses

This rule (see Figure 17 and Table 5) is called to transform variables of closed projection, restricted by cardi-
nality quantification. It creates COUNT function and solution modifier with GROUP BY and HAVING oper-
ators from first and second variables of closed projection.

Figure 17. Steps of Rule 4

Table 5. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr+“_i”)

Figure 16. Steps of Rule 3

Table 4.
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr +
 “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

Rule 4: transform variables of closed projection to group and having clauses

This rule (see Figure 17 and Table 5) is called to transform variables of closed projection, restricted by cardi-
nality quantification. It creates COUNT function and solution modifier with GROUP BY and HAVING oper-
ators from first and second variables of closed projection.

Figure 17. Steps of Rule 4

Table 5. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr+“_i”)

Figure 16. Steps of Rule 3

Table 4. Model fragment and example created by Rule 3
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr +
 “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

Rule 4: transform variables of closed projection to group and having clauses

This rule (see Figure 17 and Table 5) is called to transform variables of closed projection, restricted by cardi-
nality quantification. It creates COUNT function and solution modifier with GROUP BY and HAVING oper-
ators from first and second variables of closed projection.

Figure 17. Steps of Rule 4

Table 5. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr+“_i”)

Figure 16. Steps of Rule 3

Table 4. Model fragment and example created by Rule 3
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr +
 “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

Rule 4: transform variables of closed projection to group and having clauses

This rule (see Figure 17 and Table 5) is called to transform variables of closed projection, restricted by cardi-
nality quantification. It creates COUNT function and solution modifier with GROUP BY and HAVING oper-
ators from first and second variables of closed projection.

Figure 17. Steps of Rule 4

Table 5. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr+“_i”)

Rule 4: transform variables of closed projection to
group and having clauses
This rule (see Figure 17 and Table 5) is called to trans-
form variables of closed projection, restricted by car-
dinality quantification. It creates COUNT function
and solution modifier with GROUP BY and HAVING
operators from first and second variables of closed
projection.

Figure 17
Steps of Rule 4

Figure 16. Steps of Rule 3

Table 4. Model fragment and example created by Rule 3
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr +
 “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

Rule 4: transform variables of closed projection to group and having clauses

This rule (see Figure 17 and Table 5) is called to transform variables of closed projection, restricted by cardi-
nality quantification. It creates COUNT function and solution modifier with GROUP BY and HAVING oper-
ators from first and second variables of closed projection.

Figure 17. Steps of Rule 4

Table 5. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr+“_i”)

Table 5
Model fragment and example created by Rule 4

Figure 16. Steps of Rule 3

Table 4. Model fragment and example created by Rule 3
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr +
 “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

Rule 4: transform variables of closed projection to group and having clauses

This rule (see Figure 17 and Table 5) is called to transform variables of closed projection, restricted by cardi-
nality quantification. It creates COUNT function and solution modifier with GROUP BY and HAVING oper-
ators from first and second variables of closed projection.

Figure 17. Steps of Rule 4

Table 5. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr+“_i”)

Figure 16. Steps of Rule 3

Table 4. Model fragment and example created by Rule 3
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr +
 “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

Rule 4: transform variables of closed projection to group and having clauses

This rule (see Figure 17 and Table 5) is called to transform variables of closed projection, restricted by cardi-
nality quantification. It creates COUNT function and solution modifier with GROUP BY and HAVING oper-
ators from first and second variables of closed projection.

Figure 17. Steps of Rule 4

Table 5. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr+“_i”)

129Information Technology and Control 2017/1/46

Figure 16. Steps of Rule 3

Table 4. Model fragment and example created by Rule 3
in: SBVR:ClosedProjection
out: SPARQL:
SelectClause(
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[0].rangedOver.expr)
),
 Var(name=in.Var[0].rangedOver.expr +
 “_count”)
)
),
SolutionModifier(
 GroupClause(
 Var(name=in.Var[1].rangedOver.expr)
)
)
SBVR: How_many rivers run_through Illinois?
SPARQL:
 SELECT (COUNT(?river_i) as ?river_count)
 WHERE { ... }
 GROUP BY ?state_i

Rule 4: transform variables of closed projection to group and having clauses

This rule (see Figure 17 and Table 5) is called to transform variables of closed projection, restricted by cardi-
nality quantification. It creates COUNT function and solution modifier with GROUP BY and HAVING oper-
ators from first and second variables of closed projection.

Figure 17. Steps of Rule 4

Table 5. Model fragment and example created by Rule 4
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 ExpressionAsVarElement1(
 AggregateCount(
 Var(name=in.Var[1].rangedOver.expr+“_i”)

),
 Var(name=in.Var[1].rangedOver.expr+
 “_count”)
)
),
 SolutionModifier(
 GroupClause(
 Var(name=in.Var[0].rangedOver.expr+“_i”)
),
 HavingClause (
 Var(name=in.Var[1].rangedOver.expr+
 “_count”)
 ComparisonSign
 INTEGER
)
)

SBVR: Which rivers run_through at_least 3
 states?
SPARQL:
 SELECT
 ?river_i
 (count(?state_i) as ?state_count)
 WHERE { ... }
 GROUP BY ?river_i
 HAVING(?state_count >= 3)

Rule 5: transform variables of closed projection to order clause

This rule (see Figure 18 and Table 6) is called when the restricting atomic formulation is based on is-property-
of verb concept (e.g., population of city), and the property is additionally restricted by minimum or maximum
formulations. This rule creates variables of SELECT clause and solution modifier with order and limit clauses
from variables of closed projection. Depending on whether it is a minimum or maximum restriction, ordering
is ascending or descending.

Figure 18. Steps of Rule 5

Table 6. Model fragment and example created by Rule 5
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 Var(name=in.Var[1].rangedOver.expr),
),
 SolutionModifier(
 OrderClause(
 OrderDirection,
 iriOrFunction(
 iri=”xsd:float”,
 argList=Var(name=
 in.Var[0].rangedOver.expr)
)
)
 LimitClause(
 integer=1
)
)

SBVR: What city has largest population?
SPARQL:
 SELECT
 ?city_i
 ?population_i

Rule 5: transform variables of closed projection to
order clause
This rule (see Figure 18 and Table 6) is called when the
restricting atomic formulation is based on is-proper-
ty-of verb concept (e.g., population of city), and the

Figure 18
Steps of Rule 5

),
 Var(name=in.Var[1].rangedOver.expr+
 “_count”)
)
),
 SolutionModifier(
 GroupClause(
 Var(name=in.Var[0].rangedOver.expr+“_i”)
),
 HavingClause (
 Var(name=in.Var[1].rangedOver.expr+
 “_count”)
 ComparisonSign
 INTEGER
)
)
SBVR: Which rivers run_through at_least 3
 states?
SPARQL:
 SELECT
 ?river_i
 (count(?state_i) as ?state_count)
 WHERE { ... }
 GROUP BY ?river_i
 HAVING(?state_count >= 3)

Rule 5: transform variables of closed projection to order clause

This rule (see Figure 18 and Table 6) is called when the restricting atomic formulation is based on is-property-
of verb concept (e.g., population of city), and the property is additionally restricted by minimum or maximum
formulations. This rule creates variables of SELECT clause and solution modifier with order and limit clauses
from variables of closed projection. Depending on whether it is a minimum or maximum restriction, ordering
is ascending or descending.

Figure 18. Steps of Rule 5

Table 6. Model fragment and example created by Rule 5
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 Var(name=in.Var[1].rangedOver.expr),
),
 SolutionModifier(
 OrderClause(
 OrderDirection,
 iriOrFunction(
 iri=”xsd:float”,
 argList=Var(name=
 in.Var[0].rangedOver.expr)
)
)
 LimitClause(
 integer=1
)
)

SBVR: What city has largest population?
SPARQL:
 SELECT
 ?city_i
 ?population_i

),
 Var(name=in.Var[1].rangedOver.expr+
 “_count”)
)
),
 SolutionModifier(
 GroupClause(
 Var(name=in.Var[0].rangedOver.expr+“_i”)
),
 HavingClause (
 Var(name=in.Var[1].rangedOver.expr+
 “_count”)
 ComparisonSign
 INTEGER
)
)
SBVR: Which rivers run_through at_least 3
 states?
SPARQL:
 SELECT
 ?river_i
 (count(?state_i) as ?state_count)
 WHERE { ... }
 GROUP BY ?river_i
 HAVING(?state_count >= 3)

Rule 5: transform variables of closed projection to order clause

This rule (see Figure 18 and Table 6) is called when the restricting atomic formulation is based on is-property-
of verb concept (e.g., population of city), and the property is additionally restricted by minimum or maximum
formulations. This rule creates variables of SELECT clause and solution modifier with order and limit clauses
from variables of closed projection. Depending on whether it is a minimum or maximum restriction, ordering
is ascending or descending.

Figure 18. Steps of Rule 5

Table 6. Model fragment and example created by Rule 5
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 Var(name=in.Var[1].rangedOver.expr),
),
 SolutionModifier(
 OrderClause(
 OrderDirection,
 iriOrFunction(
 iri=”xsd:float”,
 argList=Var(name=
 in.Var[0].rangedOver.expr)
)
)
 LimitClause(
 integer=1
)
)

SBVR: What city has largest population?
SPARQL:
 SELECT
 ?city_i
 ?population_i

Table 6
Model fragment and example created by Rule 5

),
 Var(name=in.Var[1].rangedOver.expr+
 “_count”)
)
),
 SolutionModifier(
 GroupClause(
 Var(name=in.Var[0].rangedOver.expr+“_i”)
),
 HavingClause (
 Var(name=in.Var[1].rangedOver.expr+
 “_count”)
 ComparisonSign
 INTEGER
)
)
SBVR: Which rivers run_through at_least 3
 states?
SPARQL:
 SELECT
 ?river_i
 (count(?state_i) as ?state_count)
 WHERE { ... }
 GROUP BY ?river_i
 HAVING(?state_count >= 3)

Rule 5: transform variables of closed projection to order clause

This rule (see Figure 18 and Table 6) is called when the restricting atomic formulation is based on is-property-
of verb concept (e.g., population of city), and the property is additionally restricted by minimum or maximum
formulations. This rule creates variables of SELECT clause and solution modifier with order and limit clauses
from variables of closed projection. Depending on whether it is a minimum or maximum restriction, ordering
is ascending or descending.

Figure 18. Steps of Rule 5

Table 6. Model fragment and example created by Rule 5
in: SBVR:ClosedProjection
out: SPARQL:
 SelectClause(
 Var(name=in.Var[0].rangedOver.expr),
 Var(name=in.Var[1].rangedOver.expr),
),
 SolutionModifier(
 OrderClause(
 OrderDirection,
 iriOrFunction(
 iri=”xsd:float”,
 argList=Var(name=
 in.Var[0].rangedOver.expr)
)
)
 LimitClause(
 integer=1
)
)

SBVR: What city has largest population?
SPARQL:
 SELECT
 ?city_i
 ?population_i

 WHERE { ... }
 ORDER BY DESC(xsd:float(?population_i))
 LIMIT 1

Rule 6: transforming atomic formulation to triple patterns of relation

Atomic formulations are based on verb concepts and are used to express restrictions of questions. Rule 6 (see
Figure 19 and Table 7) transforms atomic formulation and its verb concept to two triple patterns, representing
relation of verb concept in query.

The first one is the main triple pattern representing relation. It has variables in positions of subject, predi-
cate, and object. The name of the predicate’s variable is set by the expression of verb concept’s verb symbol.
Names of variables in positions of subject and object are set by roles of verb concept and suffixed with “_i”.
The second triple pattern is used to identify the relation by label.

When both triple patterns are created, they are appended to triples block. If questions use synonymous
forms, preferred representations are used.

Figure 19. Steps of Rule 6

Table 7. Model fragment and example created by Rule 6
in: SBVR:AtomicFormulation
out: SPARQL:
WhereClause(
 GroupGraphPatternSub(
 TriplesBlock(
 TriplesSameSubjectPath(
 Var(name=in.verbConcept.role[0].expr +
 “_i“),
 PropertyListPathNotEmpty(
 Var(name=in.verbConcept.verbSymb.expr),
 Var(name=in.verbConcept.role[1].expr +
 “_i“)
)
)
),
 TriplesSameSubjectPath(
 Var(name=in.verbConcept.expr),
 PropertyListPathNotEmpty(
 IRIREF=”:label_sbvr”,
 STRING_LITERAL=in.verbConcept.
 sentForm.expr + “@” + lang
)
)
)
SPARQL:
 ?city_i ?is_in ?state_i .
 ?is_in :sbvr_label “city is_in state“@en .

Rule 7: transform variables to triple patterns

Verb concept roles can be bound to variables or individual concepts for expressing meaning of question.
Bindings to variables are transformed to two triple patterns. The first one creates rdf:type relation between

variable and its type and the second one identifies type by label. Rule 7 (see Figure 20 and Table 8) is applied
for each role binding to variable.

property is additionally restricted by minimum or
maximum formulations. This rule creates variables
of SELECT clause and solution modifier with order
and limit clauses from variables of closed projection.
Depending on whether it is a minimum or maximum
restriction, ordering is ascending or descending.
Rule 6: transforming atomic formulation to triple
patterns of relation
Atomic formulations are based on verb concepts and
are used to express restrictions of questions. Rule 6
(see Figure 19 and Table 7) transforms atomic formu-
lation and its verb concept to two triple patterns, rep-
resenting relation of verb concept in query.
The first one is the main triple pattern representing
relation. It has variables in positions of subject, pred-
icate, and object. The name of the predicate’s variable
is set by the expression of verb concept’s verb symbol.
Names of variables in positions of subject and object
are set by roles of verb concept and suffixed with “_i”.
The second triple pattern is used to identify the rela-
tion by label.
When both triple patterns are created, they are ap-
pended to triples block. If questions use synonymous
forms, preferred representations are used.

Information Technology and Control 2017/1/46130

Rule 7: transform variables to triple patterns
Verb concept roles can be bound to variables or indi-
vidual concepts for expressing meaning of question.
Bindings to variables are transformed to two triple
patterns. The first one creates rdf:type relation be-
tween variable and its type and the second one identi-

Figure 19
Steps of Rule 6

Table 7
Model fragment and example created by Rule 6

in: SBVR:AtomicFormulation
out: SPARQL:
WhereClause(
 GroupGraphPatternSub(
 TriplesBlock(
 TriplesSameSubjectPath(
 Var(name=in.verbConcept.role[0].expr +
 “_i“),
 PropertyListPathNotEmpty(
 Var(name=in.verbConcept.verbSymb.expr),
 Var(name=in.verbConcept.role[1].expr +
 “_i“)
)
)
),
 TriplesSameSubjectPath(
 Var(name=in.verbConcept.expr),
 PropertyListPathNotEmpty(
 IRIREF=”:label_sbvr”,
 STRING_LITERAL=in.verbConcept.
 sentForm.expr + “@” + lang
)
)
)
SPARQL:
 ?city_i ?is_in ?state_i .
 ?is_in :sbvr_label “city is_in state“@en .

in: SBVR:AtomicFormulation
out: SPARQL:
WhereClause(
 GroupGraphPatternSub(
 TriplesBlock(
 TriplesSameSubjectPath(
 Var(name=in.verbConcept.role[0].expr +
 “_i“),
 PropertyListPathNotEmpty(
 Var(name=in.verbConcept.verbSymb.expr),
 Var(name=in.verbConcept.role[1].expr +
 “_i“)
)
)
),
 TriplesSameSubjectPath(
 Var(name=in.verbConcept.expr),
 PropertyListPathNotEmpty(
 IRIREF=”:label_sbvr”,
 STRING_LITERAL=in.verbConcept.
 sentForm.expr + “@” + lang
)
)
)

SPARQL:
 ?city_i ?is_in ?state_i .
 ?is_in :sbvr_label “city is_in state“@en .

fies type by label. Rule 7 (see Figure 20 and Table 8) is
applied for each role binding to variable.

Figure 20
Steps of Rule 7

Table 8
Model fragment and example created by Rule 7

Rule 8: transform individuals to triple patterns
Rule 8 (see Figure 21 and Table 9) is used to transform
role bindings to individual concepts. It creates three
triple patterns with filter operator. The first two triple
patterns are the same as Rule 7 creates. The third one

Figure 20. Steps of Rule 7

Table 8. Model fragment and example created by Rule 7
in: SBVR:Variable
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.rangedOver.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_c“),
 PropertyListPathNotEmpty(
 IRIREF=“rdfs:label“,
 STRING_LITERAL=in.rangedOver.expr+“@”+
 lang
)
)

SBVR: What rivers run_through states?
SPARQL:
 ?river_i rdf:type ?river_c .
 ?river_c rdfs:label “river”@en .
 ?state_i rdf:type ?state_c .
 ?state_c rdfs:label “state”@en .

Rule 8: transform individuals to triple patterns

Rule 8 (see Figure 21 and Table 9) is used to transform role bindings to individual concepts. It creates three
triple patterns with filter operator. The first two triple patterns are the same as Rule 7 creates. The third one
defines variable of searched individual label and filter element used to filter individuals by label.

Figure 21. Steps of Rule 8

Table 9. Model fragment and example created by Rule 8
in: SBVR:IndividualConcept
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.general.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.general.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name= in.general.expr + “_c“),

in: SBVR:Variable
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.rangedOver.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_c“),
 PropertyListPathNotEmpty(
 IRIREF=“rdfs:label“,
 STRING_LITERAL=in.rangedOver.expr+“@”+
 lang
)
)

SBVR: What rivers run_through states?
SPARQL:
 ?river_i rdf:type ?river_c .
 ?river_c rdfs:label “river”@en .
 ?state_i rdf:type ?state_c .
 ?state_c rdfs:label “state”@en .

Figure 21. Steps of Rule 8

Table 9. Model fragment and example created by Rule 8
in: SBVR:IndividualConcept
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.general.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.general.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name= in.general.expr + “_c“),

131Information Technology and Control 2017/1/46

defines variable of searched individual label and filter
element used to filter individuals by label.

Figure 21
Steps of Rule 8

in: SBVR:Variable
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.rangedOver.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_c“),
 PropertyListPathNotEmpty(
 IRIREF=“rdfs:label“,
 STRING_LITERAL=in.rangedOver.expr+“@”+
 lang
)
)

SBVR: What rivers run_through states?
SPARQL:
 ?river_i rdf:type ?river_c .
 ?river_c rdfs:label “river”@en .
 ?state_i rdf:type ?state_c .
 ?state_c rdfs:label “state”@en .

Figure 21. Steps of Rule 8

Table 9. Model fragment and example created by Rule 8
in: SBVR:IndividualConcept
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.general.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.general.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name= in.general.expr + “_c“),

in: SBVR:Variable
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.rangedOver.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name=in.rangedOver.expr + “_c“),
 PropertyListPathNotEmpty(
 IRIREF=“rdfs:label“,
 STRING_LITERAL=in.rangedOver.expr+“@”+
 lang
)
)

SBVR: What rivers run_through states?
SPARQL:
 ?river_i rdf:type ?river_c .
 ?river_c rdfs:label “river”@en .
 ?state_i rdf:type ?state_c .
 ?state_c rdfs:label “state”@en .

Figure 21. Steps of Rule 8

Table 9. Model fragment and example created by Rule 8
in: SBVR:IndividualConcept
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.general.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.general.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name= in.general.expr + “_c“),

Table 9
Model fragment and example created by Rule 8

in: SBVR:IndividualConcept
out: SPARQL:
 TriplesSameSubjectPath (
 Var(name=in.general.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdf:type”,
 Var(name=in.general.expr + “_c“),
)
),
 TriplesSameSubjectPath (
 Var(name= in.general.expr + “_c“),

 PropertyListPathNotEmpty(
 IRIREF=“rdfs:label“,
 STRING_LITERAL=in.general.expr+“@”+lang
)
),
 TriplesSameSubjectPath (
 Var(name=in.general.expr + “_i“),
 PropertyListPathNotEmpty(
 IRIREF=”rdfs:label”,
 Var(name=in.general.expr + “_v“),
)
),
 RegexExpression(
 Var(name=in.general.expr + “_v“)
 pattern=in.expr
)

SBVR: What rivers run_through Illinois?
SPARQL:
 ?state_i rdf:type ?state_c .
 ?state_c rdfs:label "state"@en .
 ?state_i rdfs:label ?state_v .
 FILTER regex(?state_v, "Illinois")

Rule 9: transforming numerical comparison to filter operator

Rule 9 (Figure 22 and Table 10) defines transformation of questions with quantity restrictions, expressed by
numerical comparisons of values of data properties. In SBVR models, numerical comparisons are expressed
by atomic formulations based on particular verb concepts (e.g., number1 is_greater_than number2). This re-
striction is transformed to filter element in WHERE clause.

Figure 22. Steps of Rule 9

Table 10. Model fragment and example created by Rule 9
in: SBVR:AtomicFormulation
out: SPARQL:
 WhereClause(
 RelationalExpression(
 Var(name=in.Var[1].rangedOver.expr)
 ComparisonSym
 INTEGER
)
)
SBVR: What cities has population less_than
 30000?
SPARQL:
 SELECT
 ?city_i
 ?population_i
 WHERE {
 ...
 FILTER(?population_i < 30000)
 }

5. Experimental evaluation

5.1. Evaluating correctness of the solution

The goal of experimental evaluation is to investigate, if the created solution allows questioning ontologies in
different languages. We evaluated the correctness using precision, recall and F-measure parameters and also
compared results with evaluation of other NLIs.

The prototype NLI was implemented using Java programing language. Presented transformations were im-
plemented using ATL model transformation language. To generate textual query from SPARQL query model,

Rule 9: transforming numerical comparison to fil-
ter operator
Rule 9 (Figure 22 and Table 10) defines transformation
of questions with quantity restrictions, expressed by
numerical comparisons of values of data properties. In
SBVR models, numerical comparisons are expressed by
atomic formulations based on particular verb concepts
(e.g., number1 is_greater_than number2). This restric-
tion is transformed to filter element in WHERE clause.

Figure 22
Steps of Rule 9

Table 10
Model fragment and example created by Rule 9

Figure 22. Steps of Rule 9

Table 10. Model fragment and example created by Rule 9
in: SBVR:AtomicFormulation
out: SPARQL:
 WhereClause(
 RelationalExpression(
 Var(name=in.Var[1].rangedOver.expr)
 ComparisonSym
 INTEGER
)
)
SBVR: What cities has population less_than
 30000?
SPARQL:
 SELECT
 ?city_i
 ?population_i
 WHERE {
 ...
 FILTER(?population_i < 30000)
 }

5. Experimental evaluation

5.1. Evaluating correctness of the solution

The goal of experimental evaluation is to investigate, if the created solution allows questioning ontologies in
different languages. We evaluated the correctness using precision, recall and F-measure parameters and also
compared results with evaluation of other NLIs.

The prototype NLI was implemented using Java programing language. Presented transformations were im-
plemented using ATL model transformation language. To generate textual query from SPARQL query model,

in: SBVR:AtomicFormulation
out: SPARQL:
 WhereClause(
 RelationalExpression(
 Var(name=in.Var[1].rangedOver.expr)
 ComparisonSym
 INTEGER
)
)

SBVR: What cities has population less_than
 30000?
SPARQL:
 SELECT
 ?city_i
 ?population_i
 WHERE {
 ...
 FILTER(?population_i < 30000)
 }

 Experimental evaluation

Evaluating correctness of the solution
The goal of experimental evaluation is to investigate,
if the created solution allows questioning ontologies

Information Technology and Control 2017/1/46132

in different languages. We evaluated the correctness
using precision, recall and F-measure parameters and
also compared results with evaluation of other NLIs.
The prototype NLI was implemented using Java pro-
graming language. Presented transformations were
implemented using ATL model transformation lan-
guage. To generate textual query from SPARQL query
model, we used Acceleo tool. The prototype was used
to evaluate the correctness of our solution by measur-
ing the ability to answer English and Lithuanian ques-
tions correctly. We used test data sets that are based
on the Mooney Natural Language Learning Data cre-
ated by Ray Mooney and his group from the Univer-
sity of Texas at Austin [12]. The original knowledge
base was created using Prolog and has been used to
evaluate NLIDBs. It was translated to OWL knowl-
edge base and is published by the Dynamic & Distrib-
uted information Systems Group from University of

Figure 23
Conceptual

model of
geography

knowledge base

Figure 24
Conceptual

model of
restaurant

knowledge base

Zurich [14] and is now often used to evaluate NLIs to
ontologies.
To perform the experiment, two knowledge bases
were used: geography and restaurant. The first one is
designed for storing geographical information about
the United States: states, cities capitals of states, bor-
ders of states, population, rivers, highest points, etc.
This knowledge base contains a set of 880 questions.
Its subset consists of 250 questions that semantically
represent the whole set. The conceptual model of ge-
ography knowledge base is presented as class diagram
in Figure 23.
The restaurant knowledge base contains informa-
tion about restaurants, their ratings, locations, type
of food, etc. It has 251 representative questions. The
conceptual model of restaurant knowledge base is
presented in Figure 24.

Table 11. Fragment of SBVR specifications for geography knowledge base in English
city
population
 General_concept: number
 Concept_type: role
city has population
 Concept_type: property_association

Table 11. Fragment of SBVR specifications for geography knowledge base in English
city
population
 General_concept: number
 Concept_type: role
city has population
 Concept_type: property_association

133Information Technology and Control 2017/1/46

Mooney knowledge bases contain only English ques-
tions to evaluate NLI. Therefore, we translated those
questions to Lithuanian language to evaluate our
solution not only in English but also in Lithuanian
language.
In our solution, questioning is carried out using
SBVR business vocabulary and business rules spec-
ifications, corresponding the ontology. These spec-
ifications were created in English and Lithuanian
languages. We have also created derivation rules for
concepts that are derived from their properties (e.g.,
large_city or italian_restaurant). Fragments of En-
glish and Lithuanian SBVR specifications are pre-
sented in Table 11 – Table 14.

Table 11
Fragment of SBVR specifications for geography knowledge
base in English

Table 12
Fragment of SBVR specifications for geography knowledge
base in Lithuanian

Table 13
Fragment of SBVR specifications for restaurant
knowledge base in English

Table 14
Fragment of SBVR specifications for restaurant knowledge
base in Lithuanian

Table 11. Fragment of SBVR specifications for geography knowledge base in English
city
population
 General_concept: number
 Concept_type: role
city has population
 Concept_type: property_association

It is necessary that major_city is city that
has population greater_than 300000.

Table 12. Fragment of SBVR specifications for geography knowledge base in Lithuanian
miestas
populiacija
 General_concept: number
 Concept_type: role
miestas turi populiaciją
 Concept_type: property_association
Būtina, kad didelis_mietas yra miestas, kuris
turi populiaciją didesnę_už 300000.

Table 13. Fragment of SBVR specifications for restaurant knowledge base in English
restaurant
rating
 General_concept: text
 Concept_type: role
restaurant has rating
 Concept_type: property_association
It is necessary that good_french_restaurant is
restaurant that has rating “good” and has
food_type “french”

Table 14. Fragment of SBVR specifications for restaurant knowledge base in Lithuanian
restoranas
reitingas
 General_concept: number
 Concept_type: role
restoranas turi reitingą
 Concept_type: property_association
Būtina, kad geras_prancūziškas_restoranas yra
restoranas, kuris turi reitingą “geras” ir
gamina patiekalų_rūšį “prancūziškas”.

After creating SBVR specifications, OWL ontologies were prepared by adding labels with SBVR expres-
sions for ontology resources in order to establish the compliance between ontology resources and SBVR con-
cepts using principles defined in Error! Reference source not found..

During the experiment, English and Lithuanian questions were transformed into SPARQL queries using
created transformations. One of the English questions and transformed query is presented in Table 15.

Table 15. Example question and transformed query
What is population of Dallas?
SELECT
 ?population_i
WHERE {
 ?city_i ?city_has_population ?population_i.
 ?city_has_population rdfs:label “city has
 population”@en .
 ?city_i rdf:type ?city_c.
 ?city_c rdfs:label “city”@en.
 ?population_i rdf:type ?population_c.
 ?population_c rdfs:label “population”@en
 FILTER regex(?city_i, “Dallas”)
}

Queries were executed against OWL ontology, and parameters of precision, recall and F-measure were
calculated. The precision PQ is the number of questions for which the correct answer is returned (CQ) divided
by number of questions which answers were returned at all (AQ). The recall RQ is the number of questions for
which correct answers were returned (CQ) divided by the total number of questions (TQ) that can be answered
by the knowledge base Error! Reference source not found.. Formulas of calculating precision, recall, and F-
measure are presented below:

 (1)

It is necessary that major_city is city that
has population greater_than 300000.

 Lithuanian
miestas
populiacija
 General_concept: number
 Concept_type: role
miestas turi populiaciją
 Concept_type: property_association
Būtina, kad didelis_mietas yra miestas, kuris
turi populiaciją didesnę_už 300000.

Table 13. Fragment of SBVR specifications for restaurant knowledge base in English
restaurant
rating
 General_concept: text
 Concept_type: role
restaurant has rating
 Concept_type: property_association
It is necessary that good_french_restaurant is
restaurant that has rating “good” and has
food_type “french”

Table 14. Fragment of SBVR specifications for restaurant knowledge base in Lithuanian
restoranas
reitingas
 General_concept: number
 Concept_type: role
restoranas turi reitingą
 Concept_type: property_association
Būtina, kad geras_prancūziškas_restoranas yra
restoranas, kuris turi reitingą “geras” ir
gamina patiekalų_rūšį “prancūziškas”.

After creating SBVR specifications, OWL ontologies were prepared by adding labels with SBVR expres-
sions for ontology resources in order to establish the compliance between ontology resources and SBVR con-
cepts using principles defined in Error! Reference source not found..

During the experiment, English and Lithuanian questions were transformed into SPARQL queries using
created transformations. One of the English questions and transformed query is presented in Table 15.

Table 15. Example question and transformed query
What is population of Dallas?
SELECT
 ?population_i
WHERE {
 ?city_i ?city_has_population ?population_i.
 ?city_has_population rdfs:label “city has
 population”@en .
 ?city_i rdf:type ?city_c.
 ?city_c rdfs:label “city”@en.
 ?population_i rdf:type ?population_c.
 ?population_c rdfs:label “population”@en
 FILTER regex(?city_i, “Dallas”)
}

Queries were executed against OWL ontology, and parameters of precision, recall and F-measure were
calculated. The precision PQ is the number of questions for which the correct answer is returned (CQ) divided
by number of questions which answers were returned at all (AQ). The recall RQ is the number of questions for
which correct answers were returned (CQ) divided by the total number of questions (TQ) that can be answered
by the knowledge base Error! Reference source not found.. Formulas of calculating precision, recall, and F-
measure are presented below:

 (1)

It is necessary that major_city is city that
has population greater_than 300000.

Table 12. Fragment of SBVR specifications for geography knowledge base in Lithuanian
miestas
populiacija
 General_concept: number
 Concept_type: role
miestas turi populiaciją
 Concept_type: property_association
Būtina, kad didelis_mietas yra miestas, kuris
turi populiaciją didesnę_už 300000.

Table 13. Fragment of SBVR specifications for restaurant knowledge base in English
restaurant
rating
 General_concept: text
 Concept_type: role
restaurant has rating
 Concept_type: property_association
It is necessary that good_french_restaurant is
restaurant that has rating “good” and has
food_type “french”

Table 14. Fragment of SBVR specifications for restaurant knowledge base in Lithuanian
restoranas
reitingas
 General_concept: number
 Concept_type: role
restoranas turi reitingą
 Concept_type: property_association
Būtina, kad geras_prancūziškas_restoranas yra
restoranas, kuris turi reitingą “geras” ir
gamina patiekalų_rūšį “prancūziškas”.

After creating SBVR specifications, OWL ontologies were prepared by adding labels with SBVR expres-
sions for ontology resources in order to establish the compliance between ontology resources and SBVR con-
cepts using principles defined in Error! Reference source not found..

During the experiment, English and Lithuanian questions were transformed into SPARQL queries using
created transformations. One of the English questions and transformed query is presented in Table 15.

Table 15. Example question and transformed query
What is population of Dallas?
SELECT
 ?population_i
WHERE {
 ?city_i ?city_has_population ?population_i.
 ?city_has_population rdfs:label “city has
 population”@en .
 ?city_i rdf:type ?city_c.
 ?city_c rdfs:label “city”@en.
 ?population_i rdf:type ?population_c.
 ?population_c rdfs:label “population”@en
 FILTER regex(?city_i, “Dallas”)
}

Queries were executed against OWL ontology, and parameters of precision, recall and F-measure were
calculated. The precision PQ is the number of questions for which the correct answer is returned (CQ) divided
by number of questions which answers were returned at all (AQ). The recall RQ is the number of questions for
which correct answers were returned (CQ) divided by the total number of questions (TQ) that can be answered
by the knowledge base Error! Reference source not found.. Formulas of calculating precision, recall, and F-
measure are presented below:

 (1)

It is necessary that major_city is city that
has population greater_than 300000.

Table 12. Fragment of SBVR specifications for geography knowledge base in Lithuanian
miestas
populiacija
 General_concept: number
 Concept_type: role
miestas turi populiaciją
 Concept_type: property_association
Būtina, kad didelis_mietas yra miestas, kuris
turi populiaciją didesnę_už 300000.

Table 13. Fragment of SBVR specifications for restaurant knowledge base in English
restaurant
rating
 General_concept: text
 Concept_type: role
restaurant has rating
 Concept_type: property_association
It is necessary that good_french_restaurant is
restaurant that has rating “good” and has
food_type “french”

Table 14. Fragment of SBVR specifications for restaurant knowledge base in Lithuanian
restoranas
reitingas
 General_concept: number
 Concept_type: role
restoranas turi reitingą
 Concept_type: property_association
Būtina, kad geras_prancūziškas_restoranas yra
restoranas, kuris turi reitingą “geras” ir
gamina patiekalų_rūšį “prancūziškas”.

After creating SBVR specifications, OWL ontologies were prepared by adding labels with SBVR expres-
sions for ontology resources in order to establish the compliance between ontology resources and SBVR con-
cepts using principles defined in Error! Reference source not found..

During the experiment, English and Lithuanian questions were transformed into SPARQL queries using
created transformations. One of the English questions and transformed query is presented in Table 15.

Table 15. Example question and transformed query
What is population of Dallas?
SELECT
 ?population_i
WHERE {
 ?city_i ?city_has_population ?population_i.
 ?city_has_population rdfs:label “city has
 population”@en .
 ?city_i rdf:type ?city_c.
 ?city_c rdfs:label “city”@en.
 ?population_i rdf:type ?population_c.
 ?population_c rdfs:label “population”@en
 FILTER regex(?city_i, “Dallas”)
}

Queries were executed against OWL ontology, and parameters of precision, recall and F-measure were
calculated. The precision PQ is the number of questions for which the correct answer is returned (CQ) divided
by number of questions which answers were returned at all (AQ). The recall RQ is the number of questions for
which correct answers were returned (CQ) divided by the total number of questions (TQ) that can be answered
by the knowledge base Error! Reference source not found.. Formulas of calculating precision, recall, and F-
measure are presented below:

 (1)

After creating SBVR specifications, OWL ontologies
were prepared by adding labels with SBVR expres-
sions for ontology resources in order to establish the
compliance between ontology resources and SBVR
concepts using principles defined in [16].
During the experiment, English and Lithuanian ques-
tions were transformed into SPARQL queries using
created transformations. One of the English ques-
tions and transformed query is presented in Table 15.

Queries were executed against OWL ontology, and
parameters of precision, recall and F-measure were
calculated. The precision PQ is the number of ques-
tions for which the correct answer is returned (CQ)
divided by number of questions which answers were
returned at all (AQ). The recall RQ is the number of
questions for which correct answers were returned
(CQ) divided by the total number of questions (TQ)
that can be answered by the knowledge base [15]. For-
mulas of calculating precision, recall, and F-measure
are presented below:

Table 15
Example question and transformed query

It is necessary that major_city is city that
has population greater_than 300000.

Table 12. Fragment of SBVR specifications for geography knowledge base in Lithuanian
miestas
populiacija
 General_concept: number
 Concept_type: role
miestas turi populiaciją
 Concept_type: property_association
Būtina, kad didelis_mietas yra miestas, kuris
turi populiaciją didesnę_už 300000.

Table 13. Fragment of SBVR specifications for restaurant knowledge base in English
restaurant
rating
 General_concept: text
 Concept_type: role
restaurant has rating
 Concept_type: property_association
It is necessary that good_french_restaurant is
restaurant that has rating “good” and has
food_type “french”

Table 14. Fragment of SBVR specifications for restaurant knowledge base in Lithuanian
restoranas
reitingas
 General_concept: number
 Concept_type: role
restoranas turi reitingą
 Concept_type: property_association
Būtina, kad geras_prancūziškas_restoranas yra
restoranas, kuris turi reitingą “geras” ir
gamina patiekalų_rūšį “prancūziškas”.

After creating SBVR specifications, OWL ontologies were prepared by adding labels with SBVR expres-
sions for ontology resources in order to establish the compliance between ontology resources and SBVR con-
cepts using principles defined in Error! Reference source not found..

During the experiment, English and Lithuanian questions were transformed into SPARQL queries using
created transformations. One of the English questions and transformed query is presented in Table 15.

Table 15. Example question and transformed query
What is population of Dallas?

SELECT
 ?population_i
WHERE {
 ?city_i ?city_has_population ?population_i.
 ?city_has_population rdfs:label “city has
 population”@en .
 ?city_i rdf:type ?city_c.
 ?city_c rdfs:label “city”@en.
 ?population_i rdf:type ?population_c.
 ?population_c rdfs:label “population”@en
 FILTER regex(?city_i, “Dallas”)
}

recision, recall and F-measure were
calculated. The precision PQ urned (CQ) divided
by number of questions which answers were returned at all (AQ). The recall RQ is the number of questions for
which correct answers were returned (CQ) divided by the total number of questions (TQ) that can be answered
by the knowledge base Error! Reference source not found.. Formulas of calculating precision, recall, and F-
measure are presented below:

 (1)

It is necessary that major_city is city that
has population greater_than 300000.

Table 12. Fragment of SBVR specifications for geography knowledge base in Lithuanian
miestas
populiacija
 General_concept: number
 Concept_type: role
miestas turi populiaciją
 Concept_type: property_association
Būtina, kad didelis_mietas yra miestas, kuris
turi populiaciją didesnę_už 300000.

Table 13. Fragment of SBVR specifications for restaurant knowledge base in English
restaurant
rating
 General_concept: text
 Concept_type: role
restaurant has rating
 Concept_type: property_association
It is necessary that good_french_restaurant is
restaurant that has rating “good” and has
food_type “french”

Table 14. Fragment of SBVR specifications for restaurant knowledge base in Lithuanian
restoranas
reitingas
 General_concept: number
 Concept_type: role
restoranas turi reitingą
 Concept_type: property_association
Būtina, kad geras_prancūziškas_restoranas yra
restoranas, kuris turi reitingą “geras” ir
gamina patiekalų_rūšį “prancūziškas”.

After creating SBVR specifications, OWL ontologies were prepared by adding labels with SBVR expres-
sions for ontology resources in order to establish the compliance between ontology resources and SBVR con-
cepts using principles defined in Error! Reference source not found..

During the experiment, English and Lithuanian questions were transformed into SPARQL queries using
created transformations. One of the English questions and transformed query is presented in Table 15.

Table 15. Example question and transformed query
What is population of Dallas?
SELECT
 ?population_i
WHERE {
 ?city_i ?city_has_population ?population_i.
 ?city_has_population rdfs:label “city has
 population”@en .
 ?city_i rdf:type ?city_c.
 ?city_c rdfs:label “city”@en.
 ?population_i rdf:type ?population_c.
 ?population_c rdfs:label “population”@en
 FILTER regex(?city_i, “Dallas”)
}

Queries were executed against OWL ontology, and parameters of precision, recall and F-measure were
calculated. The precision PQ is the number of questions for which the correct answer is returned (CQ) divided
by number of questions which answers were returned at all (AQ). The recall RQ is the number of questions for
which correct answers were returned (CQ) divided by the total number of questions (TQ) that can be answered
by the knowledge base Error! Reference source not found.. Formulas of calculating precision, recall, and F-
measure are presented below:

 (1)
(1)

Information Technology and Control 2017/1/46134

The results of evaluating the solution are presented in
Table 16.
This experiment showed that the solution answers
questions in English and Lithuanian languages well.
In the geography knowledge base, the created proto-
type was not able to answer questions with negations.
We have not implemented negations, because Seman-
tic Web uses open world assumption. Due to the im-
perfection of our natural language analysis algorithms
we could not answer some English questions with
grammatical structure that differs from the structure
of SBVR concepts (e.g., Through which states does the
Mississippi run?) and questions to find minimum or
maximum values according to the specified criterion
(e.g., What is the smallest state by area?). Our trans-
formation rules could not transform questions with
both comparison and minimum or maximum values
(e.g., Which states have points higher than the highest
point in Colorado?).
Results of restaurant knowledge base are worse, be-
cause it contains many questions to find addresses of
restaurants that the prototype was not able to answer
correctly. For example, the question Where is Chinese
food in Bay area? was answered incorrectly by show-
ing list of restaurants instead of their exact locations.
Clarification dialog made a significant impact on im-
proving precision. It helped to answer questions with
names of places, such as What is the population of Se-
attle Washington? where Seattle Washington is the
composite name meaning city Seattle in state Wash-
ington.
Some other NLIs to ontologies were evaluated using
geography knowledge base and showed similar re-
sults in English (see Table 17).

Knowledge base TQ AQ CQ PQ RQ FQ

Geography 250

English questions

224 205 0,9151 0,82 0,8649

Lithuanian questions

232 222 0,9569 0,888 0,9212

Restaurants 251

English questions

247 188 0,7611 0,749 0,7550

Lithuanian questions

248 187 0,754 0,745 0,7495

Table 16
The results

of evaluating
correctness

Mapping question with combination of
ontology resources
In this experiment, we investigate questioning capa-
bilities when the structure of the ontology differs from
language formulations used for writing questions. Par-
ticularly, we analyse n-ary relation case which occurs
in practical applications. The example is adapted from
[23] and is presented in Figure 25. It contains the re-
lation class purchase, which is connected with classes
buyer, seller, and products that are being purchased.
Relations of this ontology do not express very useful
information for the user. For example, it is unlikely
that the user will be interested which products were
included in some purchase. Probably, the user will
be interested in relations that are not declared in the

Table 17
Comparing correctness with other solutions

NLI PQ RQ FQ

Querix 0,8608 0,8711 0,8659

PANTO 0,8805 0,8586 0,8694

FREyA 0,924 0,924 0,924

SBVR based NLI 0,9151 0,82 0,8649

Figure 25
N-ary relation of purchases domain

The results of evaluating the solution are presented in Table 16.

Table 16. The results of evaluating correctness

Know
ledge
base

TQ

AQ

CQ

PQ

RQ

FQ

Geog-
raphy

250

English questions
224 205 0,9151 0,82 0,8649

Lithuanian questions
232 222 0,9569 0,888 0,9212

Res-
tau-
rants

251

English questions
247 188 0,7611 0,749 0,7550

Lithuanian questions
248 187 0,754 0,745 0,7495

This experiment showed that the solution answers questions in English and Lithuanian languages well. In

the geography knowledge base, the created prototype was not able to answer questions with negations. We
have not implemented negations, because Semantic Web uses open world assumption. Due to the imperfection
of our natural language analysis algorithms we could not answer some English questions with grammatical
structure that differs from the structure of SBVR concepts (e.g., Through which states does the Mississippi
run?) and questions to find minimum or maximum values according to the specified criterion (e.g., What is
the smallest state by area?). Our transformation rules could not transform questions with both comparison and
minimum or maximum values (e.g., Which states have points higher than the highest point in Colorado?).

Results of restaurant knowledge base are worse, because it contains many questions to find addresses of
restaurants that the prototype was not able to answer correctly. For example, the question Where is Chinese
food in Bay area? was answered incorrectly by showing list of restaurants instead of their exact locations.

Clarification dialog made a significant impact on improving precision. It helped to answer questions with
names of places, such as What is the population of Seattle Washington? where Seattle Washington is the com-
posite name meaning city Seattle in state Washington.

Some other NLIs to ontologies were evaluated using geography knowledge base and showed similar results
in English (see Table 17).

Table 17. Comparing correctness with other solutions

NLI PQ RQ FQ
Querix 0,8608 0,8711 0,8659
PANTO 0,8805 0,8586 0,8694
FREyA 0,924 0,924 0,924
SBVR based NLI 0,9151 0,82 0,8649

5.2. Mapping question with combination of ontology resources

In this experiment, we investigate questioning capabilities when the structure of the ontology differs from
language formulations used for writing questions. Particularly, we analyse n-ary relation case which occurs in
practical applications. The example is adapted from Error! Reference source not found. and is presented in
Figure 25. It contains the relation class purchase, which is connected with classes buyer, seller, and products
that are being purchased.

Figure 25. N-ary relation of purchases domain

Relations of this ontology do not express very useful information for the user. For example, it is unlikely
that the user will be interested which products were included in some purchase. Probably, the user will be
interested in relations that are not declared in the ontology (e.g., what products were bought by certain person),
but can be derived. The solution allows to describe derivations in SBVR specification and formulate questions

135Information Technology and Control 2017/1/46

ontology (e.g., what products were bought by certain
person), but can be derived. The solution allows to
describe derivations in SBVR specification and for-
mulate questions using derived concepts. The SBVR
specification of the example is presented in Table 18.
An example question and transformed SPARQL que-
ry are presented in Table 19.

Table 18
SBVR specification for describing n-ary relations of
purchases domain

Table 19
Example question and transformed query

Table 18. SBVR specification for describing n-ary relations of purchases domain
purchase
person
product
purchase is_created_by person
product is_included_in purchase
product is_bought_by person

It is necessary that product is_bought_by
person if product is_included_in purchase that
is_created_by person.

An example question and transformed SPARQL query are presented in Table 19.
Table 19. Example question and transformed query

What products were bought by John Smith?
SELECT
 ?product_i
WHERE {
 ?product_i ?is_included_in ?purchase_i.
 ?is_included_in rdfs:label “product.
 is_included_in purchase”@en.
 ?purchase_i ?is_created_by ?person_i.
 ?is_created_by rdfs:label “purchase
 is_created_by person”@en.
 ?product_i rdf:type ?product_c.
 ?product_c rdfs:label “product”@en.
 ?purchase_i rdf:type ?purchase_c.
 ?purchase_c rdfs:label “purchase”@en.
 ?person_i rdf:type ?person_c.
 ?person_c rdfs:label “person”@en
 FILTER regex(?person_i, “John Smith”)
}

Table 18. SBVR specification for describing n-ary relations of purchases domain
purchase
person
product
purchase is_created_by person
product is_included_in purchase
product is_bought_by person
It is necessary that product is_bought_by
person if product is_included_in purchase that
is_created_by person.

An example question and transformed SPARQL query are presented in Table 19.
Table 19. Example question and transformed query

What products were bought by John Smith?

SELECT
 ?product_i
WHERE {
 ?product_i ?is_included_in ?purchase_i.
 ?is_included_in rdfs:label “product.
 is_included_in purchase”@en.
 ?purchase_i ?is_created_by ?person_i.
 ?is_created_by rdfs:label “purchase
 is_created_by person”@en.
 ?product_i rdf:type ?product_c.
 ?product_c rdfs:label “product”@en.
 ?purchase_i rdf:type ?purchase_c.
 ?purchase_c rdfs:label “purchase”@en.
 ?person_i rdf:type ?person_c.
 ?person_c rdfs:label “person”@en
 FILTER regex(?person_i, “John Smith”)
}

Conclusions and future works
The research has showed that SBVR is capable to be
used as a basis of NLI to ontologies. It allows formu-
lating questions in different languages. Multilingual-
ism is achieved by the nature of SBVR to separate
meaning from expression.
Rules that we described to transform meaning of
SBVR questions to SPARQL queries are indepen-
dent from language. Therefore, adjusting NLI for
certain language requires adapting only question
interpretation algorithms and libraries of morpho-
logical analysis.
Another situation where it makes sense to use SBVR
is when question mapping to ontology is not straight-
forward. In our solution, questions are formulated us-
ing SBVR vocabulary, which contains concepts hav-
ing direct mappings to ontology resources as well as
concepts that are derived from other concepts. These
derivations are described in SBVR specification in-
stead of creating additional resources (i.e., object
properties) and derivation rules to the ontology.
The drawback of the solution are efforts required for
customization to prepare SBVR specification and
synchronize it with ontology. Our future work will be
related with integrating new features to improve hab-
itability, for example, feedback and query refinement.

Acknowledgements
The work is supported by the project VP1-3.1-ŠMM-
10-V-02-008 "Integration of Business Processes and
Business Rules on the Basis of Business Semantics”
(2013−2015), which is funded by the European Social
Fund (ESF).

References
1. E. Kaufmann, A. Bernstein. Evaluating the Usability

of Natural Language Query Languages and Interfac-
es to Semantic Web Knowledge Bases. Journal of Web
Semantics: Science, Services and Agents on the World
Wide Web, 2010, 8, 377−393.

2. D. Damljanovic, V. Tablan, K. Bontcheva. A Text-based
Query Interface to OWL Ontologies. In: 6th Language
Resources and Evaluation Conference (LREC), Mar-
rakech, Marocco, 2008.

3. D. Damljanovic, M. Agatonovic, H. Cunningham. Natu-
ral Language Interfaces to Ontologies: Combining Syn-
tactic Analysis and Ontology-based Lookup through the
User Interaction. In: Proceedings of the 7th interna-
tional conference on The Semantic Web: Research and
Applications, 2010, Part I, 106-120.

4. D. Damljanovic, M. Agatonovic, H. Cunningham, K.
Bontcheva. Improving Habitability of Natural Language
Interfaces for Querying Ontologies with Feedback

Information Technology and Control 2017/1/46136

and Clarification Dialogues. Web Semantics: Science,
Services and Agents on the World Wide Web, 2013, 19,
1–21. https://doi.org/10.1016/j.websem.2013.02.002

5. P. Cimiano, P. Haase, J. Heizmann, M. Mantel. ORAKEL:
A Portable Natural Language Interface to Knowledge
Bases. Technical report, Institute AIFB, University of
Karlsruhe, 2007.

6. C. Fellbaum. WordNet – An Electronic Lexical Data-
base. MIT Press, 1998.

7. D. Klein, C. D. Manning. Accurate Unlexicalized Pars-
ing. In: Proceedings of the 41st Annual Meeting on As-
sociation for Computational Linguistics, 2003, 1, 423-
430. https://doi.org/10.3115/1075096.1075150

8. E. Kaufmann, A. Bernstein, R. Zumstein. Querix: A Nat-
ural Language Interface to Query Ontologies Based on
Clarification Dialogs. In: 5th International Semantic
Web Conference (ISWC 2006), 2006, 980–981. https://
doi.org/10.1007/11926078_78

9. V. L. Garcia, E. Motta, V. Uren. AquaLog: An ontolo-
gy-driven Question Answering System to interface
the Semantic Web. In: Proceedings of Human Lan-
guage Technology Conference of the North American
Chapter of the Association of Computational Lin-
guistics, New York, US, 2006, 269-272. https://doi.
org/10.3115/1225785.1225790

10. Semantics of Business Vocabulary and Business Rules
(SBVR), Version 1.3. OMG Document Number: for-
mal/2015-05-07, 2013.

11. A. Harris, A. Seaborne. SPARQL 1.1 Query Language.
W3C Recommendation, March 21, 2013. http://www.
w3.org/TR/sparql11-query/. Accessed on June 16, 2015.

12. Natural Language Learning Data. http://www.cs.utexas.
edu/users/ml/nldata.html. Accessed on April 5, 2015.

13. Number of Internet Users by Language. Internet World
Stats, Miniwats Marketing Group, June 30, 2016. http://
www.internetworldstats.com/stats7.htm. Accessed on
November 6, 2016.

14. OWL Test Data. https://files.ifi.uzh.ch/ddis/oldweb/
ddis/research/talking-to-the-semantic-web/owl-test-
data/. Accessed on April 5, 2015.

15. L. R. Tang, R. J. Mooney. Using Multiple Clause con-
structors in inductive logic programming for semantic
parsing. In: Proceedings of the 12th European Confer-

ence on Machine Learning, Freiburg, Germany, 2001,
466-477. https://doi.org/10.1007/3-540-44795-4_40

16. J. Karpovič, G. Kriščiūnienė, L. Ablonskis, L. Nemuraitė.
The comprehensive mapping of semantics of business
vocabulary and business rules (SBVR) to OWL 2 on-
tologies. Information Technology and Control, 2014,
43(3), 289-302. ISSN 1392-124X.

17. T. Berners-Lee, J. Hendler, O. Lassila. The Semantic
Web. Scientific American, 2001, 28–37. https://doi.
org/10.1038/scientificamerican0501-34

18. D. Damljanovic. Natural Language Interfaces to Con-
ceptual Models. Ph.D. thesis, The University of Shef-
field, Language Resources and Evaluation, 2011. http://
etheses.whiterose.ac.uk/1630/. Accessed on April 5,
2015.

19. M. H. Linehan. SBVR Use Cases. In: Proceedings of 2008
International Symphosium on Rule Representation, In-
terchange and Reasoning on the Web (RuleML’08), ser.
Lecture Notes in computer Science, vol. 5321, Berlin,
Germany, 2008, 182−196. https://doi.org/10.1007/978-
3-540-88808-6_20

20. C. Wang, M. Xiong, Q. Zhou, Y. Yu. Panto: A portable
natural language interface to ontologies. In: The Se-
manticWeb: Research and Applications, 2007, 473-487.
https://doi.org/10.1007/978-3-540-72667-8_34

21. W. C. Watt. Habitability. American Documenta-
tion, 1968, 19(3), 338-351. https://doi.org/10.1002/
asi.5090190324

22. A. Šukys, L. Ablonskis, L., Nemuraitė, B. Paradauskas.
A Grammar for Advanced SBVR Editor. Information
Technology and Control, 2016, 45(1), 27-41. ISSN 1392-
124X.

23. N. Noy, A. Rector. Defining N-ary Relations on the Se-
mantic Web. W3C Working Group Note, 12 April 2006.
http://www.w3.org/TR/swbp-n-aryRelations/. Ac-
cessed on Junuary 14, 2016.

24. A. Bernstein, E. Kaufmann, C. Kaiser. Querying the se-
mantic web with ginseng: A guided input natural lan-
guage search engine. In: 15th Workshop on Information
Technologies and Systems, Las Vegas, NV, USA, 2005,
112–126.

25. J. S. Mill. A System of Logic. University Press of the Pa-
cific, Honolulu, USA, 2002. ISBN 1-4102-0252-6.

137Information Technology and Control 2017/1/46

Summary / Santrauka
The semantic search over ontologies allows user to retrieve more relevant results comparing with ordinary
keyword based search systems. This type of search system is powered by ontologies and the most convenient
interface to ontologies is natural language interface. In this paper, we present multilingual SBVR standard
based natural language interface to ontologies, which allows writing questions based on concepts of SBVR vo-
cabulary and transforms them to SPARQL queries using model transformations. The solution can also be used
for questioning, when question mapping to ontology is not straightforward. The experimental evaluation of
correctness using Mooney Natural Language Learning Data showed results, similar to other natural language
interface solutions, answering questions in English and Lithuanian languages.

Palyginus su įprastomis raktiniais žodžiais grindžiamomis paieškos sistemomis, semantinė paieška ontologi-
jose padeda vartotojams gauti tikslesnius rezultatus. Tokio tipo paieškos sistema yra paremta ontologijomis, o
pati patogiausia sąsaja ontologijai yra natūralios kalbos klausimų sąsaja. Šiame straipsnyje pristatome daug-
iakalbę SBVR standartu grindžiamą natūralios kalbos sąsają ontologijoms, kuri leidžia rašyti klausimus naudo-
jant SBVR žodyną ir transformuoja šiuos klausimus į SPARQL užklausas naudojant modelių transformacijas.
Sprendimas taip pat leidžia pateikti klausimus, kurių struktūros susiejimas su ontologijos struktūra nėra pa-
prastas. Eksperimentinis tyrimas, naudojant Mooney natūralios kalbos tyrimų duomenis, parodė rezultatus,
panašius į kitų sprendimų, atsakant į klausimus anglų ir lietuvių kalbomis.

