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Augmented marked graphs possess a special structure for modelling distributed systems with shared resourc-
es. Not only inheriting the desirable properties of augmented marked graphs such as on liveness and revers-
ibility, proper augmented marked graphs also exhibit other desirable properties, including boundedness and 
conservativeness. However, proper augmented marked graphs have a rather complicated definition that inev-
itably undermines the usability in system modelling. In this paper, based on composition of live and bounded 
marked graphs, new characterizations for proper augmented marked graphs are devised. Through these char-
acterizations, proper augmented marked graphs can be effectively used in modelling and analyzing conflicting 
processes of a distributed system. Applications to distributed transaction processing with shared resources are 
discussed.
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Introduction
A subclass of Petri nets, augmented marked graph 
was first introduced by Chu and Xie for modelling 
systems with shared resources [1]. In the literature, 
thorough investigation on augmented marked graphs 
was mainly conducted by Cheung [2-6]. Having a spe-
cial structure for representing shared resources, aug-

mented marked graphs possess desirable properties 
pertaining to liveness and reversibility. According to 
Chu and Xie, an augmented marked graph is live and 
reversible if and only if every minimal siphon would 
never become empty [1]. More siphon-based and cy-
cle-based characterizations were devised by Cheung, 
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where a cycle-inclusion property was used for char-
acterizing the liveness and reversibility [2, 3]. Trans-
formation-based characterizations for bounded and 
conservative augmented marked graphs were intro-
duced [4, 6]. There are also studies on the composi-
tion of augmented marked graphs and its applications 
to system integration [7-11].
Proper augmented marked graphs are a special type 
of augmented marked graphs, found by Cheung [6, 
12]. Not only inheriting all the properties of augment-
ed marked graphs, proper augmented marked graphs 
also possess more properties, including bounded-
ness and conservativeness. However, like augment-
ed marked graphs, proper augmented marked graphs 
have a rather complicated definition, thus adding 
difficulties in system modelling and analysis. This 
dilemma can be resolved by some characterizations 
of proper augmented marked graphs. In this paper, 
based on the composition of live and bounded marked 
graphs, a number of characterizations are proposed. 
With these characterizations, the processes or com-
ponents of a system can be readily modelled as 
marked graphs, and then composed via their common 
resource places. The integrated PT-net so obtained is 
a proper augmented marked graph which represents 
the integrated whole of the processes or components.
In a distributed system, it is often that two or more 
concurrent processes compete for some shared re-
sources. Owing to the existence of these conflicting 
processes, erroneous situations such as deadlock and 
capacity overflow may occur. In this paper, it is pro-
posed to model the conflicting processes as marked 
graphs, and then, to compose them as a proper aug-
mented graph which represents the integrated whole 
of the processes for analysis. 
The rest of this paper is structured as follows. Sec-
tion 2 states the definitions and properties of proper 
augmented marked graphs. New characterizations 
are proposed in Section 3. Section 4 then shows the 
modelling and analysis of conflicting processes using 
proper augmented marked graphs and their proper-
ties and characterizations. Section 5 describes the 
application to the analysis of distributed transaction 
processing systems with common shared resources, 
and illustrates with examples. Section 6 briefly con-
cludes this paper. It is noted that readers are assumed 
to have basic knowledge on Petri nets [13-15].

Proper augmented marked  
graphs and their properties
Proper augmented marked graphs are a special type of 
augmented marked graphs [6, 12]. The definitions and 
known properties are summarized below.
Definition 1. An augmented marked graph (N, M0; R) 
is a PT-net (N, M0) with a specific subset of places R 
(called resource places), satisfying the following con-
ditions: (a) Every place in R is marked by M0. (b) The 
PT-net (N‘, M0) obtained from (N, M0; R) by removing 
the places in R and their associated arcs is a marked 
graph. (c) For each r∈ R, there exist kr > 1 pairs of tran-
sitions Dr = { 〈ts1, th1〉, 〈ts2, th2〉, …, 〈tskr, thkr〉 } such that r• = 
{ ts1, ts2, ..., tskr } ⊆ T and •r = { th1, th2, ..., thkr } ⊆ T and that, 
for each 〈tsi, thi〉 ∈Dr, there exists in N‘ an elementary 
path ρri connecting tsi to thi. (d) In (N‘, M0‘), every cycle 
is marked and no ρri is marked.
Definition 2. Let (N, M0; R) be an augmented marked 
graph to be transformed into a PT-net (N‘, M0‘) as fol-
lows. For each place r ∈ R, where Dr = { 〈ts1, th1〉, 〈ts2, th2〉, 
…, 〈tskr, thkr〉 }, r is replaced by a set of places Q = { q1, q2, 
…, qkr }, such that M0‘[qi] = M0[r], qi

• = { tsi } and •qi = { thi 
}. (N‘, M0‘) is called the R-transform of (N, M0; R).
Definition 3. Let (N, M0; R) be an augmented marked 
graph, and (N‘, M0‘) be the R-transform of (N, M0; R). 
(N, M0; R) is a proper augmented marked graph if and 
only if every place in (N‘, M0‘) belongs to a cycle.

Figure 1 
A proper augmented marked graph
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Property 1. A proper augmented marked graph (N, M0; 
R) is live and reversible if and only if every R-siphon 
would never become empty [6, 12]. (Note : A R-siphon is 
a minimal siphon which contains at least one place in R.)
Property 2. A proper augmented marked graph is 
bounded and conservative [6, 12].
Figure 1 shows a proper augmented marked graph (N, 
M0; R), where R = { r1, r2, r3 }. (N, M0; R) is bounded and 
conservative. However, it is neither live nor revers-
ible since there exists a R-siphon { r2, r3, p6, p10 }, which 
would become empty on firing 〈 t1, t2, t3, t8 〉.

Characterizations for proper 
augmented marked graphs
Based on the composition of live and bounded marked 
graphs, in the following, a number of new characteri-
zations for proper augmented marked graphs are pro-
posed.
Definition 4. Let (N1, M10), (N2, M20), …, (Nn, Mn0) be 
PT-nets. Suppose Q = { p1, p2, …, pk } is a set of places 
that are common to the PT-nets, where p1, p2, …, pk are 
marked. By fusing p1, p2, …, pk into one single marked 
place q, the resulting net (N, M0) is called the integrat-
ed PT-net obtained by composing (N1, M10), (N2, M20), 
…, (Nn, Mn0) via the set of common places Q.
Proposition 1. Let (N, M0; R) be a proper augmented 
marked graph, and (N’, M0’) be the R-transform of (N, 
M0; R). (N’, M0’) is structurally the composite PT-net of 
a set of disconnected, live and bounded marked graphs.
Proof. Consider the transformation of (N, M0; R) into 
(N’, M0’), as described in Definition 2. Let R = { r1, r2, …, 
rn }. Each ri ∈ R is replaced by a set of marked places 
Qi, for i = 1, 2, …, n. For any place p in (N’, M0’), | •p | =  
| p• | = 1. Let g be a cycle in (N’, M0’). There are two possi-
ble cases for g. In case g contains any place in Q1 ∪ Q2 ∪ 
… ∪ Qn, g is marked. In case g does not contain any place 
in Q1 ∪ Q2 ∪ … ∪ Qn, g also exists in (N, M0; R). According 
to Cheung, every cycle in an augmented marked graph 
is marked [1, 2, 6]. Hence, g is also marked. Then, for 
(N’, M0’), every place belongs to a cycle and every cy-
cle is marked, thus fulfilling the conditions of live and 
bounded marked graphs. (N’, M0’) is structurally a live 
and bounded marked graph or a composite of a set of 
live and bounded marked graphs.
Figure 2 shows three PT-nets, (N1, M10), (N2, M20) and 

(N3, M30). Suppose they have some common places,  
Q1 = { p11, p21, p31 }, Q2 = { p12, p22 } and Q3 = { p13, q32 }. Fig-
ure 3 shows the integrated PT-net (N, M0) obtained by 
composing (N1, M10), (N2, M20) and (N3, M30) via Q1, Q2 
and Q3, where q1, q2 and q3 are the fused common plac-
es, respectively.
Proposition 2. A proper augmented marked graph (N, 
M0; R) is the integrated PT-net obtained after compos-
ing a set of live and bounded marked graphs via their 
common places, where R is the set of fused places.
Proof. It follows from Proposition 1. For any place p 

Figure 2 
Three PT-nets with common places
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not involved in the fusing, | •p | = | p• | = 1. For any place r 
involved in the fusing, | •r | = | r• | = k. R is the set of fused 
places.
Proposition 2 offers a more concise definition for 
proper augmented marked graphs. It can be effective-
ly used in characterizing the boundedness and con-
servativeness of proper augmented marked graphs, as 
well as the property-preserving composition of prop-
er augmented marked graphs.
Lemma 1. Let N = 〈 P, T, F 〉 be a PT-net, N’ = 〈 P’, T’, 
F’ 〉 be the PT-net obtained from N after fusing a set of 
places Q = { q1, q2, ..., qn } ⊆ P into one single place r ∈ P’. 
If there exists a place invariant a of N such that a[q1] 
= a[q2] = ... = a[qn] = k ≥ 0, then there also exists a place 
invariant a’ of N’ such that a’[r] = k and a’[s] = a[s] for 
any s ∈ P’ \ { r } = P \ Q.
Proof. Since N’ is obtained from N by fusing Q = { q1, q2, 
..., qn } into r, we have P’ = ( P \ Q ) ∪ { r }. Let V be the in-
cidence matrix of N. Then, the incidence matrix V’ of N’ 
satisfies that V’[r] =Σi=1,2,...,n V[qi] and V’[s] = V[s] for any 
s ∈ P’ \ { r } = P \ Q. Since a is a place invariant of N, aV 
= 0. Let a’ be a place vector of N’ such that a’[r] = a[q1] 
= a[q2] = ... = a[qn] = k and a’[s] = a[s] for every s ∈ P’ \ { 
r } = P \ Q. Then, a’V’ = a’[r]V’[r] + Σp∈(P’\{r}) a’[p]V’[p] = 
Σi=1,2,...,n a[qi]V[qi] + Σp∈(P\Q) a[p]V[p] = aV = 0. Hence, a’ is 
a place invariant of N’.
Proposition 3. A proper augmented marked graph is 
bounded and conservative.
Proof. According to Proposition 2, a proper augmen- 

Figure 3 
The integrated PT-net obtained by composing the  
PT-nets in Figure 2 via their common places
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ted marked graph (N, M0; R) is an integrated PT-net 
obtained after composing a set of live and bounded 
marked graphs { (N1, M10), (N2, M20), …, (N, Mk0) } by fus-
ing some marked places. Let (N’, M0’) be the composite 
PT-net of (N1, M10), (N2, M20), …, (N, Mk0). Since each (Ni, 
Mi0) is bounded, there exists a place invariant a’ in (N’, 
M0’) such that a’ = k > 0. According to Lemma 1, there 
also exists a place invariant a in (N, M0; R) such that a 
= k > 0. Hence, (N, M0; R) is bounded and conservative.
Proposition 4. The integrated PT-net obtained by 
composing a set of live and bounded marked graphs via 
their common places is a proper augmented marked 

Figure 4 
A set of live and bounded marked graphs
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graph (N, M0; R), where R is the set of fused places.
Proof. It directly follows from Propositions 2 and 3.
Figure 4 shows a set of live and bounded marked 
graphs { (N1, M10), (N2, M20), (N3, M30) }. They are com-
posed by fusing r11 and r21 into one single place r1, r12 
and r32 into r2, and r13 and r33 into r3. The resulting PT-
net is a proper augmented marked graph (N, M0; R), 
where R = { r1, r2, r3 }, as shown in Figure 1.

Modelling and analysis  
of conflicting processes
This section discusses how proper augmented 
marked graphs can be effectively used in the model-
ling and analysis of conflicting processes.
Typically in a distributed system, a number of con-
current processes compete for some shared resour-
ces. Erroneous situations occur when two or more 
processes are each waiting for the other to finish and 
neither ever does. The processes will continue to wait 
endlessly, resulting into deadlocks. There are also 
erroneous situations where resources exceed their 
capacity limits, thus causing capacity overflow. These 
processes are called conflicting processes.
In system integration, especially for distributed 
systems with concurrent processes competing for 
shared resources, one difficult challenge is to identify 
any erroneous situations such as deadlock and capac-
ity overflow. This can be approached by using proper 
augmented marked graphs and their properties and 
characterizations. Consider a set of conflicting pro-
cesses, competing for shared resources R = { r1, r2, ..., 
rk }. Steps for modelling and analysis are outlined be-
low.
Step 1. Model each process as a marked graph (Ni, 
Mi0), where any shared resource to be used is repre-
sented as a marked place called resource place. For a 
total of n processes, we have a set of marked graphs  
{ (N1, M10), (N2, M20), ..., (Nn, Mn0) }.

Step 2. Check if each (Ni, Mi0) is live and bounded. (Ni, 
Mi0) is live and bounded if and only if every place in 
belongs to a cycle and every cycle is marked [16].
Step 3. Suppose (N1, M10), (N2, M20), ..., (Nn, Mn0) are 
live and bounded. Compose them via their common 

resource places. According to Proposition 2, the in-
tegrated PT-net is a proper augmented marked graph 
(N, M0; R), where R = { r1, r2, ...,rk } denotes the shared 
resources.

Step 4. Analyze the properties of (N, M0; R), which 
represents an integration of the conflicting process-
es. According to Property 2, (N, M0; R) is bounded and 
conservative. Based on Property 1, (N, M0; R) is live 
and reversible if and only if every R-siphon would nev-
er become empty. 
Suppose there is a distributed system with shared 
resources r1, r2 and r3, where r1 is shared by process-
es C1 and C2, and r2 and r3 are shared by process-
es C1 and C3. As shown in Figure 4, C1, C2 and C3 are 
modelled as live and bounded marked graphs (N1, 
M10), (N2, M20) and (N3, M30), respectively. Referring 
to the same resource, r11 in (N1, M10) and r12 in (N2, 
M20) are fused as one single place r1. Likewise, r12 in 
(N1, M10) and r32 in (N3, M30) are fused as r2, and r13 in 
(N1, M10) and r33 in (N3, M30) are fused as r3. Accord-
ing to Proposition 4, the integrated PT-net is a prop-
er augmented marked graph (N, M0; R), where R =  
{ r1, r2, r3 }, as shown in Figure 1.

Application to distributed  
transaction processing
In a distributed transaction processing system, 
there involves many concurrent processes which 
compete for some shared resources such as com-
mon data objects. Whenever a process needs to ac-
cess a common data object, it would attempt to lock 
the data object for exclusive usages, either read or 
update. The data object is unlocked after comple-
tion of the read or update transactions. While the 
data object is being locked, accesses from other pro-
cesses are prohibited. These processes have to wait 
until the data object is unlocked. Deadlocks may oc-
cur, where two or more processes are each waiting 
for the other to finish the read or update operations 
of common data objects, and thus neither ever does.
It is always important in system design to identify 
any possible deadlock situations. In system termi-
nology, liveness is the property where deadlock situ-
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ations would never occur. Hence, it is one of the de-
sign objectives to verify if a system is live, that is, free 
from deadlock situations. Proper augmented marked 
graphs can be effectively applied to solve this problem 
by following the steps described in Section 4.
Example 1. Consider a typical distributed transac-
tion processing system which involves a number 
of concurrent processes, accessing some common 
data objects. Among other processes, there are 3 
concurrent processes each needs to access 2 common 
data objects (namely, O1 and O2) in processing some 
transactions. A functional description of the proces-
ses is as follows.
Process 1. At its initial state, the process intends to 
access O1. Once O1 is available, it is locked to prevent 
accesses from other processes. The process enters to 

a state, intending to access O2. Once O2 is available, 
it is locked by the process too. Update transactions 
on both O1 and O2 are then processed. After finishing 
these update transactions, the process releases O2. 
There are some further update transactions on O1, af-
ter which O1 is released.
Process 2. At its initial state, the process intends to 
access O2. Once O2 is available, it is locked to prevent 
accesses from other processes. The process enters to 
a state, intending to access O1. Once O1 is available, it 
is locked by the process too. Update transactions on 
both O1 and O2 are then processed. After finishing these 
update transactions, the process releases O1. There are 
some further update transactions on O2, after which O2 
is released.
Process 3. At its initial state, the process intends to 

Figure 5 
Modelling 

process 1 as a 
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Figure 7 
Modelling 
process 3 as a 
marked graph 
(N3, M30)
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Figure 8 
The proper 
augmented 
marked graph (N, 
M0; R) obtained 
after composing 
(N1, M10), (N2, 
M20) and (N3, 
M30) in Figures 5, 
6 and 7

access both O1 and O2. Once both O1 and O2 are avail-
able, they are locked to prevent accesses from other 
processes. Update transactions on both O1 and O2 are 
then processed. After finishing the update transac-
tions, the process releases O1 and O2 simultaneously.
Processes 1, 2 and 3 are represented by the marked 
graphs (N1, M10), (N2, M20) and (N3, M30), as shown in Figu- 
res 5, 6 and 7 respectively. They are live and bounded.

The next step is to compose (N1, M10), (N2, M20) and 
(N3, M30) via Q1 and Q2. According to Proposition 4, the 
integrated PT-net so obtained is a proper augmented 
marked graph.
Figure 8 shows the proper augmented marked graph 
(N, M0; R), where R = {r1, r2}, after fusing r11, r21 and r31 
as one single place r1, and r21, r22 and r23 as r2. (N, M0; 
R) represents the integrated whole of the conflicting 
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processes. As (N, M0; R) is a proper augmented mar-
ked graph, according to Property 2, it is bounded and 
conservative. Besides, there exists a R-siphon { r1, r2, 
p13, p14, p23, p24, p32 } which would become empty after 
firing 〈 t11, t21 〉. According to Property 1, (N, M0; R) is 
neither live nor reversible. Deadlock will occur after 
firing 〈 t11, t21 〉. From this, it is concluded that deadlock 
would occur among the conflicting processes.
It is also shown that, even though the processes are 
individually live and reversible, the integrated whole 
may not be live nor reversible. However, in some cas-
es, the integrated whole can be live and reversible, as 
illustrated in the following example.
Example 2. This example is a revised version of Ex-
ample 1. Processes 1, 2 and 3 are revised as follows.
Revised Process 1. At its initial state, the process in-
tends to access both O1 and O2. Once both O1 and O2 are 
available, they are locked to prevent accesses from oth-
er processes. Update transactions on both O1 and O2 are 

Figure 9 
Modelling the 

revised process 
1 as a marked 

graph (N1’, M10’)

Figure 10 
Modelling the 

revised process 
2 as a marked 

graph (N2’, M20’)

then processed. After finishing these update transac-
tions, the process releases O2. There are some further 
update transaction on O1, after with O1 is released.
Revised Process 2. At its initial state, the process in-
tends to access O2. Once O2 is available, it is locked to 
prevent accesses from other processes. The process 
enters to a state, intending to access O1. Once O1 is 
available, it is locked by the process too. Update trans-
actions on both O1 and O2 are then processed. After 
finishing these update transactions, the process re-
leases O1 and O2 simultaneously.
Revised Process 3. At its initial state, the process 
intends to access both O1 and O2. Once both O1 and 
O2 are available, they are locked to prevent accesses 
from other processes. Update transactions on both O1 
and O2 are then processed. After finishing these up-
date transactions, the process releases O1. There are 
some further update transactions on O2, after which 
O2 is released.
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Figure 11 
Modelling the 
revised process 
3 as a marked 
graph (N3’, M30’)
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The revised processes 1, 2 and 3 are represented by the 
marked graphs (N1‘, M10‘), (N2‘, M20‘) and (N3‘, M30‘), as 
shown in Figures 9, 10 and 11 respectively. They are live 
and bounded. (N1‘, M10‘), (N2‘, M20‘) and (N3‘, M30) are now 
composed via Q1 and Q2. Figure 12 shows the proper au-
gmented marked graph (N‘, M0‘; R‘) where R‘ = {r1, r2}, 
after fusing r11, r21 and r31 as one single place r1, and r21, r22 
and r23 as r2.

Figure 12 
The proper 
augmented 
marked graph 
(N’, M0’; R’) 
obtained after 
composing (N1’, 
M10’), (N2’, M20’) 
and (N3’, M30’) 
in Figures 9, 10 
and 11

(N’, M0’; R’) represents the integrated whole of the 
conflicting processes. As (N’, M0’; R’) is a proper aug-
mented marked graph, according to Property 2, it is 
bounded and conservative. Besides, every R-siphon 
in (N’, M0’; R’) would never become empty. According 
to Property 1, (N’, M0’; R’) is live and reversible. From 
this, it is concluded that the conflicting processes are 
free from deadlock and capacity overflow.
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Conclusions
Augmented marked graphs and proper augmented 
marked graphs possess a special structure as well 
as many desirable properties pertaining to liveness, 
boundedness, reversibility and conservativeness. 
They are useful for modelling and analyzing distrib-
uted systems with shared resources.
Based on composition of live and bounded marked 
graphs, new characterizations for proper augmented 
marked graphs are proposed. Conflicting processes 
of a distributed system can be first modelled as live 
and bounded marked graphs, and then composed via 
common resource places to form a proper augmented 
marked graph which represents the integrated whole. 
As proper augmented marked graphs are bounded 
and conservative, it is assured that capacity overflow 
would never occur. By checking R-siphons, liveness 
and reversibility can be effectively analyzed.
 As compared to other well-known subclasses of Pe-
tri nets such as state machines, marked graphs, free 
choice nets and asymmetric choice nets, augmented 
marked graphs or proper augmented marked graphs 
are not widely used in system modelling and analysis 

despite possessing many desirable properties per-
taining to liveness, boundedness, conservativeness 
and reversibility. This is because of their complicat-
ed definition which is rather difficult to comprehend, 
thus undermining the usability. There is also a lack 
of simple but formal methodology for modelling, in-
tegrating or analyzing conflicting processes or com-
ponents using augmented marked graphs or proper 
augmented marked graphs.
The problems can be resolved by characterizing prop-
er augmented marked graphs by the composition of 
live and bounded marked graphs. With the charac-
terizations, conflicting processes of a distributed sys-
tem can be readily modelled, composed and analyzed. 
This paper provides a theoretical foundation of these 
characterizations, and shows the modelling and anal-
ysis using typical examples of distributed transaction 
processing.
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Summary / Santrauka
Augmented marked graphs possess a special structure for modelling distributed systems with shared resourc-
es. Not only inheriting the desirable properties of augmented marked graphs such as on liveness and revers-
ibility, proper augmented marked graphs also exhibit other desirable properties, including boundedness and 
conservativeness. However, proper augmented marked graphs have a rather complicated definition that inev-
itably undermines the usability in system modelling. In this paper, based on composition of live and bounded 
marked graphs, new characterizations for proper augmented marked graphs are devised. Through these char-
acterizations, proper augmented marked graphs can be effectively used in modelling and analyzing conflicting 
processes of a distributed system. Applications to distributed transaction processing with shared resources are 
discussed.

Papildyti žymėtieji grafai turi specialią struktūrą paskirstytųjų sistemų su bendraisiais ištekliais kūrimui. 
Be tokių pageidaujamų papildytų žymėtųjų grafų savybių, kaip gyvumas ir grįžtamumas, tinkamai papildyti 
žymėtieji grafai taip pat turi kitas trokštamas savybes – tokias, kaip ribotumas ir konservatyvumas. Deja, tinka-
mai papildytųjų žymėtųjų grafų apibūdinimas sudėtingas, ir tai neišvengiamai kenkia jų panaudojimui sistemų 
modeliavime. Šiame straipsnyje, pagrįstame gyvųjų ir ribotųjų grafų sudarymu, sukuriamos naujos charakter-
istikos tinkamai papildytiems žymėtiesiems grafams. Per tokį charakterizavimą, tinkamai papildyti žymėtieji 
grafai gali būti efektyviai panaudoti paskirstytos sistemos modeliavime ir jos konfliktinių procesų analizėje. 
Straipsnyje aptariamas ir paskirstytųjų transakcijų apdorojimo su bendraisiais ištekliais pritaikymas.


