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This study introduces the Multi-Type Maximal Covering Location Problem (MTMCLP) that arises from the 
design of emergency service networks, and represents a generalization of the well-known Maximal Covering 
Location Problem (MCLP). Differently from the basic MCLP, several types of incidents and emergency units 
are considered and hierarchy of emergency units of different types is assumed in the MTMCLP. The numbers 
of available emergency units of each type are limited to some constants. The objective of the MTMCLP is to 
choose locations for establishing emergency units of each type, such that the total number of covered incidents 
is maximized. In order to provide a decision maker with optimal solutions in an efficient manner, a two-phase 
optimization approach to the MTMCLP is designed. In the first phase, a variant of Reduced Variable Neigh-
borhood Search (RVNS) is applied to quickly find a high-quality solution. The obtained RVNS solution is used 
as a good starting point for the Linear Programming method in the second phase, which returns the optimal 
solution to the MTMCLP. All constructive elements of the proposed two-phase method, denoted as RVNS-LP, 
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are adapted to the characteristics of the considered problem. The RVNS-LP approach is evaluated on real-life 
instances obtained from two networks of police units in Montenegro and Serbia, and randomly generated test 
instances of larger dimensions. Experimental evaluation shows that the proposed RVNS-LP reached all opti-
mal solutions on all real-life test instances in very short CPU time. On generated test instances, the RVNS-LP 
also returned optimal solutions in all cases, within short running times and significant time savings compared 
to CPLEX solver. The mathematical model and the proposed two-phase optimization method may be applica-
ble in the design and management of various emergency-service networks.
KEYWORDS: variable neighborhood search, linear programming, emergency service network, maximal 
covering location problem.  

Introduction
Covering models are one the most popular facility lo-
cation models in the literature, due to their numerous 
applications in practice, especially for locating ser-
vices and emergency facilities. Many of real-life prob-
lems, such as determining the number and locations 
of public schools, police stations, fire stations, mili-
tary bases, medical centers, post offices, bank branch-
es, shopping centers, satellite or radar installations, 
etc., can be formulated as covering problems [11].
In general, covering problems assume a set of cus-
tomers and a set of potential locations for estab-
lishing facilities. In most of covering problems, it is 
required that each customer should be served by at 
least one facility within a given critical distance, de-
noted as covering radius. However, in many practical 
applications, located resources are not sufficient to 
cover all customers with the desired level of cover-
age. This was a motivation for Church and ReVelle 
[5] to propose a Maximal Covering Location Problem 
(MCLP). The MCLP model maximizes the amount 
of demand covered within the acceptable service 
distance by locating a fixed number of facilities. The 
MCLP has showed to be one of the most exploited 
facility location models from both theoretical and 
practical points of view. Starting from the work of 
Church and ReVelle [5], many variants of the MCLP 
are presented in the literature up to now. White and 
Case [29] considered the case of MCLP in which de-
mands of all customers are equal, with the goal to find 
the maximal number of covered customer (demand) 
nodes. A steepest descent heuristic was proposed in 
[29] as a solution method to this variant of MCLP. 
Klastorin [14] showed that MCLP can be formulated 
as Generalized Assignment Problem (GAP). The vari-
ant of MCLP on the plane was considered by Church 

[6], Drezner [9], and Watson-Gandy [28]. Daskin [8] 
introduced the maximal coverage location model as 
one of the variants of set covering model. Probabi-
listic variant of the MCLP was proposed by ReVelle 
and Hogan [23], where each potential facility location 
has assigned a value measuring the probability that a 
facility will be established on that location. ReVelle 
et al. [21] proposed a Maximal Conditional Covering 
Problem, where customer locations need to be cov-
ered by facilities at a given coverage radius, while fa-
cility locations themselves are supposed to be covered 
with a different coverage radius by other facilities, in 
order to provide secondary support. A generalization 
of MCLP was introduced by Berman and Krass [3], 
who involved multiple set of coverage levels with the 
degree of coverage being a non-increasing step func-
tion of the distance to the nearest established facility. 
A general class of covering problems was proposed by 
Hocbaum and Pathria [13] as the class of problems of 
maximum k-coverage, and MCLP may be observed 
as its special case. Another generalization of MCLP 
is the Multimode Covering Location Problem intro-
duced in [7], which deals with locating a given num-
ber of different types of facilities, with a limitation of 
the number of facilities sharing the same location. A 
review of papers related to the MCLP and its variants 
can be found in [10, 15, 24].
In this study, we introduce a generalization of the 
MCLP that arises from the design of an emergency 
service network. We consider the set of cities (rep-
resenting the set of customers) and set of potential 
locations for emergency units (service providers). 
An emergency unit can react to an incident in a city 
if it is located within a given covering radius from this 
city. In our model, we distinguish several types of in-
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cidents, and each city has assigned information on the 
expected number of incidents of each type, obtained 
from the statistical data. Different types of emergen-
cy units are available, and for each type of emergen-
cy unit, it is defined for which types of incident this 
type of unit is trained to react. A hierarchy among 
emergency unit types is introduced, meaning that 
an emergency unit of a certain type can react to inci-
dent types handled by emergency units of lower lev-
el, but also to some additional types of incidents. The 
number of available emergency units of each type 
are limited. The goal of the considered problem is to 
choose locations for establishing emergency units of 
each type, such that the number of all covered inci-
dents is maximized. We will refer to the problem as 
the Multi-Type Maximal Covering Location Prob-
lem (MTMCLP). To the best of our knowledge, there 
are no previously published work on this type of gen-
eralization of the MCLP.
The first goal of the study is to formulate the Multi-
Type Maximal Covering Location Problem as an In-
teger Linear Programming (ILP) model. Note that 
ILP model for the MTMCLP proposed in this study 
may find its applications in the management and 
optimization of various emergency systems. In this 
paper, we have considered two networks of police 
units in the states of Montenegro and Serbia, but 
the model may be also applied to smaller admin-
istrative units (regions, cities, city districts, etc.). 
The proposed model may also be used for military 
purposes, for example, in determining optimal loca-
tions for different types of military units involving 
hierarchical structure. It can also be applied when 
optimizing the network of health-care providers, i.e., 
for determining optimal location of medical centers 
of different types (ambulances, heath-care centers, 
clinics, etc.). In addition, the model can be used for 
designing distribution systems, for example, when it 
is necessary to determine locations of warehouses of 
different sizes or levels, where a warehouse of a cer-
tain level can store not only the products intended 
for warehouses of lower levels, but some additional 
product types as well. The proposed ILP model can 
be also applied for designing a postal delivery sys-
tem, the network of bank offices, supermarkets, etc.
The second goal of our study is to develop an efficient 
decision support system for helping the emergency 

manager to efficiently balance between providing 
emergency service and the economic aspect of emer-
gency system. Emergency management is a dynamic 
system and usually a manager is supposed to make 
the decision within short time. This indicates the 
importance of developing an efficient optimization 
algorithm that will provide emergency manager with 
necessary data (optimal or high-quality solutions) in 
short time. In this paper, we propose an optimization 
method for solving the proposed MTMCLP, based on 
the combination of Reduced Variable Neighborhood 
Search (RVNS) heuristic and Linear Programming 
method (LP). The Reduced Variable Neighborhood 
Search heuristic (RVNS) is applied first in order to 
quickly find a high-quality solution to the problem. 
This solution is used as a good initial solution for the 
Linear Programming method, which is used in the 
framework of CPLEX commercial solver, returning 
optimal solution to the MTMCLP.
The proposed RVNS-LP method was first bench-
marked on the two sets of real-life instances ob-
tained from statistical data related to the network of 
police units in Montenegro and Serbia. The present-
ed results on these instances show that the RVNS-LP 
provides optimal solution in very short CPU times. 
The obtained experimental results on real-life data 
sets are also analyzed from the experts’ point of view. 
In order to evaluate the efficiency of the RVNS-LP 
on larger emergency network, we have generated the 
set of instances involving lager number of custom-
ers and potential locations for emergency unit loca-
tions, as well as larger number of incident types and 
emergency unit types. The RVNS-LP method was 
additionally benchmarked on the set of generated 
instances. The obtained results are presented and 
analyzed, indicating the efficiency of the proposed 
RVNS-LP method in the case of larger emergency 
network as well.
The remainder of paper is organized as follows. In 
Section 2, we present the Integer Linear Program-
ming formulation of the considered MTMCLP. The 
proposed RVNS-LP method is described in details in 
Section 3. In Section 4, we present and analyze com-
putational results obtained on smaller-size real-life 
problem instances and generated test instances of 
larger dimension. Section 5 provides a summary of re-
sults and suggests some possibilities for future work.
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Mathematical formulation
Mathematical model of the MTMCLP uses the fol-
lowing notation:
 _ I denotes the set of cities; 
 _ J represents the set of possible locations for 

establishing emergency units; 
 _ K stands for the set of types of incidents; 
 _ L is the set of types of emergency units; 
 _ dij is the distance between a city i∈I and a potential 

location of an emergency unit j∈J; 
 _ aki represents the number of incidents of type k∈K 

that occurred in a city i∈I; 
 _ bl denotes the number of available emergency units 

of type l∈L; 
 _ R > 0 represents the covering radius, i.e., the 

maximal distance between an emergency unit at 
j∈J and a city i∈I, such that emergency unit is able 
to reach the city in a timely manner. 

Note that in our model inequality |L|≤|K| holds mean-
ing that the number of types of emergency units is 
not greater than the number of incident types. More 
precisely, it implies that an emergency unit of type 
l∈L established on location j∈J can react on incident 
types  1,2, ...,kl in a city i situated within the given cov-
ering radius R, i.e., dij ≤ R. The hierarchy of emergen-
cy units is assumed by 1 ≤ k1< k2< ...< k|L|=|K|, meaning 
that an emergency unit of type l∈L can cover all in-
cident types as emergency units of lower types 1,2, ..., 
l–1, as well as additional incident types up to kl.
According to security experts, location planning of 
emergency units is usually performed on a monthly 
basis, which means that each emergency unit obtains 
its schedule and location for the following month. 
Therefore, aki  ≥ 0, i∈I, k∈K denotes the average num-
ber of incidents of type k∈K in a city i∈I for a partic-
ular month of the year, obtained from statistical data 
during past years. Naturally, we may have different 
values of aki for different months of the year as input 
data. Note that the values of aki may represent the av-
erage number of incidents of type k∈K in the city  i∈I  
for different planning period.
By taking into account assumptions mentioned above, 
the goal of the considered Multi-Type Maximal Cov-
ering Location Problem (MTMCLP) is to find optimal 

locations for establishing police units of each type, so 
that the total number of incidents in covered cities is 
maximized.
In order to present mathematical model of the MTM-
CLP, we introduce two sets of binary variables. Vari-
ables xki∈{0, 1}, k∈K, i∈I take the value of 1 if there is 
an emergency unit that can react on incident of type k 
in city i, and 0 otherwise. Variables ylj∈{0, 1}, l∈L, j∈J 
have the value of 1 if there is an established emergen-
cy unit of type l on location j, and 0 otherwise.
By using the above notation, the MTMCLP may be 
formulated as an Integer Linear Program (ILP) as fol-
lows:
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The objective function (1) maximizes the total num-
ber of covered incidents in the considered emergency 
system. The constraints (2) ensure that emergency 
units of type l established at location j may cover the 
incidents of type k in city i only if the distance be-
tween i and j is not greater than R and kl  ≥ k holds. The 
number of available emergency units of type l  is equal 
to bl, which is indicated by constraints (3). The con-
straints (4) and (5) denote the binary nature of vari-
ables xki and ylj.
Note that the proposed model represents a general-
ization of the Maximal Covering Location Problem – 
MLCP [5]. More precisely, for |K| = |L| = 1 and aki =1, 
for all k∈K, i∈I, our model is reduced to the MCLP. 
Therefore, the proposed model is NP-hard as a gener-
alization of the MCLP, which is proved to be NP-hard 
in [17].
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Proposed RVNS-LP method
The goal of combining different optimization meth-
ods is to exploit the complementary characteristics 
of different search strategies. In the literature, one 
can find numerous examples of hybridization two or 
more optimization algorithms [1, 16, 18, 20, 25], etc. 
Although combination of two or more (meta)heuris-
tic methods is the most exploited type of hybridiza-
tion, there are also examples of successful combina-
tion of the exact algorithms with (meta)heuristics 
for solving many hard optimization problems [2, 22, 
26, 27], etc. The choice of optimization methods to be 
combined and the way of their hybridization highly 
depend on the characteristics of the given problem. A 
detailed survey of state-of-the-art hybrid methods in 
combinatorial optimization can be found in [4].
In this paper, we develop a combination of a heuristic 
and exact optimization method for solving the MT-
MCLP. The proposed method consists of two phases: 
Reduced Variable Neighborhood Search (RVNS) and 
Linear Programming method (LP). Reduced Vari-
able Neighborhood Search is a variant of well-known 
Variable Neighborhood Search heuristic, proposed 
by Mladenović and Hansen [19, 12]. In the RVNS, the 
deterministic component (local search part) is ex-
cluded, since it is usually time consuming. The RVNS 
showed to be useful for solving problem instances of 
large dimension, where local search requires signifi-
cant amounts of CPU time or when it is necessary to 
obtain good initial solution for other heuristic meth-
od in an efficient manner. RVNS is similar to the Mon-
te-Carlo method, but it is more systematic [19, 12].
The basic idea behind the proposed hybrid method for 
the MTMCLP is to apply RVNS heuristic in the first 
phase to quickly find a good initial solution for the 
second, LP phase, which is implemented within the 
framework of CPLEX solver. The proposed RVNS-LP 
method returns optimal solution to the MTMCLP in 
short CPU time, even in the case of problem instanc-
es of larger dimensions. In the next subsections, the 
structure of the proposed two-phase RVNS-LP meth-
od will be explained in details.

 Solution representation
Regarding the nature of the considered Multi-Type 
Maximal Covering Location Problem, the code of 
potential solution consists of |L| binary segments of 

length |J|, where each segment corresponds to one 
type of emergency units. Bits in each of the binary 
segments of length |J| represent potential locations 
for establishing police units of certain type. More 
precisely, segment l, l = 1,2, ..., |L|corresponds to emer-
gency units of type l, and the bits within this segment 
indicate whether or not an emergency unit of type l is 
located on a position j, j = 1,2, ..., |J|.
Therefore, the total length of a solution’s code is 
|L| · |J|. If a bit on the position (l–1) · |J| + j has the val-
ue of 1, it means that an emergency unit of type l is 
established at location j. In case that this bit has the 
value of zero, emergency unit of type l is not located 
at position j.

Neighborhood structures
In our study, we use a neighborhood structure based 
on the facility swap distance. More precisely, one 
swap consists of closing one and opening anoth-
er emergency unit of the same type in the solution. 
Swapping of emergency units belonging to the same 
type is performed by inverting two randomly chosen 
bits belonging to the same segment of the solution 
code. Swaps are allowed within the same segment in 
order to preserve the feasibility of solution. Other-
wise, the number of emergency units of type l may be-
come greater than bl for some l∈L.
We consider that a solution S′ is in the k -th neighbor-
hood of the solution S, if S′ can be obtained from S by 
performing exactly k facility swaps of the same type. 
We will denote by Nk(S), k = 1,2, ..., kmax  a neighborhood 
of size k of a solution S. Parameter kmax denotes the max-
imal size of the neighborhood used in the RVNS part.

Objective function calculation
Algorithm 1 shows the procedure of calculating the 
objective function value of a given solution S. Ini-
tially, objective value obj(S) is set to zero. From the 
solution’s code S, we obtain the indices of located 
emergency units and their types. Once the indices of 
locations with established units are known, for each 
city i∈I we obtain the set of located units that lie with-
in the given range from this city Ni = {j∈J : dij ≤ R}, as 
well as types of these units. For each incident type 
k∈K and each city i∈I, we check if there is at least one 
emergency unit of type l established at location j for 
which kl ≥ k  and dij ≤ R hold, meaning that incident of 
type k that occurred in the city i  will be covered. If this 
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is the case, obj(S) is increased by the value of aki repre-
senting the average number of incidents of type k in 
the city i.
In order to speed up objective function calculation, 
for the considered incident of type k and city i, the 
procedure checks only emergency units of type kl 
for which k ≤ kl ≤ |K| holds and which belong to the 
set Ni = {j∈J : dij ≤ R}  obtained in the initialization 
part.

Algorithm 1  Objective function calculation
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18: break 
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20: end for 
21: end for 
22:  end for 
23:   return  ob j(S) 
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Structure of the RVNS-LP
The structure of the proposed RVNS-LP algorithm is 
presented in Algorithm 2. In the initialization part of 
the RVNS-LP, the initial set of N feasible solutions is 
created. Each initial solution is generated in a pseu-
do-random way such that each segment l, l = 1,2, ..., |L| 
in the solution’s code contains up to bl bits with the 
value of 1 that are randomly distributed in the seg-
ment, while remaining bits are set to 0.
The RVNS heuristic is applied first within the 
proposed two-phase method. Each solution Si,   

i = 1,2, ..., N from the generated initial set is taken as 
the initial solution of the RVNS, and the best solu-
tion obtained through all RVNS runs is memorized. 
Therefore, the RVNS phase can be observed as a vari-
ant of multi-start RVNS method. In the main RVNS 
loop, for each run i = 1,2, ..., N, we iteratively try to 
improve the current best solution Si by searching in 
its neighborhoods Nk(Si), k = 1,2, ..., kmax. If a randomly 
chosen solution Si,∈Nk(Si) is better than the current 
best one Si, we replace Si with S′i, and start the search 
from this new solution. Otherwise, we change the size 
of neighborhood and continue the search in Nk+1(Si). 
The maximal neighborhood size is defined by the 
parameter kmax. The RVNS algorithm runs until the 
maximal number of Niter iterations is reached (stop-
ping criterion).

Algorithm 2  RVNS-LP method
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1:  Initialization: 
2: for � � 1��� � � � do 
3: Generate initial feasible solution Si 
4:  end for 
5:  RVNS phase: 
6: for ���� � 1��� � ������  do 
7: for � � 1��� � � � do 
8: while there is an improvement do 
9: � ← 1   
10:        while � � � do 
11:             Randomly choose ��� from  
            the neighborhood �����) 
12: if �������) � ������) then 
13:                �� ← ���,   
14: � ← 1    
15:             else 
16: � ← � � 1 
17: end if 
18: end while 
19: end while 
20: end for 
21:  end for 
22: ����� ← the best solution  

obtained in the RVNS phase 
23:  LP Phase: 
24: From ����� get the indices of locations of  

established units of each type 
25:  for all � � � do 
26:  for all � � � do 
27: if unit of type l is established at location  j 

 then 
28: ��� ← 1    
29: else 
30: ��� ← 0 
31: end if 
32: end for 
33:  end for 
34:  for all � � � do 
35:  for all i � � � do 
36:   if there is at least one established unit of type 
         � � � at location � so that ��� � � then 
37: ��� ← 1    
38:   else 
39: ��� ← 0      
40:   end if 
41:  end for 
42:  end for 
43: Apply CPLEX solver with initial values  

of variables ��� and ���  

 44:  Return ���� and ��������) 
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 When calculating the objective function value of the 
new solution S′i from the neighborhood Nk(Si), we ap-
ply a strategy that speeds up the evaluation of the new 
solution S′i by using previously calculated objective 
value of Si. Since solution S′i ∈ Nk(S) is obtained by 
swapping k pairs of bits in the solution Si, we observe 
only pairs of bits with changed values. Note that the 
pair of swapped bits must belong to the same segment 
of individual’s code. Let us consider a pair of bits j1  
and j2 belonging to the same segment l ∈ L. We will de-
note them as (l, j1), (l, j2) ∈ L × J. Suppose that the bit (l, 
j1) has changed its value from 0 to 1, and bit (l, j2) has 
been inverted from 1 to 0.
Let T(r, s) represent the number of established emer-
gency units that are able to react on the incidents of 
type r ∈ K in a city s ∈ I. Since bit  (l, j1) has changed 
from 0 to 1, it means that emergency unit of type l is 
established at location j1. Therefore, it is sufficient 
to identify all cities s that lie within the given range 
R from location j2 and all incident types r ≤  l, and to 
increase each of the corresponding values T(r, s) by 1. 
In case the value T(r, s) is increased from 0 to 1, the 
objective value will be increased by ars, and therefore  
obj(S′i) is updated as obj(S′i) = obj(Si) + ars .
Similarly, since bit (l, j2) has changed from 1 to 0, it 
means that emergency unit of type l is removed from 
location j2. We identify all cities s that lie within the 
given range from the location j2 and all incident types 
r ≤ l  and decrease each of the corresponding values 

T(r, s) by 1. In case T(r, s) is changed from 1 to 0, the 
value ars is subtracted from objective value of Si and 
obj(S′i) = obj(Si) – ars is updated.
The described procedure is repeated for all k pairs of 
swapped bits, and the objective value of the neighbor 
solution obj(S′i) is returned and compared with  obj(Si).
The best solution Sbest obtained through N runs of 
RVNS is passed to the LP phase. From the code of Sbest, 
the indices of locations of established units of each 
type are obtained. If a unit of type l is established at 
location j, decision variable ylj takes the value of 1, and 
0 otherwise. For each city i ∈ I and incident type k ∈ 
K, we check if there is at least one established unit of 
type l at location j, such that dij  ≤ R  and l  ≥ k. If this is 
the case, the value of 1 is assigned to decision variable  
xki. Otherwise xki is set to 0.
The values of variables ylj and xki obtained from the 
solution Sbest, are used as a starting point for CPLEX 
solver that is employed in LP part. Starting from these 
initial values, CPLEX easily solves the linear pro-
gramming model of the resulting subproblem in short 
CPU times, i.e., it quickly reaches optimal solution to 
the MTMCLP and confirms its optimality. As com-
putational results show, the solution Sbest obtained by 
multi-start RVNS represents a high-quality initial 
solution for LP part, which enables CPLEX solver to 
provide optimal solution in an efficient manner, even 
in the case of larger problem dimensions.

Computational results
All experiments were carried out on an Intel i5-
2430M on 2.4 GHz with 8 GB RAM memory, under 
Windows 7 operating system. Optimization package 
CPLEX, version 12.1, was used on the same platform. 
The implementation of RVNS-LP was coded in C++  
programming language. The value of parameter N 
representing the number of initial solutions is set to 
20, while the value of the stopping criterion parame-
ter Niter for the RVNS phase is equal to 5000. The val-
ue of kmax representing the maximal size of neighbor-
hoods in the RVNS part is set to 3.
In this section, we present results and analysis of ex-
tensive computational experiments that were carried 
out on three sets of instances. Two sets of instances 
are obtained from the real-life data and they are of 
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smaller and medium size. In order to test the efficien-
cy of the algorithm, we have generated the third set of 
instances of large dimensions.
Data set 1. The first data set is generated from the data 
obtained from the network of police units in the state 
of Montenegro. The instances are generated with the 
help of security experts in this area and by using sta-
tistical data in past several years. Instances from the 
Data set 1 involve the set of 21 cities in Montenegro, 
which is at the same time the set of potential loca-
tions of police units. Two types of police units are dis-
tinguished in this data set: police intervention teams 
(PIT) and police special forces units (PSFU). The first 
type of units reacts in the case of criminal act against 
human life and property, while PSFUs may also react 
in the case of severe criminal acts and high-risk law 
enforcement operations. The driving distances be-
tween the cities are used as distances between two 
locations. In Data set 1, the coverage radius R is varied 
from 15 to 35 km.
Data set 2. As the second data set, we have used data 
from real-life instances presented in [25]. These 
instances are related to the network police units in 
the Republic of Serbia. In Data set 2, we consider the 
set of 145 cities, which are at the same time poten-
tial sites for locating police units. As in the case of 
Montenegro, two types of police units and two types 
of criminal acts are considered: police intervention 
teams (PIT) and police special forces units (PSFU). 
The average numbers of criminal acts of each type 
are obtained from the data provided by the Statis-
tical Office of the Republic of Serbia. The driving 
distances between the cities are calculated by us-
ing ViaMichelin Maps and route planner. Having in 
mind that police units need to react as soon as possi-
ble, the shortest driving distances between two cit-
ies are chosen. In Data set 2, the coverage radius R is 
varied from 20 to 40 km.
Data set 3. In order to evaluate the proposed algo-
rithm on larger problem dimensions, we have ran-
domly generated the third data set. In instances be-
longing to Data set 3, the number of locations of users 
varies from 200 to 350, while the number of potential 
locations for establishing emergency units is between 
40 and 55. Coordinates of all locations are randomly 
chosen from the square [0,300] × [0,300]. A different 
number of incidents and emergency units are consid-
ered. Covering radius R varies from 40 to 60.  

Results obtained for Data sets 1 and 2
We have first performed computational experiments 
on instances with real-life data. In Table 1, we present 
the results of the RVNS-LP method obtained on Data 
set 1. Column headings in Table 1 represent:  
 _ Number of cities – | I |; 
 _ Number of potential locations for emergency units 

–| J |; 
 _ Number of incident types –| K |; 
 _ Number of emergency unit types – | L |; 
 _ Covering radius – R; 
 _ Gap between the objective value of RVNS solution 

and the objective value of the optimal one – 
gapRVNS[%]; 

 _ Running time of RVNS phase – tRVNS[s]; 
 _ Objective value of the optimal solution obtained by 

RVNS-LP method – Obj. value; 
 _ Total running time of RVNS-LP method – t[s]; 
 _ Number of nodes searched until the optimal 

solution is found – Nodes. More precisely, it 
represents the number of nodes of the Branch-and-
Bound tree that are visited during the CPLEX run 
until the optimal solution is reached.  

From the results presented in Table 1, it can be seen 
that for each instance from Data set 1, the solution 
obtained in RVNS phase coincides with the optimal 
one. The CPLEX solver that is employed within the 
LP part quickly proves its optimality, i.e., it is easily 
confirmed that the solution passed to CPLEX (and 
taken as a root node of Branch-and-Bound tree) is 
actually the optimal one. For this reason, in the case 
of the Data set 1, the number of nodes of the Branch-
and-Bound tree generated during the CPLEX run is 
always equal to 0. The average CPU time of RVNS is 
0.070 seconds, while the average CPU time of RVNS-
LP is slightly longer – 0.073 seconds. Average gap of 
the RVNS solution is 0 %, meaning that the RVNS 
found optimal solution in each of the 20 runs.
Instances from Data set 2 (related to police network 
in Serbia) are of larger dimensions compared to in-
stances from Data set 1 (the case of police network in 
Montenegro). The results of the RVNS-LP obtained 
on Data set 2 are presented in Table 2. For each of 
the considered instances in Data set 2, the best solu-
tion obtained in the first phase by multi-start RVNS 
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Table 1
Results of the 

RVNS-LP 
for Data set 

1 – the case of 
Montenegro

Instance RVNS RVNS-LP

|I| |J| |K| |L| R gapRVNS[%] tRVNS[s] Obj. value t[s] Nodes

21 21 2 2 15 0.000 0.070 4998 0.073 0

21 21 2 2 16 0.000 0.066 5055 0.069 0

21 21 2 2 17 0.000 0.066 5191 0.069 0

21 21 2 2 18 0.000 0.067 5191 0.070 0

21 21 2 2 19 0.000 0.066 5191 0.069 0

21 21 2 2 20 0.000 0.066 5191 0.069 0

21 21 2 2 21 0.000 0.068 5389 0.071 0

21 21 2 2 22 0.000 0.068 5389 0.071 0

21 21 2 2 23 0.000 0.068 5389 0.072 0

21 21 2 2 24 0.000 0.069 5389 0.072 0

21 21 2 2 25 0.000 0.069 5491 0.072 0

21 21 2 2 26 0.000 0.069 5626 0.072 0

21 21 2 2 27 0.000 0.069 5676 0.073 0

21 21 2 2 28 0.000 0.070 5676 0.073 0

21 21 2 2 29 0.000 0.071 5780 0.075 0

21 21 2 2 30 0.000 0.075 5780 0.078 0

21 21 2 2 31 0.000 0.072 5780 0.075 0

21 21 2 2 32 0.000 0.074 5788 0.078 0

21 21 2 2 33 0.000 0.075 5838 0.078 0

21 21 2 2 34 0.000 0.075 5838 0.079 0

21 21 2 2 35 0.000 0.074 5838 0.078 0

average 0.000 0.070 5499.238 0.073 0

showed to be the optimal one, since its optimality 
was quickly confirmed in the second phase by the LP 
method (the number of nodes is zero). The exception 
is the last instance with R = 40, where CPLEX solv-
er has visited 7 nodes, starting from the best RVNS 
solution before finding the optimal solution. From 
the gapRVNS[%] column, it can be seen that the average 
gap of RVNS solutions was 0.710 %, which means that 
some of the best solutions generated during 20 RVNS 
runs have small gaps from the optimal one. The aver-
age time of the RVNS was 0.138 seconds through 20 
runs, while RVNS-LP needed 0.157 seconds of run-
ning time (in average) to return optimal solution.
In order to analyze the quality of obtained solutions 
from practical point of view, we compare solutions 
obtained by the proposed model with the current 

schedule of police units in Montenegro. The list of 21 
municipalities in Montenegro is given in Table 3. The 
area of each municipality is observed as a location 
with a number assigned. In the present situation, all 
police units of type 2 are located in Podgorica, which 
is the capital of Montenegro, while police units of type 
1 are located in municipalities 1, 3, 4, 5, 6, 12, 15, and 
19, representing so-called security centers in Mon-
tenegro. We have considered different combinations 
of parameter values b1, b2 and coverage radius R. For 
each parameter combination, we have calculated the 
objective value of a solution obtained with the present 
police units schedule and compared it with the ob-
jective value of the optimal solution provided by the 
proposed model. A detailed comparison for different 
values for parameters b1  and b2 and covering radius R 
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Table 2 
Results of the 
RVNS-LP for 
Data set 2 – the 
case of Serbia

Instance RVNS RVNS-LP

|I| |J| |K| |L| R gapRVNS[%] tRVNS[s] Obj. value t[s] Nodes

145 145 2 2 20 0.026 0.129 34638 0.138 0

145 145 2 2 21 0.250 0.126 34860 0.135 0

145 145 2 2 22 0.483 0.127 35997 0.136 0

145 145 2 2 23 0.210 0.131 37167 0.140 0

145 145 2 2 24 0.789 0.128 38019 0.137 0

145 145 2 2 25 0.642 0.132 38316 0.142 0

145 145 2 2 26 1.014 0.129 38451 0.138 0

145 145 2 2 27 0.898 0.131 38763 0.141 0

145 145 2 2 28 1.317 0.136 39168 0.147 0

145 145 2 2 29 0.894 0.134 39261 0.144 0

145 145 2 2 30 0.788 0.137 39999 0.147 0

145 145 2 2 31 0.446 0.139 40320 0.150 0

145 145 2 2 32 1.008 0.138 40776 0.149 0

145 145 2 2 33 1.400 0.143 40935 0.154 0

145 145 2 2 34 0.630 0.141 40977 0.153 0

145 145 2 2 35 0.674 0.143 41397 0.190 0

145 145 2 2 36 0.628 0.149 41553 0.172 1

145 145 2 2 37 0.898 0.148 41763 0.176 5

145 145 2 2 38 0.506 0.146 42111 0.171 0

145 145 2 2 39 0.704 0.152 42162 0.201 0

145 145 2 2 40 0.702 0.149 42285 0.226 7

average 0.710 0.138 39472.286 0.157 0.619

is given in Table 4. The number of police units of type 
1 is fixed to 8, since all of them are located in security 

Table 3
Municipalities in Montenegro

no. municip. no. municip. no. municip.

1 Podgorica 8 Žabljak 15 Plevlja

2 Andrijevica 9 Kolašin 16 Rožaje

3 Bar 10 Kotor 17 Tivat

4 Berane 11 Mojkovac 18 Ulcinj

5 Bijelo Polje 12 Nikšić 19 Herceg Novi

6 Budva 13 Plav 20 Cetinje

7 Danilovgrad 14 Plužine 21 Šavnik

centers. The number of units of type 2 that are cur-
rently all located in Podgorica varies from 1 to 4, while 
covering radius R varies from 15 to 35 km.
By comparing the objective values of solutions cor-
responding to the current schedule and the optimal 
one, it can be seen that in all cases the number of cov-
ered criminal acts is larger for the optimal schedule 
obtained by the MTMCLP model. The last column of 
Table 4 shows improvements (in percent) of the ob-
jective values when using the proposed model. As it 
was expected, smaller improvements were achieved 
for the largest considered value of covering radius R. 
For lower values of R, which imply shorter respond-
ing times of police units, the improvements of the 
objective values are significant. The largest improve-
ment is obtained for b1 = 8, b2 = 4, R =15 and it is equal 
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Table 4
Comparisons of current locations and optimal locations of police units in Montenegro

Data Current solution Optimal solution

b1 b2 R locations of police 
units of type 1

locations of 
police

units of type 2

Obj.
value

locations of police 
units of type 1

locations of 
police

units of type 2

Obj.
value

Impr.
[%]

8 1 15 1, 3, 4, 5, 6, 12 ,15, 19 1 3956 1, 3, 4, 6, 10, 12, 18, 19 13 4528 14.459

8 1 25 1, 3, 4, 5, 6, 12 ,15, 19 1 4727 1, 2, 3, 6, 12, 18, 19, 20 5 5207 10.154

8 1 35 1, 3, 4, 5, 6, 12 ,15, 19 1 5556 2, 3, 4, 6, 7, 9, 15, 19 14 5810 4.572

8 2 15 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 3956 1, 3, 4, 6, 10, 12, 18, 19 5, 13 4638 17.240

8 2 25 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 4727 1, 2, 3, 6, 12, 18, 19, 20 5, 15 5309 12.312

8 2 35 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 5556 3, 4, 6, 7, 11, 13, 15, 19 8, 14 5825 4.842

8 3 15 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 3956 1, 3, 4, 6, 10, 12, 18, 19 5, 13, 15 4740 19.818

8 3 25 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 4727 1, 2, 3, 6, 12, 18, 19, 20 5, 15, 16 5397 14.174

8 3 35 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 5556 2, 3, 4, 6, 7, 9, 15, 19 8, 14, 21 5838 5.076

8 4 15 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 3956 1, 3, 4, 6, 10, 12, 18, 19 5, 13, 15, 16 4828 22.042

8 4 25 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 4727 1, 2, 3, 6, 12, 18, 19, 20 5, 11, 15, 16 5459 15.486

8 4 35 1, 3, 4, 5, 6, 12 ,15, 19 all in 1 5556 2, 3, 4, 6, 7, 9, 15, 19 8, 12, 14, 21 5838 5.076

Figure 1
Current and optimal schedule of  PSFUs for b1 = 8, b2 = 1 and 
R = 25

to 22.042 %. By analyzing the positions of police units 
in the current and optimal solution, we may notice the 
difference in locations of units of both types. For ex-
ample, locations 2 (Andrijevica), 18 (Ulcinj) are often 
suggested by our model for establishing police units of 
type 1. For smaller values of covering radius R, location 
10 (Kotor) is suggested, while for larger R, the model 
proposes location 15 (Pljevlja) for establishing police 
units of type 1. It is interesting that our model suggests 
relocation of police units of type 2, which are current-
ly all situated at location 1 (Podgorica). For different 
values of  b1,  b2 and R, different locations are obtained; 
however, locations 5 (Biljelo Polje) and 15 (Pljevlja) 
appear the most often. In Figure 1, we present current 
and optimal locations of police units for b1 = 8, b2 = 1, 
and R = 25. Current locations of police units of types 1 
and 2 are marked with blue digits, while locations in 
optimal solution are marked with red digits 1 and 2. 
The objective value of the solution corresponding to 
present situation is equal to 4727, while the objective 
value of the optimal solution provided by our model is 
5207 (the improvement is around 10 %).
Based on the presented analysis, we may conclude 
that solutions obtained by using the proposed mod-
el and RVNS-LP method may help decision-makers 
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and security experts to improve the efficiency of po-
lice system by relocating some police units. However, 
it is important to note that the decision where to lo-
cate police units is not only driven by distances and 
statistical data on the number of criminal acts. In a 
real-life situation, it is important to take into account 
some additional conditions, such as the existence of 
adequate infrastructure, configuration of the terrain, 
possibility to observe larger geographical areas, etc. 
The decision making, including some of the men-
tioned additional conditions, may be the subject of 
investigation in our future work.

Results on generated instances
We have further benchmarked the RVNS-LP meth-
We have further benchmarked the RVNS-LP meth-
od on generated instances from Data set 3, involving 
|I| = 200, 250 user nodes and |J| = 40, 45 potential lo-
cations for emergency units. Differently from Data 
sets 1 and 2, in Data set 3, the number of incident 
types and the number of emergency unit types may be 
different, i.e., |K| ≠ |L| in general. The results are pre-
sented in Table 5 in the same way as in Tables 1–2. In 
order to confirm that a good-quality RVNS solution 
that is passed as the initial solution to the LP method 
may significantly reduce the total running time, we 
add one more column ∆t[%] in Table 5. This column 
shows time savings (in percents) achieved by using 
the best RVNS solution from the first phase as the ini-
tial solution in the LP phase.
From the results presented in Table 5, it can be seen 
that for larger problem instances with |I| = 200, 250  
users, the RVNS phase produces high-quality solu-
tions in short CPU times. The average running time 
of RVNS phase for instances in Table 5 is tRVNS = 0.536 
seconds. The average gap of the objective value of the 
best solution produced by multi-start RVNS from the 
optimal one is low – 0.204 %, meaning that the best 
RVNS solution is close to the optimal one. Howev-
er, the CPLEX solver applied within the LP part still 
needs additional effort to reach optimal solution 
starting from the best RVNS solution from the first 
phase, and to confirm its optimality. On average, the 
CPLEX solver visits 2340.104 nodes of the Branch-
and-Bound tree until the optimal solution is found. 
The average running time that RVNS-LP needed to 
detect optimal solution and to confirm its optimality 
is quite short (9.641 seconds). Data presented in col-

umn ∆t[%]  shows the advantage of the hybrid RVNS-
LP method in respect to running times. Significant 
time savings (up to 75.597 %) are obtained when using 
solution from the RVNS phase as the initial solution 
for the CPLEX solver. In average, time savings are 
29.353 % for instances from Table 5.
In Table 6, we present the results obtained on gener-
ated instances from Data set 3 with |I| = 300, 350 user 
nodes and |J| = 50, 55 potential locations for emergen-
cy units. As in Table 5, different number of incidents 
and emergency units are considered. The RVNS had 
similar performance on these instances: the average 
gap of the RVNS solution was 0.185%, while average 
running time was 0.852 seconds through 20 runs. 
However, the LP method needed more effort to find 
optimal solution, starting from the initial one provid-
ed in the RVNS phase. The average number of visit-
ed nodes before detecting optimal solution was 18 
436.082. In average, total running time of the RVNS-
LP method was 118.421 seconds, which is quite 
short having in mind problem dimensions. From the 
column ∆t[%] of Table 6, it can be seen that CPLEX 
time savings obtained when using multi-start RVNS 
to produce initial solution for the LP phase are up to 
48.809 %, while average time savings are 18.308 %.
In order to provide a graphical representation of the 
results, we have divided the set of generated instanc-
es into subsets of instances having the same values 
of three parameters |I|, |J| and R, and calculated av-
erage values of the obtained results for these subsets. 
In Figure 2, we present average objective values over 
the subsets of instances with fixed triples of param-
eters (|I|, |J|, R). As it was expected, the average ob-
jective values are steadily increasing as the number of 
nodes increases. It can also be noticed that for fixed 
values of |I| and |J|, the average objective values are 
generally increasing as coverage radius R increases. 
Figure 3 shows the comparison of the average CPU 
times of RVNS and RVNS-LP methods for generat-
ed instances with fixed triple of parameters (|I|, |J|, 
R). The average CPU time of RVNS method was very 
short (under 1 second), but the best RVNS solution 
had a certain gap from the optimal one. Therefore, 
the LP part needed additional CPU time to detect the 
optimal solution and confirm its optimality. However, 
from Figure 3 it can be seen that average CPU time in 
which RVNS-LP produced optimal solution for the 
largest considered instances with |I|=300, |J|=55 and 
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Instance RVNS RVNS-LP Time savings
|I| |J| |K| |L| R gapRVNS[%] tRVNS[s] Obj. value t[s] Nodes t [%]
200 40 2 2 40 0.760 0.313 15915 1.195 576 37.356
200 40 2 2 50 0.184 0.373 17363 4.232 1694 49.119
200 40 2 2 60 0.408 0.441 18383 0.999 276 31.621
200 40 3 2 40 0.000 0.312 24799 1.052 236 18.513
200 40 3 2 50 0.000 0.312 26937 1.606 654 31.841
200 40 3 2 60 0.280 0.437 28551 8.107 4037 18.954
200 40 3 3 40 0.578 0.375 25592 1.413 243 19.333
200 40 3 3 50 0.288 0.484 27117 1.334 318 58.432
200 40 3 3 60 0.000 0.544 28402 1.728 63 22.098
200 40 4 2 40 0.000 0.368 35504 0.855 49 19.081
200 40 4 2 50 0.000 0.407 37161 1.915 542 2.890
200 40 4 2 60 0.000 0.513 39329 9.307 3446 17.739
200 40 4 3 40 0.639 0.404 37255 2.163 479 59.565
200 40 4 3 50 0.000 0.437 38412 1.501 406 43.091
200 40 4 3 60 0.098 0.564 38827 4.160 1787 17.197
200 40 4 4 40 1.118 0.493 37133 2.240 339 19.339
200 40 4 4 50 0.216 0.591 38448 1.805 274 31.368
200 40 4 4 60 0.000 0.680 39386 1.933 91 13.474
200 40 5 3 40 0.305 0.460 48132 1.879 182 35.668
200 40 5 3 50 0.000 0.540 49380 2.276 412 71.720
200 40 5 3 60 0.000 0.662 50217 5.080 1208 20.126
200 40 5 5 40 0.869 0.502 45594 2.928 523 46.620
200 40 5 5 50 0.140 0.781 47233 3.097 250 55.148
200 40 5 5 60 0.179 0.688 48166 3.627 474 62.516
250 45 2 2 40 0.000 0.358 21151 7.963 3397 0.113
250 45 2 2 50 0.232 0.467 22884 9.482 3846 20.437
250 45 2 2 60 0.421 0.517 23990 1.865 499 54.387
250 45 3 2 40 0.000 0.372 30921 8.105 2196 15.949
250 45 3 2 50 0.000 0.431 33481 19.193 6731 35.620
250 45 3 2 60 0.000 0.482 35406 11.431 3832 75.597
250 45 3 3 40 0.535 0.447 34211 2.171 407 19.680
250 45 3 3 50 0.376 0.496 35332 9.327 1562 24.873
250 45 3 3 60 0.000 0.671 36370 11.098 2058 19.668
250 45 4 2 40 0.000 0.428 39841 2.499 371 3.737
250 45 4 2 50 0.000 0.491 44289 14.738 2580 23.487
250 45 4 2 60 0.000 0.622 47126 34.150 8190 19.915
250 45 4 3 40 0.311 0.509 48534 41.130 13181 22.894
250 45 4 3 50 0.000 0.579 50275 11.326 3882 20.424
250 45 4 3 60 0.000 0.711 50908 2.177 547 68.018
250 45 4 4 40 0.328 0.497 45739 3.162 463 31.283
250 45 4 4 50 0.395 0.635 46887 19.243 3778 18.765
250 45 4 4 60 0.149 0.820 47722 20.708 3915 19.833
250 45 5 3 40 0.043 0.563 58127 38.164 9353 13.853
250 45 5 3 50 0.345 0.661 60580 59.445 12499 30.623
250 45 5 3 60 0.118 0.802 61918 16.684 4183 32.440
250 45 5 5 40 0.112 0.673 57911 23.806 2858 8.354
250 45 5 5 50 0.328 0.865 59754 23.708 3041 2.053
250 45 5 5 60 0.054 0.951 60826 4.765 397 24.153
average 0.204 0.536 39529.563 9.641 2340.104 29.353

Table 5
Results of the RVNS-LP for Data set 3 – randomly generated large instances with |I| = 200 and |I| = 250 user nodes
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Table 6 
Results of the RVNS-LP for Data set 3 – randomly generated large instances with |I| = 300 and |I| = 350 user nodes

Instance RVNS RVNS-LP Time savings
|I| |J| |K| |L| R gapRVNS[%] tRVNS[s] Obj. value t[s] Nodes t[%]

300 50 2 2 40 0.490 0.458 26961 14.478 4893 0.282
300 50 2 2 50 0.163 0.529 28914 8.585 2422 12.851
300 50 2 2 60 0.292 0.523 29767 10.953 3650 27.684
300 50 3 2 40 0.000 0.421 37739 2.121 289 0.516
300 50 3 2 50 0.000 0.496 40900 111.674 34929 40.209
300 50 3 2 60 0.000 0.744 43609 25.653 6136 26.102
300 50 3 3 40 0.408 0.471 40661 29.041 5540 5.715
300 50 3 3 50 0.099 0.771 42269 26.250 5708 16.313
300 50 3 3 60 0.023 0.933 43251 50.739 11699 13.550
300 50 4 2 40 0.000 0.493 48642 15.006 1508 16.154
300 50 4 2 50 0.000 0.603 52594 61.793 9047 32.108
300 50 4 2 60 0.399 0.844 55935 239.585 38931 7.838
300 50 4 3 40 0.175 0.727 56107 34.225 6070 46.069
300 50 4 3 50 0.187 0.861 57810 19.047 3800 0.422
300 50 4 3 60 0.142 1.036 58345 29.852 8640 11.998
300 50 4 4 40 0.679 0.795 55341 25.591 2892 3.944
300 50 4 4 50 0.021 0.744 57028 5.398 523 40.402
300 50 4 4 60 0.000 1.046 57588 37.257 6226 19.327
300 50 5 3 40 0.540 0.851 68690 53.170 6663 4.750
300 50 5 3 50 0.000 0.968 70902 69.981 8800 24.349
300 50 5 3 60 0.367 1.162 72448 32.570 4653 7.424
300 50 5 5 40 0.442 0.721 70590 27.446 1920 8.638
300 50 5 5 50 0.165 0.973 72114 46.421 4770 9.133
300 50 5 5 60 0.014 1.286 72971 49.777 6120 48.809
350 55 2 2 40 0.057 0.531 31765 24.165 4646 2.130
350 55 2 2 50 0.054 0.573 33055 56.398 12041 16.431
350 55 2 2 60 0.296 0.860 33763 77.698 23187 31.578
350 55 3 2 40 0.024 0.611 42327 41.142 6094 11.614
350 55 3 2 50 0.000 0.712 46551 58.848 8036 37.582
350 55 3 2 60 0.144 0.654 48744 414.896 80479 28.266
350 55 3 3 40 0.202 0.789 49029 53.891 7353 0.562
350 55 3 3 50 0.026 0.815 50270 109.235 16428 33.560
350 55 3 3 60 0.120 1.245 50936 118.387 27022 7.867
350 55 4 2 40 0.000 0.752 54878 108.720 11230 41.265
350 55 4 2 50 0.000 0.888 60857 123.553 12280 38.428
350 55 4 2 60 0.000 1.008 64461 706.457 86305 27.177
350 55 4 3 40 0.382 0.837 65511 538.097 115610 17.304
350 55 4 3 50 0.480 1.006 67693 242.005 45341 16.682
350 55 4 3 60 0.335 1.179 68728 169.871 38834 2.845
350 55 4 4 40 0.435 0.760 66899 80.140 7804 19.391
350 55 4 4 50 0.056 1.030 68203 110.708 12457 22.029
350 55 4 4 60 0.012 1.113 69155 108.952 13562 21.398
350 55 5 3 40 0.700 0.902 80131 266.091 24984 17.478
350 55 5 3 50 0.349 1.140 83288 417.100 49156 6.096
350 55 5 3 60 0.033 1.348 85093 301.165 41495 23.513
350 55 5 5 40 0.249 1.071 85010 100.211 7039 16.238
350 55 5 5 50 0.223 1.184 86229 192.808 17311 4.661
350 55 5 5 60 0.116 1.412 86780 237.053 30409 10.101

average 0.185 0.852 57094.417 118.421 18436.083 18.308
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R = 60 is around 270 seconds, which is relatively short 
considering problem dimension and the fact that 
the optimal solution is provided. Finally, in Figure 
4, we present the average time savings (in percents) 
obtained when using the best RVNS solution as the 
starting point for the LP part. Note that time-savings 
depend on the quality of the RVNS solution from the 
first phase as well as on the nature of the considered 
instances. As it can be seen in Figure 4, the average 
time-savings vary between 11 % an 43 % for the con-
sidered groups of generated instances with fixed pa-
rameters |I|, |J| and R.

Conclusions
This paper introduces the Multi-Type Maximal Cov-
ering Location Problem (MTMCLP) in emergency 
service networks, representing a generalization of 
the well-known Maximal Covering Location Problem 
(MCLP). In the proposed MTMCLP, different types of 
incidents and emergency units are considered, and it 
is assumed that limited number of emergency units of 
each type is available. A hierarchy among emergency 
units is introduced, meaning that an emergency unit 
of a certain type can cover the same incident types as 
emergency units of lower level, as well as additional 
incident types. The objective of the MTMCLP is to find 
optimal locations for establishing emergency units of 
each type, so that the total sum of covered incidents 
is maximized. An efficient two-phase optimization 
algorithm (RVNS-LP) is designed to solve the con-
sidered problem. In the first phase of the optimization 
algorithm, a variant of Reduced Variable Neighbor-
hood Search (RVNS) is applied, producing high-qual-
ity solution in very short CPU time. The RVNS uses 
neighborhood structures that are appropriate for the 
considered MTMCLP. The neighborhoods of the cur-
rent solution are explored in an efficient manner by 
using a time-saving strategy in the procedure for ob-
jective function calculation. The RVNS is run on the 

set of randomly generated initial solutions, and the 
best solution obtained through multiple RVNS runs 
is used as the starting point for the Linear Program-
ming method in the second phase. The LP method is 
used within the framework of commercial CPLEX 
software, and it was showed that significant savings 
of CPLEX running times may be obtained when using 
high-quality solution from the RVNS phase as the ini-
tial solution for the LP part.
The proposed RVNS-LP was benchmarked on two 
sets of real-life instances and on the set of randomly 
generated instances of larger dimensions. Our exper-
imental evaluation shown that the RVNS-LP solves 
all real-life instances to optimality in very short 
CPU times. On generated test instances, the RVNS-
LP provided optimal solutions in reasonably short 
running times, having in mind problem dimensions. 
From practical point of view, solutions obtained by 
using the proposed model and RVNS-LP approach 
show significant improvement compared to current 
solutions regarding objective values, i.e., the increase 
of the total number of covered incidents. However, 
relocation of police units requires additional costs, 
but on the other side, it may lead to better efficiency 
of a security system. The solutions proposed in this 
study have a potential to be considered when creat-
ing a long-term security system strategy. Future work 
may involve a modification of the proposed MTMCLP 
model in order to include some specific emergency 
system requirements, as well as adapting the RVNS-
LP in order to solve similar covering problems relat-
ed to emergency networks. The development of some 
metaheuristic methods for MTMCLP and testing 
their performances against the RVNS-LP is another 
future work direction.
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Summary / Santrauka
This study introduces the Multi-Type Maximal Covering Location Problem (MTMCLP) that arises from the 
design of emergency service networks, and represents a generalization of the well-known Maximal Covering 
Location Problem (MCLP). Differently from the basic MCLP, several types of incidents and emergency units 
are considered and hierarchy of emergency units of different types is assumed in the MTMCLP. The numbers 
of available emergency units of each type are limited to some constants. The objective of the MTMCLP is to 
choose locations for establishing emergency units of each type, such that the total number of covered incidents 
is maximized. In order to provide a decision maker with optimal solutions in an efficient manner, a two-phase 
optimization approach to the MTMCLP is designed. In the first phase, a variant of Reduced Variable Neigh-
borhood Search (RVNS) is applied to quickly find a high-quality solution. The obtained RVNS solution is used 
as a good starting point for the Linear Programming method in the second phase, which returns the optimal 
solution to the MTMCLP. All constructive elements of the proposed two-phase method, denoted as RVNS-LP, 
are adapted to the characteristics of the considered problem. The RVNS-LP approach is evaluated on real-life 
instances obtained from two networks of police units in Montenegro and Serbia, and randomly generated test 
instances of larger dimensions. Experimental evaluation shows that the proposed RVNS-LP reached all opti-
mal solutions on all real-life test instances in very short CPU time. On generated test instances, the RVNS-LP 
also returned optimal solutions in all cases, within short running times and significant time savings compared 
to CPLEX solver. The mathematical model and the proposed two-phase optimization method may be applicable 
in the design and management of various emergency-service networks.

Ši studija pristato įvairiatipio maksimalaus zonų padengimo problemą (angl. Multi-Type Maximal Covering 
Location Problem (MTMCLP)), kuri kyla dėl tam tikro pagalbos tarnybų tinklų išplanavimo. Taip pat apiben-
drinama ir gerai žinoma Maksimalaus zonų padengimo problema (angl. Maximal Covering Location Problem 
(MCLP)). Priešingai nei pagrindiniame MCLP, MTMCLP apžvelgiama keletas skirtingų nelaimės ir pagalbos 
tarnybų tipų, taip pat yra atsižvelgiama į skirtingų pagalbos tarnybų ekipažų hierarchiją. Pasiekiamų kiekvie-
no tipo pagalbos tarnybų ekipažų skaičius yra apribotas iki tam tikrų konstantų. MTMCLP tikslas – parinkti 
vietas kiekvienam pagalbos tarnybų ekipažų tipui taip, kad išspręstų incidentų skaičius būtų maksimizuotas. 
Tam, kad sprendimų priėmėjui būtų galima pasiūlyti efektyvią alternatyvą, sukurtas dvifazis MTMCLP meto-
das. Pirmojoje fazėje sumažintų kintamųjų paieškos artimoje aplinkoje (angl. Reduced Variable Neighborhood 
Search (RVNS)) variantas pritaikomas greitam aukštos kokybės sprendimo suradimui. Gautas RVNS sprendi-
mas yra geras pradinis taškas tiesiniam programavimo metodui antrojoje fazėje, kuri grąžina optimalų spren-
dimą į MTMCLP. Visi konstrukciniai siūlomo dvifazio metodo elementai, pažymėti RVNS-LP, yra pritaikomi 
pagal konkrečios sprendžiamos problemos charakteristiką. RVNS-LP metodas yra vertinamas atsižvelgiant į 
realius atvejus, su kuriais susidūrė du policijos ekipažai Montenegro ir Serbijoje, taip pat į atsitiktinumo tvarka 
sugeneruotas didesnių dimensijų testines situacijas. Bandomasis įvertinimas rodo, kad pasiūlytas RVNS-LP 
metodas rado visus optimalius sprendimus visuose realių atvejų testavimo atvejuose per labai trumpą cen-
trinio procesoriaus įrenginio (CPU) laiką. Visais sukurtais testinių įvykių variantų atvejais, RVNS-LP grąžino 
optimalius sprendimus per trumpą veikimo laiką ir sutaupė gerokai daugiau laiko, nei CPLEX. Matematinis 
modelis ir pasiūlytas dvifazis optimizavimo metodas gali būti pritaikomi įvairių pagalbos paslaugų tinklų pro-
jektavime ir valdyme.


